
April 1995

The information in this datasheet is subject to change

42 1470 06

1/64

FEATURES

32 way Asynchronous Packet Switch (APS)

32 x 100 Mbits/s serial bi-directional links

300 Mbytes/s bandwidth

High rate of packet processing
 – up to 200 Mpackets/s

Less than 1 �s packet latency

Wormhole interval routing algorithm:
 routes packets of any length

Grouped adaptive routing
(support for fault tolerant networks)

Non-blocking crossbar

Concurrent processing of packets

Partitionable architecture

Cascadable to any depth

Support for hierarchical routing

Supports 2-phase routing: hot spot avoidance

Separate control system

No loss of signal integrity

Full flow-control

Bit and packet level error handling

Uses 4 wire per link Data-Strobe encoding for
simple clock extraction
 – eliminates need for high speed clocks

On-board phase locked loop requires single
5 MHz crystal input

On-chip buffering of 70 tokens per link

Highly configurable: 28 Kbits user-programmed
data

Boundary scan support

Available in 208 CLCC package

32 x 32
Crossbar

switch

Link 31

Link 0

System
services

Command
processor

CLink 0

CLink 1

...

APPLICATIONS

Core switching element for packet switched
communications networks e.g. ATM, Fibre
Channel, switched Ethernet and Token Ring.

Switched interconnect mechanism for heteroge-
neous processor systems using STC101
Parallel DS-Link� Adaptor.

STC104

ASYNCHRONOUS PACKET SWITCH
ENGINEERING DATA

Errata sheet

42 1470 06 Errata sheet

2/64

This errata sheet lists the behavior of the STC104 which differs from that stated in the following datasheet.
Subsequent revisions of the device will behave as detailed in the datasheet.

Control Link 0 reporting of errors
Double error messages are sent upon a single valid data link error being detected, instead of only one error
message sent from control link 0. Each error message is valid and identical, and the second error message
is sent immediately following the first.

Spurious errors during reset
Reset 1 and 2 via the control link can cause spurious error messages to be generated. These errors should
be ignored.

Spurious generation of InvalidHeader errors
Spurious invalid header error messages are output from control link 0 when data is being routed from links
in which there are invalid bits set in the interval tables even though the flag may not be set for the interval
selected. The data is routed correctly for those links without the invalid flag set, the bug being in the error
reporting mechanism. The only way to guarantee that these messages are not generated is not to mark
any interval registers as invalid.

DiscardIfInactive bit of the PacketMode0–31 registers
The DiscardIfInactive bit of the PacketMode0-31 registers (see table 5.2, page 31) has a different effect
than specified. The DiscardIfInactive bit is only effective if the link has been started and has subsequently
detected an error. If the link never becomes active (either because this end of the link is not started, or the
other end is not) then packets addressed to the link are not discarded regardless of the setting of the bit.

Implementation of grouping
There is a bug in the implementation of grouping in the STC104. The effect of this is that the implementa-
tion does not support fault–tolerant operation as was originally intended. The grouping mechanism as
implemented may direct a packet addressed to a group to a link of the group which is inactive, with the
result that the packet will stall indefinitely. Groups containing links which are not active (either because
they are not connected, not turned on or because they have detected an error) are thus not usable.

Control unit – zero length packet
Zero length packets (single terminators) forwarded from clink1 to clink0 will cause outgoing messages
from the STC104 to be stalled until a further terminator is forwarded to the uplink. This may happen if clink1
detects a parity error while it is not in the middle of a packet and the localize error bit is set. No further
acknowledges, handshakes or error reports will be output on clink0 until a terminator is output on clink1.

Control unit – RecoverError unwanted protocol error
When a RecoverError command is sent to a device while a command is in progress the control unit will
report a protocol error, in addition to processing the RecoverError in the expected way.

Control unit decodes MSB header only
Control link daisy-chains which rely on the MSB to distinguish devices will not work. This limits daisy-
chains to 256 devices.

DSlink response to error
After a C104 link has detected a parity error, it must have its ParityError status bit cleared (by a Start or
Reset) before any tokens are received on that link.

Any attempt to send tokens to a C104 link which is idle following a parity error will cause the C104 to send
a short burst of tokens and then fall silent, invoking a disconnect error in the sender.

DS-Link flow control deadlock
DS-Link data transmissions deadlock under certain conditions. The deadlock occurs when the 20 token
DSLink token FIFO fills completely. When the FIFO is completely full it reports that it is empty, thus no more
tokens leave the FIFO and the result is deadlock. It should be noted that this is a very rare occurrence.

3/64

1 STC104 introduction
This document contains preliminary information for the STC104 Asynchronous Packet
Switch (APS). The STC104 is part of the product family based around high speed
asynchronous serial communication between various parts of a system.

The STC104 is a complete, low latency, packet routing switch on a single chip. It
connects 32 high bandwidth serial communication links to each other via a 32 by 32 way
non-blocking crossbar switch, enabling packets to be routed from any of its links to any
other link. The links operate concurrently and the transfer of a packet between one pair
of links does not affect the data rate or latency for another packet passing between a
second pair of links. Each link can operate at up to 100 Mbits/s, providing a bidirectional
bandwidth of 19 Mbytes/s. The STC104 supports a rate of packet processing of up to
200 Mpackets/s.

The STC104 allows communication between devices, such as microprocessors, that
are not directly connected. A single STC104 can be used to connect up to 32 micropro-
cessors. The STC104 can also be connected to other STC104s to make larger and more
complex switching networks, linking any number of microprocessors, link adaptors, and
any other devices that use the link protocol. Another member of the product family, the
STC101 Parallel DS-Link Adaptor, will allow links to be interfaced to peripheral buses
and devices, refer to the STC101 datasheet (document number 42 1593 03) for details.

The STC104 enables networks to be built which effectively emulate a direct connection
between each of the devices in the system, and removes the need for through-routing
software. In the absence of any contention for a link output, the packet latency1 will be
less than 1� second through each STC104.

Data in an STC104 communication system is transmitted in packets. To enable packets
to be routed, each packet has a header at the front which contains routing information.
The STC104 uses the header of each incoming packet to determine the link to be used
to output the packet. Anything after the header is treated as the packet body until the
packet terminator is received. This enables the STC104 to transmit packets of arbitrary
length.

In most packet switching networks complete packets are stored internally, decoded, and
then routed to the destination node. This causes relatively long delays due to high
latency at each node. To overcome this limitation, the STC104 uses wormhole routing,
in which the routing decision is taken as soon as the routing information, which is
contained in the packet header, has been input. Therefore the packet header can be
received, and the routing decision taken, before the whole packet has been transmitted
by the source. A packet may be passing through several nodes at any one time, thereby
pipelining the transmission of the packet. The term wormhole routing comes from the
analogy of a worm crawling through soil, creating a hole that closes again behind its tail.
Wormhole routing is invisible as far as the senders and receivers of packets are con-
cerned, its only effect is to minimize the latency in message transmission.

1. Latency here means the time between the first bit of the packet being received on one link and being
re–transmitted on another.

4/64

The algorithm which makes the routing decision is called interval labelling, which is
complete, deadlock free, inexpensive and fast. Each destination in a network is labelled
with a number, and this number is used as the destination address in a packet header.
Effectively, each of the 32 links on a routing switch is labelled with an interval of possible
header values, and only packets whose header value falls within that interval are output
via that link. Thus the header specifies a particular link along which to transmit the
packet. Consecutive links may be programmed to be ‘grouped’, so if a packet is routed
to an output link which is busy it will automatically be routed along any other link in the
group which is available. In this way performance can be optimized by allowing packets
to be routed to any one of several outputs, depending on which link in the group is the
first to become available. Grouping also provides fault tolerance.

The STC104 can be programmed so that the output link selected by the router is
independent of the input link on which the packet arrives. Alternatively the STC104 can
be programmed so that some link inputs are mapped to a specific set of link outputs.
This can be used to enable independent networks to be implemented with the same
ST C104 with complete security.

The STC104 can be programmed so that certain header ranges are marked as invalid
in which case packets whose headers fall within this range are discarded. This can be
used to enforce security in multi-user networks.

To eliminate network hot spots, the STC104 can optionally implement a two phase
routing algorithm. This involves every packet being first sent to a randomly chosen
intermediate destination; from the intermediate destination it is forwarded to its final
destination. This algorithm, referred to as Universal Routing, is designed to maximize
capacity and minimize delay under conditions of heavy load.

Usually packets are routed through the STC104 unchanged. However a flag can be set
in the specified output link, in which case the header of the packet is discarded. Each
link output of the STC104 can be programmed to delete the header of a packet,
revealing a second header to route the remainder of the packet to the next destination
device. This assists in the modular and hierarchical composition of routing networks and
simplifies the labelling of networks.

The STC104 is controlled and programmed via a control link. The STC104 has two
separate control links, one for receiving commands and one to provide daisy chaining.
The control links enable networks of STC104s to be controlled and monitored for errors.
The control links can be connected into a daisy chain or tree, with a controlling processor
at the root.

5/64

2 Communication on an STC104 system

The STC104 can be connected to a range of microprocessors or devices via an STC101
Parallel DS-Link Adaptor. In this datasheet the combination of an STC101 and
connected device (or a device with one or more integrated DS–Links, for example an
IMS T9000 transputer) is referred to as a processing node, as shown in figure 2.1.

System wide communication can be provided by connecting different microprocessors
to a single routing network via one or more STC101 Parallel DS-Link Adaptor devices.
By using several STC101s, a microprocessor can be connected to several different
networks.

Microprocessor STC101STC101

STC101

STC101

Figure 2.1 Processing node

Communications between different processes on a microprocessor usually take place
over software channels. Communication between processes on different processors
often take place over a message passing system based around an arbitrated bus. This
can lead to high latency within a system and a large software and hardware overhead
for the system as a whole and lower data bandwidth. By implementing software virtual
channels and using the dynamic message routing capability of the STC104, overall
system bandwidth can be improved significantly while reducing the need for hardware
arbitration within the system. The STC104 and STC101 use a protocol which supports
both virtual channels and dynamic message routing, and provide a high data bandwidth
and very low latency.

6/64

3 Operation of STC104 networks
A single STC104 can be used to connect up to 32 subsystems that are not directly
connected to each other. The STC104 can also be connected to other STC104s to make
larger and more complex switching networks, linking any number of microprocessors,
link adaptors, and any other devices that can utilize the link protocol.

An STC104 network consists of one or more STC104 routing devices connected togeth-
er by bi-directional links. Each device is called a node of the network. Some links of the
network are connected to the exterior of the network, to processing nodes or to another
network. These links are called terminal links.

The purpose of a communication network is to support efficient and reliable communica-
tion. Consequently, an essential property of a communications network is that it should
not deadlock2. Deadlock can occur in most networks unless the routing algorithm is
designed to prevent it. For example, consider the square of four nodes shown in figure
3.1a. If every node attempts to send a packet to the opposite corner at the same time,
and the routing algorithm routes packets in a clockwise direction, then each link
becomes busy sending a packet to the adjacent corner and the network becomes
deadlocked.

Deadlock is a property of the network topology and the routing algorithm used and can
be avoided by choosing networks for which deadlock-free wormhole routing algorithms
exist. Instead of routing packets in a clockwise direction, the deadlock-free algorithm
routes two of the packets anti-clockwise. Since the links are bi-directional this allows all
of the packets to be routed without deadlock, as illustrated in figure 3.1b.

a. Deadlock in a simple network b. Avoiding deadlock in a simple network

Figure 3.1 Deadlock in networks

In order to support the efficient routing of packets through a network the STC104
implements a complete deadlock-free routing algorithm in hardware. The component
parts of the algorithm are described in the following sections.

