
GPSS World Reference
Manual

Table of Contents
Preface xvii

Product Description

About This Manual

Chapter 1 - Introduction

1.1. Highlights

1.2. GPSS World Concepts

1.3. Architecture

1.4. The Modeling Language

1.5. Compatibility

Chapter 2 - Operating GPSS World

 2.1. File Directories

2.2. Installation

2.3. The GPSS World Environment

Chapter 3 - Model Statements

3.1. Using Model Statements

3.2. GPSS Statements

3.3. Fields

3.4. Expressions

3.5. Names

3.6. Numbers

3.7. Using Strings

Chapter 4 - GPSS Entities

4.1. Transaction Entities

4.2. Block Entities

4.3. Facility Entities

4.4. Function Entities

4.5. Logicswitch Entities

4.6. Matrix Entities

4.7. Queue Entities

4.8. Storage Entities

4.9. Savevalue Entities

4.10. Table Entities

4.11. Userchain Entities

4.12. Variable Entities

4.13. Numeric Group Entities

4.14. Transaction Group Entities

4.15. Random Number Generators

4.16. Data Streams

4.17. Continuous Simulation

Chapter 5 - GPSS World Windows

Chapter 6 - Commands

BVARIABLE

CLEAR

CONTINUE

EQU

EXIT

FUNCTION

FVARIABLE

HALT

INCLUDE

INITIAL

INTEGRATE

MATRIX

QTABLE

REPORT

RESET

RMULT

SHOW

START

STEP

STOP

STORAGE

TABLE

VARIABLE

Chapter 7 - Block Statements

ADOPT

ADVANCE

ALTER

ASSEMBLE

ASSIGN

BUFFER

CLOSE

COUNT

DEPART

DISPLACE

ENTER

EXAMINE

EXECUTE

FAVAIL

FUNAVAIL

GATE

GATHER

GENERATE

INDEX

INTEGRATION

JOIN

LEAVE

LINK

LOGIC

LOOP

MARK

MATCH

MSAVEVALUE

OPEN

PLUS

PREEMPT

PRIORITY

QUEUE

READ

RELEASE

REMOVE

RETURN

SAVAIL

SAVEVALUE

SCAN

SEEK

SEIZE

SELECT

SPLIT

SUNAVAIL

TABULATE

TERMINATE

TEST

TRACE

TRANSFER

UNLINK

UNTRACE

WRITE

Chapter 8 - PLUS

8.1. Defining PLUS Procedures

8.2. The Language

8.3. The Procedure Library

8.3.1. Utility
Procedures

8.3.2. Math
Procedures

8.3.3. Query
Procedures

8.3.4. String
Procedures

8.3.5. Probability
Distributions

Chapter 9 - Advanced Topics

9.1 Transaction Chains

9.2 The Transaction Scheduler

9.3 Synchronization

9.4 Preemption and Displacement

9.5 Interfacing with External Programs

Chapter 10 - Performance Tips

10.1 Memory Allocations

10.2 Identifying Congestion Points

10.3 Operating Tips

10.4 Modeling Tips

Chapter 11 - Standard Reports

11.1 Report Management

11.2. Sample Report

11.3 Standard Report Items

Chapter 12 - Statistics

12.1 Collecting Statistics

12.2 Space-Time Products

Chapter 13 - Troubleshooting

13.1. Problems Operating GPSS World

13.2. Debugging

13.3. Error Messages

Appendix

1.1. GPSS Grammar

1.2. PLUS Grammar

Glossary

http://www.minutemansoftware.com/
http://www.minutemansoftware.com/product.htm

GPSS WORLD REFERENCE MANUAL

' Copyright 2000 Minuteman Software.

Holly Springs, NC, U.S.A.

All Rights Reserved.

The software described in this manual is furnished under
license and may be used or copied only in accordance with

the terms of the license agreement.

Minuteman Software

P.O. Box 131

Holly Springs, NC 27540-0131 U.S.A.

GPSS Worldtm is a high powered general purpose computer
simulation environment, designed for simulation professionals.
It is a comprehensive modeling tool covering both discrete and
continuous computer simulation, with an extremely high level of
interactivity and visualizability.

Using GPSS World, it is possible to predict the effects of
design decisions on extremely complex real world systems.

This manual contains information on the use of the GPSS
World application program, and is the primary reference for the
version of the GPSS language implemented by GPSS World.
The first part of the manual shows you all you need to know in
order to make full use of the features of the GPSS World
application program. The last part of the manual contains a
detailed description of each GPSS Statement and a variety of
information that may be useful as you become experienced
with the use of GPSS World. Most of this manual is acessible
via the online Help facility of GPSS World.