2. Deadlock is a state where further progress is impossible due to a cycle of resource dependencies.

7/64

3.1 Wormhole routing

The STC104 interprets the signals on its inputs as sequences of packets. It takes the
first one or two bytes of data (the choice being a configurable parameter) as the header
of the packet, which determines what it will do with the whole packet. The length and
contents of the remainder of the packet are arbitrary. The end of the packet is indicated
by one of two distinguished termination tokens, called EOP (end of packet) and EOM
(end of message).

direction of travel

packet body (0 or more bytes)
packet terminator

(EOP or EOM)
packet header
(1 or 2 bytes)

Figure 3.2 Packet structure

In most packet-switching networks each routing switch inputs the whole of a packet,
decodes the routing information, and then forwards the packet to the next node. This
is undesirable because it requires storage for packets in each routing switch and it
causes long delays between the output of a packet and its reception.

The STC104 uses wormhole routing (figure 3.3) in which the routing decision is taken
as soon as the header of the packet has been input. If the output link is free, the header
is output and the rest of the packet is sent directly from input to output without being
stored. If the output link is not free the packet is buffered. The packet header, in passing
through a network of STC104s, creates a temporary circuit through which the data flows.
As the end of the packet is pulled through, the circuit vanishes. The wormhole analogy
is based on the comparison with a worm crawling through sandy soil, which creates a
hole that closes again behind its tail.

Packet header is read, routing
decision is taken.

If output link is free, packet is
sent directly from input to out-
put creating temporary circuit.

As tail is pulled through the circuit
vanishes. Header may enter
next switch before packet has
left previous switch.

C104 C104 C104

C104 C104 C104

C104 C104 C104

Figure 3.3 Wormhole routing

8/64

The implications of wormhole routing are that a packet can be passing through several
STC104s at the same time, and the head of the packet may be received by the destina-
tion before the whole packet has been transmitted by the source. Thus latency is
minimized.

Wormhole routing is invisible as far as the senders and receivers of packets are con-
cerned. Its major effect is to minimize the latency in the message transmission.

Note that if a packet is transmitted from a link running at a higher speed than the link
on which it is received, there will be a loss of efficiency because the higher speed link
will have to wait for data from the slower link. In most cases all the links in a network
should be run at the same speed.

3.1.1 Buffering

To exploit the full bandwidth of the internal pathways on the STC104 there is buffering
on each path through the device. The buffering is fully handshaken FIFO buffering with
minimal latency.

3.2 Interval labelling

Wormhole routing requires an efficient routing strategy to decide which link a packet
should be output from. The STC104 uses a routing scheme called interval labelling,
whereby each output link of an STC104 is assigned a range, or interval, of labels. This
interval contains the number of all the terminal nodes (i.e. microprocessors, gateway
to another network, peripheral chip, etc) which are accessible via that link. As a packet
arrives at an STC104 the selection of the outgoing link is made by comparing the header
label with the set of intervals. This is illustrated in figure 3.4. The intervals are contiguous
and non-overlapping and assigned so that each header label can only belong to one of
the intervals. The output link associated with the interval in which the header label lies
is the one selected. In the example the incoming header contains the value 154, which
lies between 145 and 186, so the packet is output along link 8.

154

0
15
98

145
187

5
2
7
8
1
4
3
6

Compare with
interval table Send packet down link 8

link
selected

Figure 3.4 Interval labelling

Figure 3.5 gives an example of interval routing for a network of two STC104’s and six
processing nodes. The example shows six links, one to each processing node, labelled

9/64

0 to 5. The interval contains the labels of all nodes accessible via that link. The interval
notation [3,6) is read as meaning that the header label must be greater than or equal
to 3 and less than 6. If the progress of a packet with the header label 4 is followed from
node1 then it is evident that it passes through both STC104s before leaving on the link
to node4.

node1

C1041

[3, 4)
[5, 6)

[4, 5)

[0, 3)

[3, 6)
[1, 2)

[0, 1)

[2, 3)

Intervals: [0,1) [1,2) [2,3) [3,6) [0,3) [3,4) [4,5) [5,6)

C1042

C1041 C1042

node2 node4

node3

node5node0

Figure 3.5 Interval routing

It is possible to label all the major network topologies such that packets follow an optimal
route through the network, and such that the network is deadlock free. Optimal, dead-
lock free labellings, which will be provided to customers, are available for grids, hyper-
cubes, trees and various multi-stage networks. A few topologies, such as rings, cannot
be labelled in an optimal deadlock free manner. Although they can be labelled so that
they are deadlock free, this is at the expense of not using one or more of the links, so
that the labelling is not optimal. Optimal deadlock free labellings exist if one or more
additional links are used.

Interval routing ensures that each packet takes the shortest route with low control
overhead, and that all packets reach their destinations. The transfer of a packet between
one pair of links does not affect the data rate for another packet passing between a
second pair of links. The hardware required to implement interval routing is simple,
enabling many routing decisions to be made concurrently, thus providing a high rate of
packet processing.

Interval routing is implemented on the STC104 by interval selector units. There is one
interval selector unit per input link, which performs the routing decision for each packet
arriving on the link. An interval selector unit effectively consists of 36 base and limit
comparators (see figure 3.6).

10/64

Invalid1

Invalid36

Invalid2

Separator36

ComparatorSelectLink36

Separator2

SelectLink2

Separator1

SelectLink1

zero

header input to
interval selector unit

Comparator

Comparator

Discard36

Discard2

Discard1
.

.
.

.
.

.

packet output along
selected link

header discarded, new header
re-input to interval selector unit

entire packet discarded and
Invalid Header error generated

Figure 3.6 Interval selector registers

Each comparator is connected to a pair of programmable interval separators, except the
lowest whose base is fixed at zero. Each interval separator (Separator1-36) is con-
nected to the limit of one comparator and the base of the next comparator, except the
top one (Separator36) which is connected to the limit of the top comparator only. The
Separator1-36 register bit fields must be programmed with a set of unsigned 16 bit
values ascending from zero. Thus the intervals are non-overlapping and each header
value can only belong to one of the intervals. This sets the interval for each link. Any link
can be assigned to any interval. The output of each comparator is connected to a
register bit field (SelectLink). The SelectLink bit field contains the number of the
associated output link. The link is selected for output if the packet header is greater than
or equal to the base and less than the limit value of the adjoining comparator. Once the
path through the crossbar is set the tokens are passed through until an EOP or EOM
terminator token is detected.

11/64

Each Interval register has two flags: Discard and Invalid. The Invalid bit designates
whether packets whose headers fall into the interval below the separator should be
discarded (with the generation of an ‘Invalid Header’ error). This is used to ensure
security in multi-user networks, see section 3.4.1. If the Invalid bit is set, the Discard
bit should not be set. If the Invalid bit is not set, the Discard bit designates whether
headers falling into the interval below the separator should be discarded. This is used
in the implementation of Universal Routing; see section 3.6. Note that if the Discard bit
or the Invalid bit is set, the value of the corresponding SelectLink field is arbitrary, since
it will never be used.

Note that if two successive separator values are the same, this forms a null interval. If
one or more null intervals occur below a non-null interval (note that the topmost interval
Interval36 can never be null), they must all have the same values in their SelectLink,
Discard and Invalid fields.

If the HeaderLength flag is 0 (i.e. the STC104 is set to input 1 byte headers), all
Separator fields must contain values in the range 0 to 255 inclusive. If it is required to
use the header value 255 (the maximum possible with one byte) then the Interval36
register must be used, rather than programming any of the Separator fields of the
Interval1 to Interval35 registers with a value in excess of 255.

Note: more than one Discard or Invalid bit may legitimately be set, and two or more
SelectLink fields may have the same value.

Further details on the Interval registers are given in section 5.2.1.

3.3 Multiple networks

System wide communication can be provided by connecting different microprocessors
to a single routing network via one or more STC101 Link Adaptor devices. By using
several STC101s a microprocessor can be connected to several different networks, or
simply logical sub-networks of one network of STC104s. The use of multiple networks
can provide the following:

� Separate networks for different priority messages. The link protocol does not
provide any support for associating a priority with a packet. This can be sup-
ported by providing a separate network for each required message priority.

� Separate networks for identified concurrent data streams in a system designed
for a specific application.

� Separate networks for data and control messages.

12/64

3.4 Security in networks

The STC104 can provide a mapping between the value of the incoming packet header
and the output link on which it will be forwarded, which is independent of the link on which
the packet is received. This can be achieved by programming the Interval registers
identically for each link. The STC104 is then logically a single entity. However, the
Interval registers can be programmed and devices labelled to ensure that every packet
arriving on a particular link takes a set route through the network.

3.4.1 Use of the Invalid flag

The STC104 can be programmed so that certain header ranges are marked as ‘invalid’
in which case packets whose headers fall within this range are discarded. This can be
used to forbid routing of packets with headers in certain ranges. Associated with each
interval is an Invalid flag. If a header of an incoming packet falls within an interval which
has its Invalid flag set, the packet is discarded and an ‘Invalid Header’ error is gener-
ated.

Note that, if the number of destination labels in the system is less than the range of
headers being used (256 or 64k) then at least one interval should have its Invalid flag
set to trap illegal headers, whether the system is multi-user or not.

3.4.2 Partitioning of STC104s for use in parallel networks

In some circumstances, where the STC104 is to be connected to two or more different
networks, it is advantageous for the STC104 to be treated as two or more independent
devices. For example, a single STC104 could be used for access to both a data network
and a control network (see figure 3.7). This can be implemented by partitioning the
STC104. The links of the STC104 can be divided into disjoint sets, called partitions, with
the Interval registers of every link in each partition programmed identically.

Complete security is achieved provided that, in each partition, no SelectLink field of any
Interval register contains the number of a link in another partition, and no link group
crosses any partition boundary. Within each partition, all the HeaderLength flags
(which set the header length to 1 or 2 bytes for each link, see section 3.5) must be the
same, and the RandomBase and RandomRange registers should be the same for all
links in the partition which are set to random header generation mode (see section 3.6).

Partitioning provides economy in small systems, where using an STC104 solely for the
control network is not desired.

13/64

C104

[0, 1)

[2, 3)

Network 2

Network 1

Link1

Link2
[3, 6)

Link3

[1, 2)
Link0

Processing
node

C104
[3, 6)

[1, 2)

[0, 1)

[2, 3)

Network 1
C104 used in a data network

Network 2
C104 used in a control network

[10, 14)
Link4

Link5

[9, 10)

[0, 9)
Link6

6

3
2
1
0

3

2
0
1
–

Interval

14

10

9

0

4

5

6

–

Interval SelectLink

C104

[9, 10)

[10, 14)

[0, 9)

C104

Single C104 used between 2 networks

SelectLink

Interval table for links 4, 5 and 6

Interval table for links 0, 1, 2 and 3

Processing
node

Processing
node

Processing
node

Figure 3.7 Using partitioning to enable one STC104 to be used by two different net-
works

14/64

3.5 Modular composition of networks using header deletion

To assist in the modular composition of routing networks the STC104 contains a hard-
ware mechanism to implement header deletion. Each link output of the STC104 can be
programmed to delete the header of a packet before transmitting the remainder of the
packet. This exposes a further header which is used by the destination device.