A companion manual, entitled GPSS World Tutorial, is included
in the documentation set. It contains an introduction to
simulation with GPSS, followed by suggested sessions
involving many different sample models. You may find one or
more examples that correspond closely to your own simulation

problems.

How To Get Started
If you are familiar with GPSS and do not wish to go through all
the features offered by GPSS World, after you have installed
GPSS World according to the instructions in Chapter 2, you
should work through the manual entitled GPSS Worldtm
Tutorial.

Then, as questions arise, refer to the Statement descriptions in
Chapters 6, 7, and 8 of this manual. The Online Help feature
can save you the trouble of looking up the details of individual
Statements. You can start the Online Help system by pressing
l , by pushing a Help button, or by choosing from the Help
menu. You can reach context sensitive help by placing the
menu selection cursor over the menu item, and then pressing
l.
To get the maximum benefit of GPSS World, you need to be
aware of all it has to offer. This is best done by working through
the GPSS World Tutorial Manual, and then the GPSS World
Reference Manual. We suggest that you experiment with new
features until you are comfortable with them.

The Parts of This Manual
This manual begins with general information. It then proceeds
to material of increasing detail.

• Chapters 1 and 2 contain introductory material
about GPSS World, the manual, and some
concepts you will need.

• Chapters 3 and 4 describe the most important
aspects of the GPSS language.

• Chapter 5 contains the detailed descriptions of
the windows of GPSS World.

• Chapters 6, 7, and 8 comprise the reference
section. They contain detailed descriptions of
each of the Commands, Block Statements, and
PLUS Facilities, respectively.

• Chapter 9 contains many details of the
programming of GPSS World. Generally only
experienced GPSS modelers will use the material
in this chapter.

• Chapter 10 contains information on how to get
the most from your simulations. It contains
performance tips and other information you may
find useful.

• Chapter 11 describes the Report Management
Facilities, and the Standard Reports produced by
GPSS World.

• Chapter 12 discusses the statistics generated
automatically by GPSS World.

• Chapter 13 contains the error messages,
explanations, and remedial actions.

• Finally, the Appendix contains a description of
the formal grammar, and a short glossary.

Some readers will appreciate the formal grammar description in
the Appendix. Most of the elements of the GPSS dialect used
with GPSS World are defined formally there. The forms of an
operand which are acceptable are given under the appropriate
Statement description in Chapter 6, 7, or 8.

How This Manual Describes Actions
Concepts with meaning specific to GPSS World are capitalized.
For example, the Current Events Chain is a specific construct
with a special meaning. When words are used generically, and
do not refer to a particular item, they are not capitalized.

Actions you are asked to make immediately, are represented
by verbs in uppercase. For example, when you see PRESS,
CHOOSE, CLICK, DOUBLE CLICK, SELECT, or TYPE, you
are to perform the action, yourself. When actions are referred
to, but you are not asked to do them immediately, the verbs are
shown in lower case.

Words representing objects or denoting concepts specific to
GPSS World, are often shown in italics for emphasis, when first
encountered, or capitalized when used frequently. For
example, SHOW is an Immediate Command.

Keystrokes you are required to make are indicated by a special
font which encloses the name of the key in an outline. For
example, "PRESS e" means that you are to press the key
labeled "Enter" on your keyboard.

When more than one key must be used, the key symbols are
separated by a plus. For example, b + a + H means that you
are to press and hold the left key, while you press and release
the right ones.

Mouse actions are required when the capitalized phrases
CLICK or DOUBLE CLICK appear. This means that you are to

use mouse button 1 to perform the action. When mouse button
2 is needed, it will be called for explicitly. By default, mouse
button 1 is the left mouse button, and 2 the right. You can use
the OS/2 control panel to switch these assignments.

Menu items are indicated in a bold Times New Roman font.
When more than one level of selection is necessary, they are
shown in the order: menu bar item / pull down menu item /
cascade menu item. For example

 CHOOSE FILE / OPEN
means that you should use either the mouse or the keyboard to
choose the "File" item in the menu bar. Then you should
choose the "Open" item in the pull down menu. In this example,
there is no cascade menu item. For purposes of nomenclature
in this manual, "CHOOSE" is used for menu items, "SELECT"
is used for other choices.

Dialog window controls are also shown in a bold Times New
Roman font. For example,

 SELECT OK
means that you should use either the mouse or the keyboard to
select the OK button in the dialog window.

When you see SELECT OK, you can accomplish the same
thing pressing f or eon your keyboard. There is one exception,
however. Since Command / Custom provides for multiline
command lists and PLUS Procedure definitions, the enter key
is used only to break text lines, instead of to SELECT OK.

Characters you are to type into a Text Window are indicated in
a bold Courier New font. For example,

 TYPE GENERATE 100

means that you are to type the characters "GENERATE 100",
making sure the text window has the focus, and that the text
cursor has been positioned to the right place in the window.

Finally, objects in the operating system shell are described with
underlining, in order to distinguish them from items within
GPSS World, itself. For example,

 DOUBLE CLICK on The GPSS World Icon

means that you are to view the desktop or a folder of the
Workplace shell containing the icon which represents the
GPSS World Session Object, and you are to position the
mouse pointer over it and double click mouse button 1.

Menu Operation
You can use either the mouse or the keyboard to choose menu
items. In multistep selections, a selection cursor appears to
show you which item is about to be chosen. A selection cursor
is a dotted line or a "pressed" appearance around a menu
item.The a key, when pressed, will select the first item in the
main menu give it a "pressed" appearance. The w x y z can
then be used to move back and forth over the menu items. The
f or e makes the final selection.

Using the Mouse
There are two ways to use a mouse to choose a menu item.
You can position the mouse pointer over the item to be chosen,
and then press and release mouse button 1. You can do this in
the menu bar, a pull down menu, or a cascade menu.

Alternately, you can press mouse button 1 and not let up
immediately. Instead, you can drag over the item in the pull
down menu, and over the item in a cascade menu to be
chosen, and then release the button. You may find this
combined action quicker, although there are keyboard
shortcuts, as well.

Using the Keyboard
The keyboard alone can be used to make menu choices. If any
menu actions are in process, press ^. Then press a to position
the menu selection cursor on the first item in the menu bar.

Now you can move the selection cursor by using the w x y
z, g, or d. Press f or e to make the final menu item choice.

Alternately, you may be able to simply press a mnemonic key.
These keys are denoted by the underlined letters occurring in
the menu items. After entering keyboard selection mode by
PRESSing a, you can press mnemonic keys to choose
succeeding menu items.

Finally, some items have shortcut key combinations listed in
the menu, to the right of the item. You can immediately choose
a menu item, simply by pressing this key combination. Of
course, for you to be able to do this, that window has to have
the focus.

Text Windows
When a GPSS World Text Window has the focus, keystrokes
usually cause the replacement or insertion of characters into
the window. The h key can be used to change between insert
mode and replace mode. The mode is indicated by the shape
of the blinking text cursor, which also indicates the insertion
point in the window.

Either the keyboard or the mouse can move the text cursor.
Clinking mouse button 1 moves the text cursor to the position
under the mouse pointer. The arrow keys, g, d, {, and } all
move the text cursor, as does normal text insertion and
deletion.

A new line of text can be started by pressing f or e.

Selected text is shown in inverse, and can take part in special
operations. You can select text by dragging mouse button 1
over the target text, by pressing j, and clicking mouse button 1
on the end of selected text, or by double clicking on the word to
be selected.

You can delete characters, one at a time, by pressing c or
backspace. Pressing c deletes the character to the right of the
cursor; pressing backspace deletes the character to the left of
the cursor. Selected text can be deleted by choosing Edit /
Cut , or by pressing c . A single level undo is available by
choosing Edit / Undo .

Graphics Windows
Graphics Windows may have menu actions based on the
selection of one or more objects in the window. For example, a
contiguous sequence of Blocks can be copied form the Block
Input Window to the clipboard.

Generally, an object can be selected by clicking on its icon.
Swipe selection is supported, as well. In addition, some
windows allow extended selection. First select an object. Then
scroll to the other end of the selection set of objects, hold down
j while clicking on the second object. That object, the first
object, and all intervening objects will then be selected.

Finally, if you hold down b while clicking on an icon, the object
is toggled into or out of the selection set. A selected object
becomes unselected, or an unselected object becomes
selected.

Dialog Windows
Although the GPSS World dialog windows are all different, they
do have some things in common.

Mouse selection is normally used to set the focus in entry
fields, and make selections in each dialog. Usually, the f or e
key will select OK, the ^ key will select Cancel, and the l
key will select Help.