Associated with each link output is a HeaderDeletion flag (contained in the Packet-
Mode register, see section 5.2.1). When the HeaderDeletion flag is set to 1, the header
of the packet which is being output through the link is discarded and the remainder of
the packet forwarded to its destination. The number of bytes which are deleted depends
on the setting of the HeaderLength flag: if this is 0, one byte is deleted; if it is 1, two bytes
are deleted.

If there are no data bytes following the deletion of the header (i.e. only a termination
token), the termination token is also discarded and a ‘null packet’ error is signalled. Note
that this applies even if the link is inactive and the associated DiscardIfInactive flag is
set, in which case the packet is discarded anyway. The DiscardIfInactive flag is used
when an error has occurred on the link, see section on Errors page 27 for further details.

Header deletion allows networks to be connected together, as shown in figure 3.8. In
this example a packet is routed through two networks and then to a processing node.
All of the terminal links of the two networks are set to header deletion mode. Figure 3.8
shows the header as it is routed through the network. The header of the packet in this
case is made up of three concatenated sub-headers. The first sub-header routes the
packet across the first network and is deleted as the packet leaves the terminal link of
the network. The second sub-header routes the packet across the second network in
the same way. Finally the third header is exposed to identify the destination virtual
channel on the processing node. This can be applied to hierarchically constructed
networks, in which case the sub-headers are similar to the local/national/international
hierarchy of telephone numbers.

In the case in which each STC104 is treated as a separate network and has its link
outputs set to header deletion mode, packets can be explicitly steered across a network.
This is at the expense of having 1 byte of header for each STC104 traversed.

A major advantage of extending the capabilities of the STC104, through header dele-
tion, is that headers can be minimized for small systems, thus optimizing network
latency and network bandwidth, whilst still enabling more complex, larger, systems to
be constructed efficiently.

15/64

sub-network of C104s

sub-network of C104s

header made up of
concatenated sub-headers

Processing
node

header used to identify
virtual channel on
processing node

used to route packet
through sub-network,
deleted on output.

used to route packet
through sub-network,
deleted on output.

direction of travel

packet body
packet

terminator

Figure 3.8 Hierarchical composition of networks using header deletion

3.6 Hot spot avoidance – universal routing

The routing algorithms described so far provide efficient deadlock free communications
and allow a wide range of networks to be constructed from a standard router. Packets
are delivered at high speed and low latency provided that there are no collisions be-
tween packets travelling through any single link.

Unfortunately, in any sparse communication network, some communications patterns
cannot be realized without collisions. A link over which an excessive amount of commu-
nication is required to take place at any instant is referred to as a hot spot in the network,
and results in packets being stalled for an unpredictable length of time.

To eliminate network hot spots, the STC104 can optionally implement a two phase
routing algorithm. This involves every packet being first sent to a randomly chosen

16/64

intermediate destination; from the intermediate destination it is forwarded to its final
destination. This algorithm, referred to as Universal Routing, is designed to maximize
capacity and minimize delay under conditions of heavy load. (This has been proven by
simulations and theory. Refer to ‘A scheme for fast parallel communication’ SIAM J. of
Computing, 11 (1982) 350-361). It trades this off against best case performance in an
empty network.

Each input link of an STC104 can be set to random header generation mode by setting
the Randomize flag in the PacketMode0-31 registers. If this flag is 1 each arriving
packet is routed depending on a pseudo-randomly generated header of length one or
two bytes (depending on the HeaderLength flag of the link). The header is generated
within a range determined for each link by two 16-bit unsigned programmable registers,
RandomBase and RandomRange. Headers are generated in the range Random-
Base to (RandomBase + RandomRange –1) inclusive. The seed of the pseudo-
random sequence for each link is loaded into the register RandomSeed. Note that these
registers must be loaded with known values in order to ensure repeatable behavior.
Also, no two RandomSeed registers should be loaded with the same value, nor should
any be loaded with a zero value.

Note that no random headers will be generated until a configuration write is performed
to the ConfigComplete register (see section 5.2.4). Note also that all links for which the
Randomize flag is set must have their RandomBase, RandomRange and
RandomSeed correctly set before a write is made to the ConfigComplete register,
otherwise random headers may be generated from the wrong range.

Note that it is usual for all links of the STC104 which have their Randomize flag set to
have the same values in their RandomBase and RandomRange registers. Different
links may have different values in these registers if the STC104 is partitioned into two
or more logical devices; see section 3.4.2.

Associated with each interval is a Discard flag in the Interval1-36 registers. The
Discard flag is set to indicate that the randomly generated header has reached its
intermediate ‘random’ destination. The interval with its Discard flag set is called the
‘portal’ interval. If the input header is indicated as belonging to a portal interval the
header is discarded, revealing the final destination header.

It is the combination of the random header generation mechanism and the Discard flags
which enables the Universal Routing algorithm to be implemented in a single network
of STC104s. The Randomize flag is set for each link entering the network. The random
header effectively designates one of the STC104s of the network, to which the packet
is routed. At the intermediate STC104 the randomly generated header will correspond
to the portal interval in which the Discard flag is set, and therefore it will be discarded.
This reveals its original destination header which is used to route the packet out of the
network.

If none of the Discard flags are set, the portal mechanism is disabled.

Note that it is possible that the randomly generated header will fall into a ‘portal’ interval
immediately, in which case it is discarded at once and not transmitted. This corresponds
to the randomly chosen intermediate STC104 happening to be the one through which
the packet enters the network.

17/64

The deletion of the random header associated with universal routing is different to that
of the operation of header deletion mode, as described in section 3.5 above. Header
deletion mode deletes headers as the packet is forwarded along an output link, whereas
header deletion associated with universal routing occurs when the random header of
a packet entering the STC104 on an input link is determined to be within the portal range.

In order to ensure that deadlock does not occur the two phases of routing must use
completely separate links. This is achieved by assigning destination headers and ran-
dom headers from distinct intervals. All links in the network must be considered to be
either destination or random links. The intervals associated with a given link on an
STC104 must be a sub-interval of the destination or random header range as appropri-
ate.

Effectively this scheme provides two separate networks; one for the randomizing phase
and one for the destination phase. The combination will be deadlock free if the separate
networks are deadlock free.

Universal routing can be beneficially applied to a wide variety of network topologies,
including hypercubes and arrays. There are a small number of network topologies
where universal routing is not always beneficial, as it can prevent highly optimal routings
through the network being utilized.

3.7 Grouping of output links

The STC104 implements grouped adaptive routing, whereby consecutive output links
can be grouped so that packets routed to the first link of the group will be sent down any
free link in the group, depending on which is the first link to become available. This
achieves improved network performance in terms of both latency and throughput.

Figure 3.9 gives an example of grouped adaptive routing. Consider a message routed
from C1041, via C1042, to processing node1. On entering C1042 the header specifies
that the message is to be output down Link5 to processing node1. If Link5 is already
in use, the message will automatically be routed down Link6, Link7 or Link8, depen-
dent on which link is available first.

The links can be configured in groups by setting the ContinueGroup bit in each of the
PacketMode0-31 registers (see section 5.2.1). Each ContinueGroup bit corresponds
to a link and can be set to 0 (Start) to begin a group or 1 (Continue) to be included in
a group, as shown in figure 3.9. The group wraps around from 31 to 0, therefore the
ContinueGroup bit can be set to 1 for Link0. Note that setting the ContinueGroup flag
of every link to 0 effectively disables the grouping feature, and that for meaningful
routing to take place at least two links must have their ContinueGroup flag set to 0,
otherwise all links are in the same group.

Note that the information in the ContinueGroup bits is not used to form output groups
until a configuration write to the ConfigComplete register occurs (see section 5.2.4).

When an incoming packet is directed out of a link which is the start of a group it is in fact
being directed to any link in the group. Any output of that group whose link is active may
respond to the request and transmit the packet. If two or more outputs are available or

18/64

become available at the same time, only one of them will respond to the request. Note
that it is illegal to select a link for output which is not the start of a group. Each link in a
group will output one packet before any link in the group outputs a second packet.

If there are more input packets directed to an output group than there are output links
in the group, the ‘excess’ inputs requesting an access are stalled. As soon as one of the
output links in the group becomes free, one of the stalled inputs is granted access to that
output. The arbitration is fair, such that if several inputs are stalled waiting for the same
output group, each waiting input will transmit one packet before any of the inputs
transmits a second packet.

C1042

Link4
Link5

Link8

Link10

Link7

Link6

Link3

Link0

Link1

Link2

Link9

0 Start (0)
1 Continue (1)
2 Continue (1)
3 Continue (1)
4 Start (0)
5 Start (0)
6 Continue (1)
7 Continue (1)
8 Continue (1)
9 Start (0)
10 Continue (1)
11 Start (0)
 . .
 . .
 . .
31 Start (0)

Settings of the ContinueGroup bit in the PacketMode0-31 registers for C1042

C1041 processing
node1

C1043

Grouped

Grouped

Grouped

processing
node2

Figure 3.9 Grouped adaptive routing

19/64

4 STC104 functional description
The STC104 consists of the main functional blocks shown in figure 4.1. The STC104
has thirty-two data DS-Links and two control links. Each of the thirty-two data DS-Links
have their own packet processing hardware.

O
ut

pu
t l

in
k

ar
bi

tr
at

io
n

D
is

ca
rd

Select
R

eq
ue

st

Command processor

CLink0

Crossbar
Switch

Link module

Lo
ad

Lo
ad

CLink1

Interval
selector

Link0

...

Header stripper

Configure (this signal goes to all E
rr

or

In
va

lid

E
rr

or

E
rr

or

Packet processor0

Header buffer

Random
header

generator

LinkInData0
LinkOutData0
LinkInStrobe0
LinkOutStrobe0

CLinkInData0
CLinkOutData0
CLinkInStrobe0
CLinkOutStrobe0

CLinkInData1
CLinkOutData1
CLinkInStrobe1
CLinkOutStrobe1

D
is

ca
rd

R
eq

ue
st

Link module

Interval
selector

Header stripper

In
va

lid

Packet processor31

Header buffer

Random
header

generator

LinkInData31
LinkOutData31
LinkInStrobe31
LinkOutStrobe31

Link31

Lo
ad

E
rr

or

Select

functional blocks)

Figure 4.1 STC104 functional block diagram

20/64

Each data link is connected to a packet processor. The token stream received on the
link is passed to the packet processor and interpreted as a sequence of packets. Each
packet processor consists of the following blocks: interval selector; random header
generator; header buffer and header stripper.

The stream of tokens received on each link is interpreted as a stream of independent
packets. Each packet is either output through one of the thirty-two links or discarded.
The header determines which link the packet is to be transmitted from. If the specified
link is not busy the packet is transmitted immediately without being buffered. If the link
is busy as much data as possible will be buffered before data flow is stalled until the
output link becomes available.

The interval selector contains the interval registers and comparators. The header of
each packet arriving on the link is forwarded to the interval selector. Dependent on the
setting of the interval selector registers and the label of the header, the packet is
processed in one of the following ways:

� The header is compared to the intervals and the output link from which the
packet is to be forwarded is selected (from the SelectLink bit field of the Interval
register). The entire packet is routed unchanged out of the selected link.

� The link to which the packet is routed has its associated HeaderDeletion flag
set. The header of the packet is discarded and the remainder of the packet
forwarded to its destination.