Getting Help
Online Help is available when you

 CHOOSE Help
in a dialog window, or when you

 PRESS l

Once the Online Help system is activated, you can utilize a
variety of search techniques for information. If you have
selected a word in a Text Window, the Help Window will open
directly in the topic in the Online Reference Manual.

Universal Keys
Several keys, and key combinations are effective no matter
which GPSS World window has the focus. They are generally
used to control a translated simulation by quickly passing
Commands to the active Simulation Server.

Hot Keys
The Hot Keys initiate an Interactive Command from a single
keystroke combination. These are described in Chapter 2.

Function Keys
Function keys can be given ad hoc assignments. You can do
this in the Settings Notebook by typing in the new assignment
beside the appropriate function key label. Thereafter, when you
press the associated function key, the assigned Command is
Translated and sent to the Server. You can assign a complex
Command List and/or PLUS Procedure redefinition by
assigning an INCLUDE Statement to a function key.

Intended Audience
GPSS World is a full strength simulation environment designed
for simulation professionals. A significant amount of
preparation is required before you can expect to use it to its full
potential. This manual is intended for users who are already

familiar with the basic elements of the GPSS language. In
addition, you are expected to know how to operate your
personal computer system. You are expected to know about
the file system, disk drives, directories, diskettes, desktop
objects, and how to use a mouse. Also, you are expected to
know how to operate menus and dialogs by mouse and/or
keyboard. This information is available in the documentation of
your operating system.

If you are a GPSS/PC user, be sure to read the section entitled
GPSS World Features in Chapter One. It goes over a detailed
list of features and changes from the old GPSS/PC
environment. More information for each item exists in later
chapters. Be sure to refer through the index when you need to
know more about any individual item. Online Help and the
online Reference Manual are available, as well.

If you are new to GPSS, the General Purpose Simulation
System, you should do some preliminary work before you
continue with this manual. First, you should read one of the
excellent books on the GPSS language. Then, you should
carefully work through the companion user manual, entitled
GPSS World Tutorial Manual.

Afterward, you should read the first 4 chapters of this manual,
using the remaining chapters as reference material. This
course of study will place all the interactive power of GPSS
World at your fingertips. It is best to restrict yourself to a subset
of the GPSS language until you gain some actual model
building experience. Most GPSS modelers are productive
without mastering all the Blocks available in the language.
However, you will be most effective by considering simulation
methodology, and the GPSS language, to be a topic of
continuing study.

You should become familiar with both the Online Help facilities
and the online reference manual. Both are handy for quick
references, and for providing answers to specific questions.

Acknowledgments
Minuteman Software gratefully acknowledges the contributions
by Drs. Averill Law and Stephen Vincent, of implementation of
many of the random variate generation algorithms used in
GPSS World�s built-in probability distributions.

http://www.minutemansoftware.com/default.htm

 Chapter 1. Introduction
Predicting the behavior of complex real world systems -- that’s
what GPSS World is all about.

Many expensive projects in the past have failed because the
end result was not characterized accurately. From maximum
capacity to cost of operation, it is essential for detailed
knowledge of the behavior of the system under construction to
be known as soon as possible. Although purely mathematical
models are extremely valuable, and should be used where
feasible, the complexity of most real world systems requires the
use of Computer Simulation to get the necessary answers.
That’s where GPSS World comes in.

GPSS World is based on the seminal language of Computer
Simulation, GPSS, which stands for General Purpose
Simulation System. This language was developed primarily by
Geoffrey Gordon at IBM around 1960, and has contributed
important concepts to every commercial discrete event
Computer Simulation Language developed ever since. GPSS
World is a direct descendent of GPSS/PC, the world’s first
implementation of GPSS for personal computers. Since it’s
introduction in 1984, GPSS/PC and its successors have saved
thousands of users millions of dollars. Now, the Windows
Implementation of GPSS World extends these capabilities into
an Internet aware environment.

GPSS World is designed to deliver answers quickly and
reliably, with the least effort, achieving the highest reliability of
results. Consistent with these objectives, visualization of
running simulations is highly stylized and a default statistical
treatment is built in. This approach means that animations are
"free" requiring no additional effort to produce, but are not
photo-realistic. GPSS World’s forte is transparency, not
photo-realism.

Transparency is valuable for three reasons. First, it is
dangerous to rely on an opaque "Black-Box" simulation whose
internal mechanisms cannot be observed. Not only can you not
be sure it fits your situation, but it is difficult to be assured that it
even works as intended. Second, successful simulations are
valuable and have a surprisingly long lifetime. It is possible that
new staff members will be required to become familiar with the
internal workings of the simulation -- a near-impossible task
unless provision has already been made for a high level of
transparency. Third, one of the most effective but least
mentioned benefits of Computer Simulation is the insight on
system behavior achieved when an experienced Simulation
Professional can see the internal dynamics at crucial times in
the simulation.

GPSS World was designed to address these issues. Its
visualizable nature allows the internal mechanisms of models
to be revealed and captured. Its interactivity allows one to

explore and manipulate running simulations. Its built-in data
analysis facility can calculate confidence intervals and an
Analysis of Variance with a single keystroke.

Most systems can be modeled in any of several ways using
GPSS World. Usually only a small subset of the features
available need to be used. However, the greatest proficiency
requires familiarity with all that GPSS World has to offer. This
manual is the primary source of that information.

This chapter consists of 5 sections. The first is a brief overview
of the most important aspects of GPSS World. The second
explores a few basic concepts which are necessary for moving
on to later chapters. The third section discusses the advanced
architecture of GPSS World and what you must know to take
advantage of it. The fourth section explores the modeling
language of GPSS World, and the fifth section is for GPSS/PC
users who want to take advantage of the Compatibility Mode of
GPSS World. This last feature is available only in the
Commercial Version of GPSS World.

Installation and operating procedures are discussed in Chapter
2.

 1.1. Highlights
GPSS World is object oriented. Its inhabitants include Model
Objects which are used to create Simulation Objects.
Simulation Objects are used to play out simulations and create
Report Objects. Finally, Text Objects can be used as INCLUDE
files to support code sharing and a user source code library.

Simulation projects require several steps. They normally
include model building and data collection, testing and
verification, simulation, and the analysis of results. GPSS
World has a large number of capabilities addressing each of
these steps. In GPSS World, you will create and modify a
model using the full-screen text editor. You then Create a
Simulation Object by selecting COMMAND / Create Simulation
in the Main Window Menu. Thereafter, you have a powerful set
of Commands at your disposal to control the running of the
simulation. You can enter Commands interactively, or you can
include them in the original model. During the testing and
verification phase, a large number of window types are
available for online viewing and to take snapshots of the
simulation. Hot Keys and Point and Shoot breakpoint control
make verification and debugging easy. After the simulation is
tested, you can have the results reported automatically. Then,
with only a few keystrokes, you can perform a statistical
analysis.

GPSS World was designed to exploit your computing
environment. The use of virtual memory allows your models to
grow to a billion bytes. Preemptive multitasking and
multithreading mean higher responsiveness and permit GPSS

World to be doing many things at the same time. It also means
that the simulation environment can utilize the computing
capacity of Symmetric Multi-Processing architectures.

GPSS World has been extended by PLUS, the Programming
Language Under Simulation. This simple but powerful
programming language removes the restrictions that existed in
the older GPSS implementations. Data within this environment
are untyped, with conversions occurring automatically as
needed. In addition, powerful function and probability
distribution libraries are directly available to PLUS Procedures.
The procedure library supports string manipulations, numeric
calculations and probability distributions.

User-defined PLUS Procedures and can be accessed
anywhere in the Model. PLUS Experiments, which are invoked
by the CONDUCT Command, can be used to control the
running of simulations over a parameter space. Expressions,
defined in PLUS, can incorporate data elements and System
Numeric Attributes. When parenthesized, PLUS Expressions
can appear outside PLUS Procedures, in GPSS Statements.
An INCLUDE Command can bring in existing User Procedure
Libraries containing tested PLUS Procedures.

GPSS World has comprehensive discrete and continuous
modeling capabilities. The new, tightly knit continuous
modeling feature allows for easy transition between the
continuous and the discrete phases. Several new GPSS Blocks
have been added to cover the control of integrations,
Transaction rescheduling, changes to Assembly Sets,
user-defined PLUS Blocks, and Data Streams. Data types now
include integer and real numeric values, as well as strings.
Each type is automatically coerced to the required form, as
needed. Even matrix structures have been improved. They can
now incorporate up to 6 dimensions.

In Version 4.0 of GPSS World, the PLUS Language has been
extended for the definition of an Experiment as a kind of
Procedure. This powerful feature permits programmable control
and can even be based on simulation results. Thus, completely
automatic operation is possible including the exploration of
Response Surfaces. extended for definition of Experiment
Objects. This powerful feature permits programmable control
and can even be based on simulation results. Thus, completely
automatic operation is possible including the exploration of
Response Surfaces.