� The header is compared to the intervals, an error has occurred on the output link
selected (or the selected link has not been started) and the associated DiscardI-
fInactive flag is set in the PacketMode register. The entire packet is discarded.

� The interval into which the header falls has its associated Invalid flag set. The
entire packet is then discarded and an ‘Invalid Header’ error is generated.

� The link input on which the packet arrives has its Randomize flag set. A
‘Request’ signal is sent to the random header generator, which produces a
random header which is added to the front of the existing header. The random
header is then forwarded to the interval selector and an output link is selected
to route the packet to a random node.

� The interval into which the header falls has its associated Discard flag set. This
indicates that the header falls within the portal interval (i.e. the random header
has reached its random intermediate destination). The ‘Discard’ signal is sent
to the header buffer telling it to discard the header. In this case the output of the
ladder of comparators is not sent to the crossbar and the next 1 or 2 bytes of data
(dependent on the HeaderLength flag) is taken as the new header and is again
processed using the interval labelling algorithm.

The random number generator generates a pseudo-random sequence of headers from
a programmed range for implementing the Universal Routing algorithm.

The header stripper can delete the first header of each packet routed out through the
link. This is dependent on whether the HeaderDeletion bit of the PacketMode0-31
register is set.

21/64

The link modules accept requests for data from the header buffer and make requests
for data from the header stripper. The streams of data into the header buffer and out of
the header stripper are handshaken so there is no chance of buffer overflow or over-
writing of data.

The crossbar is an array of switches which connect datapaths in one direction and the
corresponding control signals in the other direction. It contains arbitration circuitry which
permits one of each configured group of outputs to grant a request made by an input
to the start of the group.

The control unit contains two control links (CLink0 and CLink1). Commands can be
received on CLink0 and responses and error messages returned. These commands
can be used to reset the device and to read and write the configuration registers in the
subsystems. CLink1 is provided to allow a series of devices to be daisy-chained and
thereby all controlled over one link.

22/64

5 Control of the STC104
The STC104 is controlled and programmed via the control links. Messages sent to the
STC104 allow its configuration registers to be set and read. The registers can be
accessed via CPeek and CPoke command messages sent along the control links and
control the interval selector, the random number generator and the links.

This chapter describes the control links and the control commands which can be sent
and received. It then describes the functionality to be controlled by the configuration
registers.

5.1 Control links

The control links on the STC104 allow a separate control network to be used to assist
in configuring, error handling and resetting of components connected in a system, even
in the presence of errors on the data communications links in the network.

The STC104 has two bidirectional control links; CLink0 and CLink1. They use the same
electrical and packet level protocols as the communication DS-Links, (Link0-31, see
chapter 6). Thus, an STC104 can be connected by its control link to a data DS-Link of
a controlling processing node and the node can issue commands to the STC104.

All communications with the controlling processor are via CLink0. The STC104 is
programmed via commands along Clink0. CLink1 provides a daisy-chain link, allowing
a simple physical connectivity to be used for controlling networks.

STC104

command messages

handshake messages

error handshakes
error messages

controlling
process

Figure 5.1 Communication between the controlling process and the STC104

The control links can be connected into a daisy chain or tree, with a controlling processor
at the root. Figure 5.2 shows daisy-chained STC104’s connected to one of the data
DS-Links of a controlling processor, each STC104 has thirty-two data DS-Links but is
shown as having just five data links for clarity.

23/64

controlling
processing

node

C104 C104 C104

0 1

0 1 0 1 0 1

Figure 5.2 A daisy-chained control link network

In order to establish a connection between the controlling processor and each node, a
label and return address must be given to each node. The label is used to establish
whether or not a packet arriving on CLink0 is for that node and if not the packet is
forwarded down CLink1, if active, until it reaches its destination. If CLink1 is not active
the packet is discarded and a ‘Control Protocol Error’ message is sent (see page 27 for
details on error messages). Any output must be prefixed by the return header in order
to identify the node of origin to the controlling process, and to route the message through
any STC104s used in the control network.

This provides a distinct connection between the controlling processor and each indi-
vidual node of the application network.

5.1.1 Commands

A high level protocol is defined for the controlling network to allow the devices to issue
commands to, and receive responses from, other devices in the network. Commands
are sent as packets with the first byte after the header containing a command code,
which may be followed by additional data.

In order that packets which are from different devices can be distinguished by the
microprocessor which receives them, each packet contains a header which identifies
the originating device. The packet header is also used to route the packet through a
network. Bytes following the header are treated as the data section of the packet until
a packet termination token is received. A packet termination token is either an EOP (end
of packet) token or an EOM (end of message) token.

To avoid possible problems of buffer overrun or deadlock, a two level protocol is used
on top of the basic packet exchange mechanism between the controlling processor and
each device. This protocol applies independently to the interactions between each
device and the controlling processor, and applies symmetrically in both directions. This
protocol makes use of distinguished packets called acknowledge packets. An acknowl-

24/64

edge packet is a packet consisting only of a header and an EOP termination token. All
other packets are referred to as data packets. At the lower level of the protocol, each
data packet sent in either direction must be acknowledged by the transmission of an
acknowledge packet in the opposite direction before another data packet may be sent.
This ensures that data packets are not lost even if very limited buffering is provided. The
only exception to this rule is the RecoverError command data packet which may be sent
by the controlling processor even if no acknowledge packet has been received for a
previously sent data packet.

The upper level of the protocol distinguishes two classes of data packets called
command packets and handshake packets. Each command packet sent in either direc-
tion must be handshaken by the transmission of a handshake packet in the opposite
direction before another command packet may be sent. The symmetrical exchange of
a handshake for each command ensures that deadlock does not occur even if both the
controlling processor and the device send a command packet at the same time. The only
exception to this rule is RecoverError and Reset command packets which may be sent
by the controlling processor even if no handshake packet has been received for a
previously sent command packet.

header packet body
packet

terminator

direction of travel

header
end of packet

token

Data
packet

Acknowledge
packet

Figure 5.3 Structure of data and acknowledge packets

The handshake message can contain the result of a CPeek or Identify command, or it
may be simply a handshake code corresponding to the command message. Each such
message is preceded by the return header and followed by an EOM token. Command
handshake codes are the same as the command codes except with the top bit inverted.
Some of the handshake messages include a status byte which indicates whether the
received command was valid as defined below.

� Status byte has value 0 if command is valid.

� Status byte has value 1 if command is invalid or has failed for some reason.

Each handshake message must be acknowledged by the controlling processing node
by sending an acknowledge packet to the STC104.

The following section details the command messages which can be sent from a control-
ling processing node to the STC104.

Figures 5.4 and 5.5 show the command packets received by the STC104 and the hand-
shake packets returned to the controlling process respectively. Note that the STC104

25/64

data links can receive headers of 1 or 2 bytes. Header labels of command packets are
always 2 bytes, therefore an STC104 which is through routing command packets must
be configured to accept 2 byte headers.

Start

This command programs the label and the return header of the STC104 in order to
establish the virtual link between the controlling process and the STC104. The header
of the first command received after power-up is taken by the control system as the ‘label’
for the STC104 and all subsequent messages with the same header are interpreted by
the STC104. Therefore the first command sent should always be a Start command.
Messages with a different header are forwarded via CLink1 to the next device in the
daisy-chain, if possible, otherwise they are discarded and a ‘Control Protocol Error’
message is sent (see page 27 for details on error messages).

The return header is 2 bytes long, with byte 0 being the first byte transmitted following
the command code. Note that if this command is used to re-program the return header,
the acknowledge for the command message packet will be sent with the old header,
whilst the handshake will be sent with the new header.

The Start command must be the first command received. If an error occurs before the
first Start command is received, the StartHandshake will be returned before the Error
message is sent.

Reset

This command resets the STC104. The Reset command message includes a ‘level’ pa-
rameter. The level of reset is encoded in the ‘level’ byte of the command message. A
ResetHandshake with a success status indicator (0) is sent on completion if the reset
level is valid.

Note that a Reset command may cause a handshake for a previously transmitted com-
mand to be: terminated prematurely (with an EOM token); completed with a failure sta-
tus; or suppressed entirely.

See chapter 7 for more information on reset levels.

Identify

The Identify command message causes the STC104 to respond with a handshake con-
taining an identifier unique to the device type. This can be used to check the contents
of a network. The lower 16 bits of the identifier are the same as the contents of the Devi-
ceID register (see section 5.2.4); the upper 16 bits are zero.

RecoverError

This command is used in error recovery on the control links (see table 5.1). It restores
the protocol after a link error in the control link system. Note that if there is an unhands-
haken error, the RecoverError handshake will be returned before the error message is
sent.

CPeek

The CPeek command includes a 2 byte address which points to a register in the configu-
ration address space. The handshake message returns the value stored at the given
address. If the address is invalid the handshake message returns an invalid status.

26/64

CPoke

The CPoke command includes a 2 byte address and 4 bytes of data. It is used to set
the value of a configuration register. It writes the data to the configuration space register
at the given address. If the address contained in the command message was invalid the
status byte of the handshake message indicates failure.

Note, some configuration registers do not have a value, but writing to them causes some
action to occur.

Start

Reset

#12

#11

Identify #30

RecoverError #10

CPeek #32

CPoke #66

Level

Address

Address

End of message indicator

2 byte label of STC104

lsb

Data

direction of packet

msb

Return hdr

lsb msb

lsb msb lsb msb

2 byte label of controlling process

lsb msb

Figure 5.4 Control link command packets received by the STC104 on CLink0

27/64

StartHandshake

ResetHandshake

#92

#91

IdentifyResult #B0

RecoverErrorHandshake #90

CPeekHandshake #B2

CPokeHandshake #E6

Status

Data

2 byte header address of controlling processes

End of message indicator

lsb

direction of packet

msb

Identity

Status

Status

lsb msb

lsb msb

Figure 5.5 Handshake packets sent by the STC104 via CLink0

Errors

The STC104 can send an Error message to the controlling process to indicate that an
error has occurred. The Error message contains an error code which determines the
cause of error, as given in table 5.1. The error codes are contained in the first byte which
accompanies the error message. The second byte records the number of the link on
which the error was detected. For control link errors this second byte has no meaning,
and is zero. Note that an error detected on one link has no direct effect on the operation
of other links.

The Error message is a command packet as described above. All error messages must
be handshaken by the control processor with the ErrorHandshake command.

The behavior of the links themselves in response to errors is described in section 6.3.
The occurrence of a link error makes the link inactive, and so the input half of such a
link will not make any requests for output links until the link is restarted. Neither will the
output half grant any requests by input links, unless the DiscardIfInactive flag is set for
that link, in which case requests will be granted and the corresponding packets con-
sumed until the link becomes active again. This enables systems which are robust

28/64

against the loss of packets to avoid errors causing network blockages. The other types
of error (Invalid header, Short packet, and Null packet) cause the offending packet to
be discarded, but do not prevent the processing of subsequent packets.

The ErrorCode register contains the value of the most recent error.

ErrorHandshake #81

Error #01 Code

2 byte header address of controlling process

End of message indicator

direction of packet

2 byte label of STC104

Link

lsb msb

Figure 5.6 Error message

Code Error type

#C0 Control command code error, i.e. unrecognized command.

#C1 Control protocol error, i.e. unsolicited acknowledge.

#C2 Control link 1 parity or disconnect error.

#80 Link parity or disconnect error.

#04 Invalid header – i.e. the header value received was not within the range of the interval
selector.

#05 Short packet – i.e. packet is terminated before the header is received.

#06 Null packet – no bytes left after header deletion.

Table 5.1 Error codes

5.1.2 Control links used to provide fan-out in a control network

The same electrical and packet protocols are used for system control as for data transfer
allowing large concurrent systems to be programmed, monitored and debugged in a
simple way using virtual links. Large systems can use STC104 routers in the control
network to improve fan-out.

Figure 5.7 gives an example of a daisy-chained control link network in which ST C1041
is used to route control link packets from the control processor to the application

29/64

network. In this example the controlled application network consists of a number of
ST C104s, and two data DS-Links of STC1041 are connected to the control links of the
application network to provide fan-out of the controlling system. CLink1 is connected
back to STC1041 by data DS-Link (Link0), and used to route messages back to the
control processor. Note that header labels of command packets are always 2 bytes,
therefore STC1041 must be configured to accept 2 byte headers. Note also that
STC1041 must be configured, and its links started, before any control messages are
sent to the application network.

C104

control
processor

routing device

controlled application network

control link

communication link

0
1

Link0

CLInk0
CLInk1

C1041

C104C104 C104 C104

C104 C104 C104

Figure 5.7 An STC104 providing fan-out.

5.1.3 Control link speeds

After power-on the control links run at a default speed of 10 MHz; this can be changed
by means of CPokes. The speed selection for control links is identical to that of the data
DS-Links (see section 6.2), and the control links share the same master clock.

30/64

5.2 Programmable configuration register functionality

This section gives the format and function of all the configuration registers in the
ST C104. The registers enable the STC104 to be programmed and are loaded by
means of CPoke commands received on CLink0.

The tables below detail the bit fields of each of the registers and give the addresses, they
also include whether each register is read only, write only, or read and writable. A
complete listing of the register addresses is given in chapter 8.

All registers are 32 bits long, and 32 bits are always read or written. When writing to the
registers, all reserved/undefined bits must always be zero, unless otherwise stated. The
values returned from these bits on a configuration read is undefined.

Note that in the following bit field descriptions the lowest numbered bit is the least
significant bit.

5.2.1 Packet processor registers

The functionality to be controlled by the packet processor configuration registers, and
the associated bit fields are described below.

PacketMode0-31

The PacketMode0-31 registers (one for each of the thirty-two links) must be
programmed before the corresponding link is started. They may be re-programmed
before or after the link has been started.

31/64

PacketMode0-31 #8080 to #9F80 Read/Write

Bit Bit field Function

0 Randomize Sets a given link input to random header generation mode. When set
to 1, a random header is added to the front of each incoming packet.

1 ContinueGroup Each bit can be set to ‘start of group’ or ‘continuation of group’.
0 start
1 continue

2 HeaderDeletion Sets a given link output to delete header mode. When set to 1, the first
byte of each packet is deleted.

3 DiscardIfInactive When set to 1, all packets directed to this link will be discarded in their
entirety if the link is inactive, for example if the link has not been started
or an error has been detected. When set to 0, packets directed to this
link are stalled if the link is not active.

4 HeaderLength Sets the link to input headers 1 or 2 bytes long.
0 1 byte header
1 2 byte header

If 2 byte headers are expected, the least significant 8 bits are equal to
the first byte received, and the most significant 8 bits are equal to the
second byte received (little-endian convention). If 1 byte headers are
expected, for purposes of comparison with the Separator fields of the
Interval1–36 registers, the most significant 8 bits of the header value
are 0, and the least significant 8 bits are equal to the received byte.
Note that if a two byte header is expected and only one byte is received
before the packet terminates, an error is flagged and the packet is
discarded.

31:5 Reserved, write 0.

Table 5.2 Bit fields in the packet mode (PacketMode0-31) register – one register
per link

PacketCommand0-31

The PacketCommand0-31 registers (one for each of the thirty-two links) contain a bit
which when set causes a reset of the associated packet processor and link.

PacketCommand0-31 #80A8 to #9FA8 Read/Write

Bit Bit field Function

0 Reset When set to 1 forces the link and packet processing logic into a reset
state.

31:1 Reserved, write 0.

Table 5.3 Bit fields in the packet command (PacketCommand0-31) register – one
register per link

32/64

Interval1-36

There are 36 programmable interval registers per link, called Interval1 to Interval36.
There is a nominal register Interval0, which is not programmable and always holds the
value zero.

Interval1-35 #80x to #9Fx where x is #80+(#1 to #23) Read/Write

Bit Bit field Function

15:0 Separator Sets the interval separator for each link.

16 Discard Designates the portal interval. When set discards the header of the
packet.

17 Invalid Designates an invalid interval.

22:18 SelectLink Indicates the associated link from which the packet is to be output.

31:23 Reserved, write 0.

Table 5.4 Bit fields in each of the interval (Interval1-35) registers for each of the 32
links

The Interval1-35 registers for each link must be programmed before the link is started.

The register Interval36 has a nominal Separator value which is greater than any
header representable in 16 bits. Its Separator field is not programmable. Note that
whenever it is not required to use the maximum possible header value (this will be the
case for all but the very largest systems), the Interval36 register should have its Invalid
bit set.

Interval36 #80A4 to #9FA4 Read/Write

Bit Bit field Function

16 Discard When set discards the header of the packet.

17 Invalid Designates an invalid interval.

22:18 SelectLink Indicates the associated link from which the packet is to be output.

15:0,
31:23

Reserved, write 0.

Table 5.5 Bit fields in the maximum interval (Interval36) register for each of the 32
links

33/64

RandomBase0-31, RandomRange0-31 and RandomSeed0-31

When the Randomize flag in the PacketMode0-31 register is set, the link is in random
header mode and each arriving packet is routed depending on a pseudo-randomly
generated header. The header is generated within a range determined for each link by
two 16-bit unsigned programmable registers, RandomBase and RandomRange.
RandomRange must be � 1. Headers are generated in the range RandomBase to
(RandomBase + RandomRange –1) inclusive. Note that this sum is modulo 216 and
may ‘wrap around’ zero. The seed of the pseudo-random sequence for each link is
loaded into the register RandomSeed and must not be zero. Note that these registers
must be loaded with known values in order to ensure repeatable behavior. Also, no two
RandomSeed registers should be loaded with the same value.

RandomBase0-31 #80A5 to #9FA5 Read/Write

Bit Bit field Function

15:0 RandomBase 16 bit unsigned value of random header base level.

31:16 Reserved, write 0.

Table 5.6 Bit fields in the RandomBase0-31 register – one register per link

RandomRange0-31 #80A6 to #9FA6 Read/Write

Bit Bit field Function

15:0 RandomRange 16 bit unsigned value of random header range.

31:16 Reserved, write 0.

Table 5.7 Bit fields in the RandomRange0-31 register – one register per link

RandomSeed0-31 #80A7 to #9FA7 Read/Write

Bit Bit field Function

15:0 RandomSeed Start of 16 bit pseudo-random sequence.

31:16 Reserved, write 0.

Table 5.8 Bit fields in the RandomSeed0-31 register – one register per link

Note that if the RandomSeed value is changed after the link has been started, the new
value may not be used until a write to the ConfigComplete register (see table 5.16) has
been performed.

5.2.2 Data DS-Link registers

Each of the 32 links has three registers, the LinkMode register, LinkCommand register
and LinkStatus register. In addition the configuration space contains the DSLinkPLL
register which contains the SpeedMultiply bit field (see section 5.2.4). This takes the
5 MHz input clock and multiplies it by a programmable value to provide the root clock
for all the DS-Links.

The tables below describe the functionality of the DS-Links to be controlled, and the
associated bit fields in the configuration registers. For more information on the meaning
of these bit fields refer to the Data/Strobe links chapter 6.

34/64

Link0-31Mode

The Link0-31Mode registers may be re-programmed before or after the link has been
started.

Link0-31Mode #8001 to #9F01 Read/Write

Bit Bit field Function

1:0 SpeedDivide Sets transmit speed of the Link0-31 (see table 6.2).
00 = /1, 01 = /2, 10 = /4, 11 = /8

2 SpeedSelect Sets the Link0-31 to transmit at the speed determined by the Speed-
Divide bits as opposed to the base speed of 10 Mbits/s.

3 LocalizeError Packets in transit at the time of an error will be discarded or truncated.
When set false communication on the link stops until the link is reset.

4 1 (RESERVED) This bit should be written as 1.

31:5 Reserved, write 0.

Table 5.9 Bit fields in the Link0-31Mode registers – one register per link

Link0-31Command

The Link0-31Command registers contain four bits which when set cause a specific
action to be taken by the DS-Link.

Link0-31Command #8002 to #9F02 Write only

Bit Bit field Function

0 ResetLink Resets the link engine of the Link0-31. The token state is reset, the
flow control credit is set to zero, the buffers are marked as empty, the
parity state is reset, and the link stops sending tokens.

1 StartLink When a transition from 0 to 1 occurs Link0-31 will be initialized and
commence operation.

2 ResetOutput Sets both outputs of Link0-31 low.

3 WrongParity The Link0-31 output will generate incorrect parity. This may be used
to force a parity error on the device at the other end of the Link0-31.

31:4 Reserved, write 0.

Table 5.10 Bit fields in the Link0-31Command registers – one register per link

Link0-31Status

The Link0-31Status registers contain information about the state of the DS-Link.

35/64

Link0-31Status #8003 to #9F03 Read only

Bit Bit field Function

0 LinkError Flags that an error has occurred on the Link0-31.

1 LinkStarted Flags that the output Link0-31 has been started and no errors have
been detected.

2 ResetOutputCom-
plete

Flags that ResetOutput has completed on the Link0-31.

3 ParityError Flags that a parity error has occurred on the Link0-31.

4 DiscError Flags that a disconnect error has occurred on the Link0-31.

5 TokenReceived Flags that a token has been seen on the Link0-31 since ResetLink.

31:6 Reserved, write 0.

Table 5.11 Bit fields in the Link0-31Status registers – one register per link

5.2.3 Control link registers

The link module hardware in each control link is identical to that in each data DS-Link.
An equivalent set of configuration bit fields is provided in the CLink0-1Mode,
CLink0-1Command and CLink0-1Status registers for the control links, as for the data
DS-Links (see section 5.2.2).

5.2.4 System services registers

System services consists of a block of 5 configuration registers which contain control
information and general information. The functionality to be controlled by the system
services configuration registers, and the associated bit fields are described below.

DeviceID

The DeviceID register contains a 16 bit device identification code unique to the device.
The value of the device identification code for the STC104 is 384. The device
identification code can also be read using the Identify command.

DeviceID #1001 Read only

Bit Bit field Function

15:0 DeviceID Device identification code.

31:16 Reserved, write 0.

Table 5.12 Bit fields in the DeviceID register

DeviceRevision

The DeviceRevision register contains the revision of the device.

DeviceRevision #1002 Read only

Bit Bit field Function

15:0 DeviceRev Device revision.

31:16 Reserved, write 0.

Table 5.13 Bit fields in the DeviceRevision register

36/64

ErrorCode

The ErrorCode register is a 13 bit register used for debugging. It contains the value of
the error code representing the most recently occurring error and the number of the link
on which the error occurred.

ErrorCode #1004 Read only

Bit Bit field Function

7:0 ErrorCode Contains an error code which can be used for debugging after a crash.
Refer to table 5.1, page 28 for the error code definitions.