GPSS World is easy to operate. A full screen text editor can be
used in any of the Text Windows. Even the Journal Window
and Reports can be customized and annotated. You can use
bookmarks as place holders when you are dealing with a large
model. When you Create a Simulation, if any errors are
detected, they are remembered so that you can correct them
one at a time. The cursor moves automatically from one to the
next to help you locate each problem. After the Simulation is
Created, several Hot Keys can be used in place of Interactive

Commands. Using Model and Simulation settings, you can load
your own Commands into one or more function keys in order to
get single keystroke response. Windows are easy to open.
Generally, only a menu selection is needed. During debugging,
even breakpoint control can be accomplished in a Point and
Shoot fashion using the mouse.

GPSS World is highly interactive. All Model Statements can be
used interactively. When you send a Command, Block
Statement, Procedure Definition, or Experiment Definition to an
existing Simulation Object, the interaction is used to redefine or
manipulate the state of the simulation. This level of control is
extremely useful while the behavior of the simulation is being
verified. In essence, you can do almost anything to the
simulation after it is created.

It�s easy to visualize running simulations. GPSS World can
create stylized animations of any GPSS entity type with no
more than a mouse click, or two, from you. These windows are
dynamic -- showing the changing state of running simulations.
In additional, dynamic on-line windows can view the state of
the GPSS entities even while the simulation is running. An
Expressions Window is available to display the changing
values of any number of your own Expressions. In addition, any
number of scrollable PLOT Windows can be opened to show
the dynamics graphically.

The Commercial Version of GPSS World provides for a set of
snapshots, as well. These are advanced features intended for
professionals who need detailed knowledge of microstates of
the simulation. Static snapshots can be taken of any
Transaction, the Future Events Chain, the Current Events
Chain, or the membership of the Numeric and Transaction
Groups.

Simulations can communicate with the outside world. You can
now use five new GPSS Blocks to manipulate Data Streams.
They are OPEN, CLOSE, READ, WRITE, and SEEK. The last
of these, SEEK, provides for direct access into a data base.
Data Streams have many purposes. You can use them to
access data files, to create Result Files and custom reports, to
access internal data directly.

The analysis of results is easy in GPSS World. It has facilities
that support the capture and printing of graphical windows. The
Journal Window records the activities associated with the
Simulation Object. An automatic Report Management System
ensures the safe keeping of each Standard Report. The new
ANOVA Library Procedure can perform a complete Analysis of
Variance when passed a Result Matrix. That’s all there is to the
generation of an ANOVA table and a set of Confidence
Intervals.

The structure of the modeling language has been simplified in
GPSS World. A Model Object is now defined as a sequence of
Model Statements. Each can be either a GPSS Statement, a
PLUS Procedure definition, or a PLUS Experiment definition. A

Model Object is used to create the corresponding Simulation
Object, which can contain any number of PLUS Procedures
and/or PLUS Experiments, which can be invoked after the
Simulation Object is created. Any Model Statement can be sent
to an existing Simulation Object (even while it is running). Such
statements are called Interactive Statements. These concepts
are discussed in more detail in the next section.

GPSS World does inherit some characteristics from GPSS/PC.
For example, it retains the use of the # character as the
multiplication operator. The reason for this is that * has been
reserved for GPSS Indirect Addressing. Rather than introduce
ambiguity into the language, a distinct character was chosen to
denote multiplication. Although GPSS Statements, except
Function Followers, must still fit on a single line of text, the
maximum line length has been increased to 250 characters.
The new PLUS Statements are not so restricted. They can
span any number of lines.

 1.2. GPSS World Concepts

 1.2.1. Objects

GPSS World is populated by 4 kinds of objects. Models,
Simulations, and Report Objects form the basic types which
are used in all GPSS World simulations. Typically, a model is
developed by editing the statements in a Model Object. Then, a
Create Simulation Command is issued, thereby creating a
Simulation Object structured according to the statements in the
Model Object. Simulations are run by sending them GPSS
Commands, or by including commands in the Model Object,
itself. Normally, when a simulation completes, a Report Object
is created automatically.

Overall control of multiple simulation runs can be handled
within this framework by including a PLUS Experiment in the
Model Object. (PLUS is the "Programmming Language Under
Simulation" that can be used to define procedures and
experiments.) Then, a Run Experiment Command can be sent
to the Simulation Object to control a series of simulation runs,
and deal the results.