12:8 LinkNumber Number of the link on which the error occurred.

31:13 Reserved, write 0.

Table 5.14 Bit fields in the ErrorCode register

DSLinkPLL

The DSLinkPLL register contains the SpeedMultiply bit field and is used to program
the DS-Link speeds. This takes an internally generated 10 MHz clock and multiplies it
by a programmable value to provide the root clock for all the DS-Links. Refer to section
6.2 in the Data/Strobe links chapter for further details.

Note that this register should not be loaded with any value less than eight.

DSLinkPLL #1005 Read/Write

Bit Bit field Function

5:0 SpeedMultiply Sets link master clock to required value (see Data/Strobe links
chapter).

31:6 Reserved, write 0.

Table 5.15 Bit fields in the DSLinkPLL register

ConfigComplete

Once the configuration registers have been set up a write to the ConfigComplete
register initializes the STC104. The output groups are then set up corresponding to the
current values of the ContinueGroup flags, and the random header generators are
started for all links whose Randomize flags are set. If the configuration is subsequently
changed a write should be made to this register when the set of changes is complete.

A write must also be performed to this register to restart the random number generators
after any type or level of reset.

Note that a write to this register may cause a temporary stall of packets flowing through
the STC104.

ConfigComplete #1003 Write only

Bit Bit field Function

0 ConfigComplete A write to this register sets up the output groups for the links and starts
the random header generators.

Table 5.16 Bit fields in the ConfigComplete register

37/64

5.3 Initialization of the STC104

The value of the DSLinkPLL register must be set before the STC104 can operate. For
each link in use, the following parameters must be supplied:

� Link SpeedSelect flag, and if set to 1, the value of the SpeedDivide field.

� Link LocalizeError flag.

� HeaderLength flag.

� Values of the Interval registers.

� Randomize flag, and if set to 1, the values of the RandomBase, Random-
Range and RandomSeed registers.

� ContinueGroup flag.

� HeaderDeletion flag.

� DiscardIfInactive flag.

Once the configuration registers have been set up a write to the ConfigComplete
register initializes the STC104. If the configuration is subsequently changed a write
should be made to the ConfigComplete register when the set of changes is complete.

Note that none of the data links should be started until a write has been performed to
the ConfigComplete register. If the configuration is changed while packets are being
routed by the device, the results may be non-deterministic.

38/64

6 Data/Strobe links
The STC104 has 32 links used for routing, and two control links which are used for
monitoring and control purposes only. All of these links use a protocol with two wires in
each direction, one for data and one to carry a strobe signal and are referred to as
data/strobe (DS-Links). The DS-Links are capable of:

� Up to 100 Mbits/s per link.

� Unidirectional peak bandwidth of 10 Mbytes/s per link.

� Support for virtual channels and through routing.

Each DS pair carries tokens and an encoded clock. The tokens can be data or control
tokens. Figure 6.1 shows the format of data and control tokens on the data and strobe
wires. Data tokens are 10 bits long and consist of a parity bit, a flag which is set to 0 to
indicate a data token, and 8 bits of data. Control tokens are 4 bits long and consist of
a parity bit, a flag which is set to 1 to indicate a control token, and 2 bits to indicate the
type of control token.

0 0 1 1 1 0 1 0 0 0

Data

Strobe

Data
Token type

Parity bit

Data flag

Parity bit

Control flag

Bits covered by parity bit in control token

Data token Control token

e.g. FCT

Figure 6.1 Link data and strobe formats

The DS-Link protocol ensures that only one of the two wires of the data strobe pair has
an edge in each bit time. The levels on the data wire give the data bits transmitted. The
strobe signal changes whenever the data signal does not. These two signals encode
a clock together with the data bits, permitting asynchronous detection of the data at the
receiving end.

The data and control tokens are of different lengths, for this reason the parity bit in any
token covers the parity of the data or control bits in the previous token, and the data/
control flag in the same token, as shown in figure 6.1. This allows single bit errors in the
token type flag to be detected. Odd parity checking is used. Thus the parity bit is set/
unset to ensure that the bits covered, inclusive of the parity bit (see figure 6.1), always

39/64

contain an odd number of 1’s. The coding of the tokens is shown in table 6.1. To ensure
the immediate detection of parity errors and to enable link disconnection to be detected
null tokens are sent in the absence of other tokens.

Token type Abbreviation Coding

Data token – P0DDDDDDDD

Flow control token FCT P100

End of packet EOP P101

End of message EOM P110

Escape token ESC P111

Null token NUL ESC P100

P = parity bit
D = data bit

Table 6.1 Token codings

6.1 Low-level flow control

Token-level flow control is performed in each DS-Link module, and the additional flow
control tokens used are not visible to the higher-level packet protocol. The token-level
flow control mechanism prevents a sender from overrunning the input buffer of a receiv-
ing link. Each receiving link input contains a buffer for at least 8 tokens (20 tokens of
buffering is in fact provided). Whenever the link input has sufficient buffering available
to consume a further 8 tokens a FCT is transmitted on the associated link output, and
this FCT gives the sender permission to transmit a further 8 tokens. Once the sender
has transmitted a further 8 tokens it waits until it receives another FCT before transmit-
ting any more tokens. The provision of more than 8 tokens of buffering on each link input
ensures that in practice the next FCT is received before the previous block of 8 tokens
has been fully transmitted, so the token-level flow control does not restrict the maximum
bandwidth of the link.

6.2 Link speeds

The STC104 links can support a range of communication speeds, which are pro-
grammed by writing to registers using the CPoke command via control link CLink0. At
reset all links are configured to run at the BaseSpeed of 10 Mbits/sec.

Only the transmission speed of a link is programmed as reception is asynchronous. This
means that links running at different speeds can be connected, provided that each
device is capable of receiving at the speed of the connected transmitter.

The transmission speeds of all of the links on a given device are related to the speed
of a single on-chip clock. The frequency of this master clock is programmed through the
SpeedMultiply bit field described in section 5.2.2. The master frequency is divided
down to obtain the transmission frequency for each link. The division factor can be
programmed separately for each link via the SpeedDivide bit field described in section
5.2.2. For a given device, with a given programmed master clock frequency, this

40/64

arrangement allows each link to be run at one of four transmission speeds, as shown
in table 6.2.

SpeedDivide

SpeedMultiply /1 /2 /4 /8 BaseSpeed

8 40 20 Reserved Reserved 10

10 50 25 Reserved Reserved 10

12 60 30 Reserved Reserved 10

14 70 35 Reserved Reserved 10

16 80 40 Reserved Reserved 10

18 90 45 Reserved Reserved 10

20 100 50 Reserved Reserved 10

Table 6.2 Link transmission speed in Mbits/s

6.3 Errors on links

Link inputs can detect parity and disconnection conditions as errors. A single bit odd
parity system will detect single bit errors at the link token level. The protocol to transmit
NUL tokens in the absence of other tokens enables disconnection of a link to be
detected. A disconnection error indicates one of two things:

� the link has been physically disconnected;

� an error has occurred at the other end of the link, which has then stopped
transmitting.

The LinkError bit in the Link0-31Status registers flags that a parity and/or disconnec-
tion error has occurred on the Link0-31. The bit fields ParityError and DiscError
indicate when parity and disconnect errors occur respectively.

When a DS-Link detects a parity error on its input it halts its output. This is detected as
a disconnect error at the other end of the link, causing this to halt its output also.
Detection of an error causes the link to be reset. Thus, the disconnect behavior ensures
that both ends are reset. Each end can then be restarted.

Note that a disconnect error is only flagged once a token has been received on a link
and transmission is subsequently interrupted. Therefore when one end of a link is
started up before the other end of a link, a disconnect error does not occur as no tokens
have yet been received. As soon as the other end of the link is started communication
can begin immediately.

DS-Links are designed to be highly reliable within a single subsystem and can be
operated in one of two environments, dependent on the level of reliability required. A
DS-Link can be set to an environment in which any link errors are localized to the link.
This is set by the LocalizeError bit in the Link0-31Mode register. The LocalizeError
bit is set on a per link basis, therefore it is possible to have some links in a system set
to localize link errors and other links which are not. The consequence of a link error
depends on which environment the link is in, as described below.

41/64

6.3.1 Reliable links

In the majority of applications, the communications system should be regarded as being
totally reliable. In this environment errors are considered to be very rare, but are treated
as being catastrophic if they do occur. This environment is achieved by setting the
LocalizeError bit in the Link0-31Mode registers to 0. Normal practice will then be to
reset the subsystem in which the error has occurred and to restart the application.

6.3.2 More reliable links

For some applications, for instance when a disconnect or parity error may be expected
during normal operation, an even higher level of reliability is required. This level of fault
tolerance is supported by localizing errors to the link on which they occur. This is
achieved by setting the LocalizeError bit in the Link0-31Mode register to 1. A link error
in this mode results in packets in transit at the time of the error being discarded or
truncated.

If the failed link is not grouped with any other links, the DiscardIfInactive bit in the
PacketMode0-31 register should be set to 1, so that the link discards any packets
routed to it. This prevents the network being blocked by packets routed via that link.

If the failed link is grouped with one or more links, and the DiscardIfInactive bit is set
to 0, packets will automatically be directed to other links in the same group.

Note that these mechanisms apply at any time the link is inactive, not just after the
occurrence of an error.

6.4 Link state on start up

After power-on all LinkData and LinkStrobe signals are low, without clocks. Following
power-on reset an initialization sequence sets the speed of the link clock. The DS-Links
are initially inactive. They are configured and started by configuration writes. Their
status can be determined by configuration reads.

Each DS-Link (Link0-31) must be explicitly started by writing to the StartLink bit in its
LinkCommand register, with the exception of CLink0 which starts as soon as it
receives a token. When a DS-Link is started up it transmits control tokens.

Data may not be transferred over the link until the receiving link has sent a FCT, which
it will do as soon as it has been started. The data/strobe outputs are held low until the
first FCT is sent.

The receiving link receives and correctly decodes the tokens. However, only when the
receiving link has been explicitly started by writing across the (internal) configuration
bus can it send tokens back. NUL tokens are then sent until data is required.

42/64

6.5 Resetting DS-Links

If one end of a running DS-Link is reset, that end of the link stops transmitting tokens
on a token boundary and any buffered data is discarded. The other end of the link
detects a disconnection and also stops transmission. The reset end then also detects
disconnection and clears its flow-control state and error status bits, and the link
becomes insensitive to transitions on its input for 3.2 �s. In order to ensure that both
ends of the link have completed reset and are sensitive to transitions before either end
is started there is a further delay of 12.8 �s. Note that the Data and Strobe outputs are
simply held at the values they have at the end of the last transmitted token, since forcing
them to zero could be decoded as a bit by the other end of the link.

Since the disconnection protocol between the two ends of a DS-Link ensures that both
ends become reset automatically if an error is detected, there is normally no reason to
explicitly reset either end. However, one end may be reset as a consequence of a reset
of a device or subsystem. In this case it is important to ensure that either: both ends of
the link have been started before the reset occurs; or that both ends are quiet (by
resetting if necessary). This is because if one end of a DS-Link is already running before
the other end comes out of reset, the initial transmission of FCTs will be lost, and so the
reset end will never receive permission to transmit data. Also, unless the reset end is
brought out of reset precisely on a null token boundary (for which there is 1 chance in
8), it will misinterpret the bit-stream and consequently detect a parity error.