The Text Object completes the 4 types of GPSS World
Objects. These are named in INCLUDE Statements to aid the
development of large simulations, and for a few other handy
uses such as the creation of a source code library.

All GPSS World Objects can be saved at any time, in any state,
and reopened in a later session. This includes Simulation
Objects, which can be run any number of times from a saved
state, thereby facilitating debugging and demonstrations.
Simulation Objects can even be saved in the middle of complex
Experiments, allowing you to complete the simulation runs at a

later time.

All GPSS World Objects except Text Objects contain data in
addition to the basic ASCII text. Model, Simulation, and Report
Objects contain Bookmarks for easy navigation, and a list of
attribute values called settings, which can be modified. When a
Simulation Object is Created it begins with a copy of the
Settings of the Model that created it. The same goes for Report
Objects which inherit their settings from the parent Simulation
Object. In addition, Model Objects remember all the Translation
errors encountered the last time you tried to Create a
Simulation Object from it. That way you can make some
corrections and save the rest for later.

Model Objects
A Model object contains a text description of GPSS and PLUS
statements, and a list of settings.

Model Statements
A Model Statement can be either a GPSS Statement, or a
PLUS Procedure definition. GPSS Statements, in turn, can be
either Block Statements or Commands. Model Statements
define a Simulation Object when it is first Translated, and they
can be sent as interactions to an existing simulation.

Commands are either Queued or Immediate. Actually, all
Commands except HALT and SHOW are Queued. Each
simulation has a special chain called a Command Queue that
holds all Queued Commands received by the Simulation
Object. Commands are taken off the Command Queue, one
after the other, for execution.

The HALT Command is a special case. It is an Immediate
Command, and therefore is not placed on the simulation�s
Command Queue. However, when a HALT is executed, all
remaining Commands are removed from the Command Queue
and discarded. This ensures that all action on behalf of the
simulation ceases when a HALT is received.

Multiple Model Files
Usually, a model is represented by a single Model Object, and
optionally, any number of Text Objects. It is sometimes useful
to place a sequence of one or more Statements, PLUS
Procedures, or PLUS Experiments in a plain text file, so that it
may be invoked by a single INCLUDE Command. INCLUDE
Commands can even be loaded into Function Keys, thereby
invoking a complex sequence with a single keystroke. This is
discussed in detail in Chapter 2.

Text Objects, which are representations of plain text files, can
be named in INCLUDE statements in the Model Object. The
use of plain text "include" files allows the statements in them to
be reused across multiple models with a single set of values for

model settings. Settings are kept only in the Model Object, not
in Text Objects.

Model and text files are numbered so they can be referenced
by Status Messages coming back from the simulation. The
number is the 0-relative ordinal of the file in the order
encountered by the Translator when the Simulation Object was
created. The primary Model Object is assigned Model File
Number 0.

Model Settings
Each Model Object carries with it a set of choices called Model
Settings, or simply "Settings". These are accessible using the
Edit / Settings in the menu of the Main Window. Setting are
inherited by the Simulation Object, and also by the resulting
Report Objects. Some settings can be changed even after the
Simulation Object is created. The details are in Chapter 2.

Simulation Objects
A Simulation Object is created by translating the statements in
a Model Object. The Command / Create Simulation menu
item is used for this purpose. After a Simulation Object is
created successfully, commands are then used to advance the
state of the simulation. These Commands can be part of the
Model Object, or they can be sent to the existing Simulation
Object as interactions.

The Translator
The high performance Translator is that part of the GPSS
World program which Creates the Simulation Objects. All
Model Statements are Translated before they are incorporated
into the simulation. Similarly, interactions are Translated in
global scope before they are sent to an existing Simulation
Object.

When errors occur which prevent a Simulation Object from
being Created, a list of messages is placed in the Model
Object. Then, when you move to the next error message by a
mouse click or using accelerator keys, the error is described in
the status line of the Main Window and the mouse cursor
jumps to the location in the Model text where you must correct
the error. Correcting and retranslating is quick and easy.

Report Objects
One of the strongest features of GPSS has always been its
Standard Reports. With essentially no effort from the Model
Developer, a simulation run automatically reports on all the
GPSS Entities defined in the model. There are a variety of
ways of customizing these reports by Editing the Settings used
by the Simulation Object.