6.6 Link connections

DS-Links are TTL compatible and intended to be used in electrically quiet environments,
between devices on a single printed circuit board or between two boards via a back-
plane. Direct connection may be made between devices separated by a distance of less
than 200 millimeters. For longer distances a matched 100 ohm transmission line should
be used, see figure 6.2.

The inputs and outputs have been designed to have minimum skew at the 1.5 V TTL
threshold.

Buffers may be used for very long transmissions. If so, their overall propagation delay
should be stable within the skew tolerance of the link, although the absolute value of the
delay is immaterial.

43/64

LinkOutData

LinkInStrobe

LinkInData

LinkOutStrobe

Zo=100 ohms

LinkInData LinkOutData

LinkOutStrobe LinkInStrobe

STC104

LinkOutData

LinkInStrobe

LinkInData

LinkOutStrobe
LinkInData LinkOutData

LinkOutStrobe LinkInStrobe

STC104
DS-Links connected by buffers

DS-Links connected by transmission lines

STC104

STC104

Figure 6.2 DS-Link connections

44/64

7 Levels of reset
The STC104 can be reset to a given level using the Reset command or Reset pin.
Setting the Reset pin high for 1 cycle of ClockIn, resets the chip. The Reset command
received along CLink0 also resets the STC104, but in this case the control links and any
stored label and return header values are not reset. Any reset, except a Reset3 com-
mand, results in any packets currently being routed within the STC104 being lost. The
different levels of reset are described below.

Note that any level of reset may abort the command which was executing when the Re-
set command was applied. An illegal level of Reset will also result in a handshake with
a failure status being returned.

7.1 Level 0 – hardware reset

The network can be returned to level 0 by taking all the Reset pins in the network high
for a number of cycles.

After a hardware reset each STC104 is in the following state:

All writeable configuration registers are undefined, all state machines are in their initial
state and all links (data and control) are inactive with their output pins low and set to run
at the default speed of 10 MHz. The label and return headers for the control links are
undefined. All buffers and latched error conditions are cleared.

7.2 Level 1 – labelled control network

The network can be reset to level 1 by sending a Reset1 command message to each
STC104.

This level of reset leaves the identity and return headers unaltered and all connected
control links remain operational. All the data DS-Links are inactive with their output pins
low and set to run at the default speed of 10 MHz. All data in the STC104 is lost.

7.3 Level 2 – configured network

The network can be reset to level 2 by sending a Reset2 command message to each
STC104.

At this level of reset the identity and return headers are unaltered and register contents
are unaffected. All data in the STC104 is lost. The data DS-Links are reset and returned
to their inactive state. The control links are not affected.

7.4 Level 3

Reset levels above 2 are not applicable to the STC104. If a reset level above 2 is
received it is handshaken with status set to false.

7.5 Per link reset

In order to preserve the logical partitioning of the STC104, associated with each link is
a ResetLink bit (in the LinkCommand register) to perform reset on that link only.

45/64

Setting the ResetLink bit to 1 resets the link and puts all associated logic into a reset
state. The logic remains in this state until the bit is set back to 0.

Since the resetting logic may cause, for example, a request from a packet processor for
an output to be withdrawn just as the output grants the request, it is essential for correct
operation to ensure that all links in a partition are put into the reset state before any of
them are taken out of it. When all of the packet processing logic has been restarted, the
links themselves may be restarted in the usual way.

7.6 Effects of different levels of Reset

The Reset command is accompanied by a ‘level’ parameter. The effect of reset levels
1 and 2 on various aspects of the STC104 state is summarized in table 7.1; a Rese-
tHandshake with a status indicator of True (0) is sent on completion. Any other value
of the level parameter causes the status of the reset handshake to be False (1): no other
action is taken.

The handshake state indicates whether the control unit expects a handshake message;
the acknowledge state indicates whether it expects to receive an acknowledge packet;
and the error state is the latched error signals which would otherwise cause Error
messages to be sent. When the handshake/acknowledge state is cleared any outstand-
ing handshakes/acknowledges will be ignored. The corresponding effects of the Recov-
erError command are also shown. The RecoverError command resets the acknowledge
state so that acknowledges are neither expected nor pending, and causes the re-trans-
mission of any unhandshaken error message.

State Reset level Recover Error

1 2

Data DS-Links Re-configured Cleared no effect

Packet processors Re-configured Cleared no effect

Handshake state Cleared Cleared Cleared

Acknowledge state no effect no effect Cleared

Error state Cleared Cleared no effect

Table 7.1 Effects of the different levels of reset on various aspects of the STC104
state

46/64

8 Configuration register addresses
The complete bit format of each of the configuration registers is given in section 5.2.

8.1 Subsystem addresses

The registers in the configuration space are accessed via CPeek and CPoke command
messages received along CLink0. A 2 byte 16 bit address is issued, the most significant
byte refers to the subsystem, the least significant byte refers to the local register within
the subsystem.

There are 35 subsystems connected to the configuration bus:

� 32 data links and packet processors

� 2 control links

� system services

Table 8.1 gives the addresses of each of the subsystems.

The subsystem set of all 32 data DS-Links has a unique address #FF, as does the
subsystem set of all 32 packet processors. Note that the packet processors have the
same subsystem addresses as the data DS-Links. This address referring to the set of
DS-Links and packet processors should be used when writing (poking) to the associated
register for each of the 32 DS-Links or packet processors. For example, to
simultaneously write to all 32 DS-Link command registers (Link0-31Command),
address #FF02 should be used.

47/64

Subsystem Hex address

System services #10

Link0 #80

Link1 #81

Link2 #82

Link3 #83

Link4 #84

Link5 #85

Link6 #86

Link7 #87

Link8 #88

Link9 #89

Link10 #8A

Link11 #8B

Link12 #8C

Link13 #8D

Link14 #8E

Link15 #8F

Link16 #90

Link17 #91

Link18 #92

Link19 #93

Link20 #94

Link21 #95

Link22 #96

Link23 #97

Link24 #98

Link25 #99

Link26 #9A

Link27 #9B

Link28 #9C

Link29 #9D

Link30 #9E

Link31 #9F

Control link0 #FD

Control link1 #FE

All data links (Link0-31) #FF

Note: The packet processor subsystems have the same subsystem addresses as the
data links.

Table 8.1 Subsystem addresses

48/64

8.2 Register addresses

The configuration registers are given local addresses within each subsystem, these are
given in the tables below.

8.2.1 Packet processor configuration registers

Register Local address Bit size Read/Write

PacketMode #80 5 R/W

IntervalN (N = 1 to 36) #80 + (#1 to #24) 23 R/W

RandomBase #A5 16 R/W

RandomRange #A6 16 R/W

RandomSeed #A7 16 R/W

PacketCommand #A8 1 R/W

Table 8.2 PacketProcessor0-31 configuration registers

8.2.2 Link configuration registers

Register Local address Bit size Read/Write

LinkMode #01 8 R/W

LinkCommand #02 4 W

LinkStatus #03 6 R

LinkWriteLock� #04 1 R/W

� This register is not used on the STC104.

Table 8.3 Link0-31 configuration registers

8.2.3 Control link configuration registers

Register Local address Bit size Read/Write

CLinkMode #01 8 R/W

CLinkCommand #02 4 W

CLinkStatus #03 6 R

CLinkWriteLock� #04 1 R/W

� This register is not used on the STC104.

Table 8.4 CLink0-1 configuration registers

8.2.4 System services configuration registers

Register Local address Bit size Read/Write

DeviceID #01 16 R

DeviceRevision #02 16 R

ConfigComplete #03 0 W

ErrorCode #04 16 R

DSLinkPLL #05 5 R/W

Table 8.5 System services configuration registers

49/64

9 Clocks
Two on-chip phase locked loops (PLL) generate all the internal high frequency clocks
from a single clock input, simplifying system design and avoiding problems of distrib-
uting high speed clocks externally. This chapter details the PLL input specifications and
decoupling requirements. There is one PLL for the system clocks and one for the link
clocks.

9.1 Clock input

The high frequency internal clocks are derived from the clock frequency supplied by the
user. The user supplies the clock frequency for input to the PLL’s via the ClockIn input.
The nominal frequency of this clock is 5 MHz.

A number of STC104s may be connected to a common clock, or may have individual
clocks providing each one meets the specified stability criteria. In a multi-clock system
the relative phasing of ClockIn clocks is not important, due to the asynchronous nature
of the links. Mark/space ratio is unimportant provided the specified limits of ClockIn
pulse widths are met.

Oscillator stability is important. ClockIn must be derived from a crystal oscillator; RC
oscillators are not sufficiently stable. ClockIn must not be distributed through a long
chain of buffers. Clock edges must be monotonic and remain within the specified voltage
and time limits.

The timing requirements for ClockIn are given in section 11.1.

9.2 Phase locked loop decoupling

The internally derived power supply for internal clocks requires an external low leakage,
low inductance 2 �F capacitor to be connected between CapPlus and CapMinus. A
surface mounted ceramic capacitor should be used. In order to keep stray inductances
low, the total PCB track length should be less than 20 mm, thus the capacitor should be
no more than 10 mm from the chip. The connections must not touch power supplies or
other noise sources.

Phase-locked
loops

GND

CapPlus

CapMinus PCB track

PCB track

Decoupling
capacitor 2 �F

VDD

Figure 9.1 Recommended PLL decoupling

50/64

Note: CapPlus and CapMinus lie between GND and VDD, and CapPlus is greater
than CapMinus. However, CapPlus and CapMinus are not at a guaranteed voltage
level. Therefore CapPlus and CapMinus must be connected only to a decoupling
capacitor and the decoupling capacitor must not be shared between devices.

9.3 Speed selection

The internal clock rate is variable in discrete steps. The clock rate at which the STC104
runs at is determined by the logic levels applied on the speed select lines CoreSpeed-
Select0-1 as detailed in table 9.1.

CoreSpeedSelect1 CoreSpeedSelect0 Core clock speed (MHz) Core cycle time (ns)

0 0 30 33.3

0 1 40 25.0

1 0 50 20.0

1 1 Reserved

Note: Inclusion of a speed selection in this table does not imply immediate availability.

Table 9.1 Core speed selection

51/64

10 Electrical specifications
Inputs and outputs are TTL compatible.

10.1 Absolute maximum ratings

Symbol Parameter Min Max Units Notes

VDD DC supply voltage 0 7.0 V 1,2,3,4,
5

VI, VO Voltage on input and output pins –0.5 VDD+0.5 V 1,3,4,5

II Input current 10 �A 6

tOSC Output short circuit time (one pin) 1 s 4

TS Storage temperature –65 150 �C 4

Table 10.1 Absolute maximum ratings

Notes

1 All voltages are with respect to GND.

2 Power is supplied to the device via the VDD and GND pins. Several of each are
provided to minimize inductance within the package. All supply pins must be
connected. The supply must be decoupled close to the chip by at least one
100 nF low inductance (e.g. ceramic) capacitor between VDD and GND. Four
layer boards are recommended; if two layer boards are used, extra care should
be taken in decoupling.

3 Input voltages must not exceed specification with respect to VDD and GND,
even during power-up and power-down ramping, otherwise latchup can occur.
CMOS devices can be permanently damaged by excessive periods of latchup.

4 This is a stress rating only and functional operation of the device at these or any
other conditions beyond those indicated in the operating sections of this specifi-
cation is not implied. Stresses greater than those listed may cause permanent
damage to the device. Exposure to absolute maximum rating conditions for ex-
tended periods may affect reliability.

5 This device contains circuitry to protect the inputs against damage caused by
high static voltages or electrical fields. However, it is advised that normal precau-
tions be taken to avoid application of any voltage higher than the absolute maxi-
mum rated voltages to this high impedance circuit. Unused inputs should be tied
to an appropriate logic level such as VDD or GND.

6 The input current applies to any input or output pin and applies when the voltage
on the pin is between GND and VDD.

52/64

10.2 Operating conditions

Symbol Parameter Min Max Units Notes

VDD DC supply voltage 4.75 5.25 V 1

VI, VO Input or output voltage 0 VDD V 1,2

TA Operating temperature range 0 TAMAX �C 3

Table 10.2 Operating conditions

Notes

1 All voltages are with respect to GND.

2 Excursions beyond the supplies are permitted but not recommended.

3 For details of TAMAX, refer to section 13.3 on thermal data.

10.3 DC characteristics

Symbol Parameter Min Max Units Notes

VIH High level input voltage 2.0 VDD+0.5 V 1,2,3

VIL Low level input voltage –0.5 0.8 V 1,2,3

II Input current @ GND<VI<VDD �10 �A 1,2

VOH Output high voltage @ IOH=2mA VDD–2 V 1,2,3,4

VOL Output low voltage @ IOL=4mA 0.4 V 1,2,3,4

IOZ Tristate output current @ GND<V0<VDD �10 �A 1,2,3

CIN Input capacitance @ f=1MHz 7 pF 3

COZ Output capacitance @ f=1MHz 10 pF 3

Table 10.3 DC characteristics

Notes

1 All voltages are with respect to GND.

2 Parameters for STC104 measured at 4.75V<VDD<5.25V and 0oC<TA<TAMAX.
Input clock frequency = 5 MHz.

3 Characterized on a sample of devices, not tested.

4 For link outputs, IOH=1mA, IOL=1mA.

10.4 Power rating

Maximum power dissipation for the STC104 with 32 links operating at 100 Mbits/s is
10W.

53/64

11 Timing specifications

11.1 ClockIn timings

tDCHDCL

90%

10%

tDCr

2.0 V

0.8 V
1.5 V

tDCLDCH

tDCLDCL

tDCf

Figure 11.1 ClockIn timing

Symbol Parameter Min Nom Max Units Notes

tDCLDCH ClockIn pulse width low 40 ns

tDCHDCL ClockIn pulse width high 40 ns

tDCLDCL ClockIn period 200 ns 1, 2

tDCr ClockIn rise time 10 ns 3

tDCf ClockIn fall time 8 ns 3

Table 11.1 ClockIn timings

Notes

1 Measured between corresponding points on consecutive falling edges.

2 This value allows the use of 200 ppm crystal oscillators for two devices con-
nected together by a link.

3 Clock transitions must be monotonic within the range VIH to VIL (refer to Electrical
specifications chapter 10).

54/64

11.2 DS-Link timings

tLODSf

2.0V

0.8V

tLODSr

2.0V

0.8V

LinkOutData

LinkInData

LinkOutStrobe

LinkInStrobe

tLIDSftLIDSr

1.5 V

tDSDSO

LinkOutData
LinkOutStrobe

2 x tDSO

tDSI

LinkInStrobe 1.5 V

1.5 V

LinkInData or

LinkInStrobe
LinkInData or

2 x tDSO

tDSI

Figure 11.2 DS-Link timing

55/64

Symbol Parameter Min Nom Max Units Notes

CLIZ LinkIn capacitance 7 pF 1

tDSDSI Sustainable averaged input
bit period

9 110 ns

tDSDSO Output bit period 10 100 ns 2

tDSI Data/strobe input edge
minimum separation

2.5 ns 3,4,5

tDSO Data/strobe output skew �1 ns 6

tLIDSf LinkIn fall time (2.0–0.8V) 100 ns 7

tLIDSr LinkIn rise time (0.8–2.0V) 100 ns 7

tLODSf LinkOut fall time (2.0–0.8V) 7 ns 8

tLODSr LinkOut rise time (0.8–2.0V) 7 ns 8

ROH Output impedance (output
driving high)

110 247 � 9

ROL Output impedance (output
driving low)

63 104 � 9

Table 11.2 DS-Link timings

Notes

1 Sampled, not 100% tested.

2 tDSDSO represents the minimum and maximum programmable bit periods.

3 tDSI is the shortest permissible spacing of 2 consecutive edges on the Data and
Strobe wires (1 edge of either sense on each wire). If arriving Data and Strobe
edges are skewed to the extent that this parameter is exceeded then the order
of the edges becomes ambiguous and a parity error is likely to result.

4 Edge separation includes consecutive edges of a data input or a strobe input.

5 Based on a slew rate of 1.5 V/s, monotonic across the transition region. For other
values of slew rate, use the following formula:

1.0 + (k * slew rate) where k=1.0

6 tDSO is the maximum discrepancy between the time when a DS Output edge
(either sense) starts a transition and the theoretical ideal (i.e. all consecutive DS
edges spaced by tDSDSO).

7 Edges must be monotonic, hence faster edges are recommended unless the
link is to be used in a noise free environment.

8 Measurement based on a loading of 25pF.

9 The link output drivers have been optimized for driving a 100� transmission line.

11.2.1 Link Input and Output relative skews

For the skew parameters to be valid for a wide range of operating speeds (10 – 100
Mbits/s) certain parameters must be made relative to edge rates, as the interaction of

56/64

edge rates and logic threshold have significant impact on the skew. Note that skew is
measured relative to the edges crossing a nominal 1.5V logic threshold.

tDSI = Fixed skew + k * (the larger of tLIDSr and tLIDSf)

Where Fixed Skew is related to the worst case DSDecoder input skew rejection and
internal input path mismatch, and k is found by characterization and related to minimum
variation in input threshold and input pad propagation delay.

tDSO = Fixed skew

Where Fixed Skew is related to the worst case Link Output PLL jitter and internal output
path mismatch.

11.2.2 Skew budget

The concept here is that in order to eliminate the risk of DSLink parity errors due to the
relative skew between Data and Strobe inputs a system designer must ensure that the
sum of 2tDSO and the relative skew between Data and Strobe induced by all system
interconnect and buffering must be less than tDSDSO – tDSI.

Note that an edge rate dependent calculation must be performed for external buffers
with variable thresholds in order to calculate worst case tEXTSkew for both Data and
Strobe.

i.e. 2tDSO + tEXTSkew < tDSDSO – tDSI

The parameter tDSO on the left hand side of the expression is multiplied by two to allow
for the worst case situation of Data and Strobe undergoing maximum skew in opposite
directions.

57/64

12 Pin designations
This section details the function of the pins on the STC104. Pinout details are given in
chapter 13.

Supplies

Pin In/Out Function

VDD Power supply

GND Return

Table 12.1 STC104 supplies

Clocking

Pin In/Out Function

ClockIn in 5 MHz input clock

CapPlus, CapMinus External capacitor for internal clock power supply

CoreSpeedSelect0-1 in Speed selectors

Table 12.2 STC104 clocks

Control system

Pin In/Out Function

Reset in System reset

CLinkInData0-1 in Control link input data channel

CLinkInStrobe0-1 in Control link input strobe

CLinkOutData0-1 out Control link output data channel

CLinkOutStrobe0-1 out Control link output strobe

Table 12.3 STC104 control system

Communications

Pin In/Out Function

LinkInData0-31 in Link input data channels

LinkInStrobe0-31 in Link input strobes

LinkOutData0-31 out Link output data channels

LinkOutStrobe0-31 out Link output strobes

Table 12.4 STC104 communications links

58/64

Test Access Port (TAP)

Pin In/Out Function

TDI in Test data input

TDO out Test data output

TMS in Test mode select

TCK in Test clock

notTRST in Test logic reset

Table 12.5 STC104 TAP pins

Miscellaneous

Pin In/Out Function

HoldToGND Must be connected to GND

HoldToVDD Must be connected to VDD

DoNotWire Must not be wired

NotUsedForRevA This pin is not used on current revisions of the STC104. It
must be connected to GND.

Table 12.6 STC104 miscellaneous pins

59/64

13 Package specifications

The STC104 is available in a 208 pin formed CLCC cavity-down package.

13.1 STC104 208 pin CLCC cavity-down package pinout

Figure 13.1 STC104 208 pin CLCC cavity-down package pinout

60/64

13.2 STC104 208 pin CLCC cavity-down package dimensions

Figure 13.2 STC104 208 pin CLCC cavity-down package dimensions

61/64

REF. CONTROL DIM. mm ALTERNATIVE DIM. INCHES NOTES

MIN NOM MAX MIN NOM MAX

A – – 3.500 – – 0.138

A1 0.25 – – 0.010 – –

A2 2.33 2.63 2.93 0.092 0.104 0.115

A3 – – 1.00 – – 0.039

B 0.180 – 0.280 0.007 – 0.011

C 0.100 – 0.200 0.004 – 0.008

D 30.300 30.600 30.900 1.193 1.205 1.217

D1 27.700 28.000 28.300 1.091 1.102 1.114

D2 24.750 – 22.250 0.974 – 0.994

D3 – 25.500 – – 1.004 – REF

D4 25.150 – 26.250 0.990 – 1.033

E 30.300 30.600 30.900 1.193 1.205 1.217

E1 27.700 28.000 28.300 1.091 1.102 1.114

E2 24.750 – 22.250 0.974 – 0.994

E3 – 25.500 – – 1.004 – REF

E4 25.150 – 26.250 0.990 – 1.033

e – 0.500 – – 0.020 – BSC

G – – 0.100 – – 0.004

K 0� – 7� 0� – 7�

L 0.300 0.500 0.700 0.012 0.020 0.028

Zd – 1.250 – – 0.049 – REF

Ze – 1.250 – – 0.049 – REF

Notes:

1 Lead finish to be gold plated.

2 Maximum lead displacement from the notional center line will be no greater than
�0.1mm.

Table 13.1 STC104 208 pin CLCC cavity-down package dimensions

13.3 STC104 208 pin CLCC cavity-down package thermal data

The STC104 is tested to a maximum silicon junction temperature of 100°C. For opera-
tion within the given specifications, the case temperature should not exceed 95°C.

Given a maximum operating junction temperature of 100°C, the following maximum
power conditions apply:

Conditions Maximum power (Watts)

Still air at 30°C 3.41

Case held at 95°C 15.0

62/64

For actual maximum power dissipation see section 10.4.

For temperatures above 100°C the operation of the device cannot be guaranteed and
reliability may be impaired.

For further information on reliability refer to the SGS–THOMSON Microelectronics
Quality and Reliability Program.

External thermal management must be used to ensure optimum performance and
reliability.

14 Ordering information

Device Package

STC104 208 pin CLCC cavity-down package

For further information contact your local SGS–THOMSON sales office.

63/64

64/64

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no
responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties
which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of
SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This
publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not
authorized for use as critical components in life support devices or systems without express written approval of
SGS-THOMSON Microelectronics.

� 1995 SGS-THOMSON Microelectronics - All Rights Reserved

DS-Link is a trademark of SGS-THOMSON Microelectronics Limited.

 is a registered trademark of the SGS-THOMSON Microelectronics Group.

SGS-THOMSON Microelectronics GROUP OF COMPANIES
Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco -

The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