Text Objects
A Text Object is simply way to represent a plain text file in
GPSS World. Their primary use is as the target of INCLUDE
Commands. This allows a shared set of Model Statements to
be accessed easily from a Model Object. You can even load an
INCLUDE Statement into a function key. In that way, a complex
Command list and/or PLUS Procedure in a text file can be sent
to a Simulation with a single keystroke.

Text Objects turn up in other places, as well. Data Streams
allow a Simulation to read and write data from text files, and to
create Result Files for later analysis. As you might expect,
these files are all represented as Text Objects.

 1.3. Architecture
GPSS World has been designed from the ground up to take
advantage of close interactivity and multitasking.

 1.3.1. Multitasking

The Multithreaded-design of GPSS World allows it to run
multiple simulations and experiments simultaneously. Not only
is screen update, user input, disk Input/Output, printing, and
simulation done concurrently, but any number of simulations
can be run at the same time, as well. In this manner, significant
performance improvements can be obtained for simulations
which make use of Data Streams.

Simulations are not directly limited to the size of the physical
random access memory (RAM) where the Simulation Object is
run. Using virtual memory, simulations can be up a gigabyte in
size. No other direct entity limits are imposed, assuming
adequate swap space is provided. For optimum performance,
however, sufficient real memory must be available. All entity
allocation and management is invisible to the user. Entities are
created automatically, unless additional information is required.
REALLOCATE statements are not used.

 1.3.2. Interactivity

GPSS World maintains a high level of interactivity, even with
running simulations. You can send any Model Statement to an
existing Simulation Object, using the Command item on the
main menu of the Model Window, Accelerator Keys, or by
using Model Settings to load function keys with your own
customized Commands. You can use the Custom Command
Dialog for statements not on the drop down menu, and using
an INCLUDE command, you can send an interaction of any
complexity to a simulation. Even INCLUDE Commands can be
loaded into Function Keys, thereby supporting iterations of any

complexity invoked by a single keystroke.

Block Statements, when used interactively, cause the Active
Transaction to attempt to enter a temporary block, which is
then discarded. This mode is called Manual Simulation Mode
and it is useful during Experiments, providing all the functions
available inside the simulation.

PLUS Procedure and Experiment Statements cause a user
defined procedure or experiment to be registered in the
simulation�s Procedure Library. Any existing Procedure item of
the same name and type is replaced.

Commands, except for CONDUCT, HALT and SHOW, when
received by an existing Simulation Object, are placed on the
simulation�s Command Queue to be executed in turn. HALT
and SHOW are Immediate Commands, and are executed
immediately when first received by the simulation. In addition,
HALT removes all waiting Commands from the Command
Queue. CONDUCT Commands initiate a PLUS Experiment
which takes over control of the Simulation Object. Experiments
can base decisions on results and invoke a statistical analysis,
however interactivity is reduced during an Experiment.

 1.3.3. Visualization

GPSS World excels in the visualization of running simulations.
Consistent with the generality of the GPSS language, twenty
different windows are available for observation of and
interaction with your simulations. No additional effort beyond
operating the windows is necessary to obtain, save, and print a
visual representation of the state of the simulation. Simulation
Windows may either take a one time snapshot of a quickly
changing entity, or they may be updated online, dynamically
changing to keep current with the changing state of the running
simulation. Dynamic Windows show the changing state of
entities, but they also cause simulations to run more slowly.

Many windows have a Non-Detailed View and a Detailed View
which show alternate sets of information. Others allow you to
display a running numerical simulation clock at the bottom of
the Main Window. You make the choices using the View item
on the Main Window’s menu bar.

The details on the appearance and operation of each of the
windows is in Chapter 5.

Snapshots
In the Commercial Version of GPSS World, snapshots are
available for:

• Current
Events
Chain

• Future
Events
Chain

•
Individual
Transactions

•
Numeric
Groups

•
Transaction
Groups

Dynamic Windows
Any number of online simulation windows can be opened on
the following entity types:

• Blocks

•
Facilities

•
Logicswitches

• Matrix

• Queues

•
Savevalues

•
Storages

• Table

The Table Window presents a dynamic histogram that is
extremely useful for viewing the accumulation of values,
looking for outliers, and observing the convergence to a parent
probability distribution.

In addition, the Plot Window and the Expressions Window can
be used to follow values with meaning to your simulation. Any
number of multicolored on-line plots can be viewed, saved, or
printed by opening one or more Plot Windows. Each window
can track the value of up to 8 general Expressions, including
integration variables. Plots can be scrolled vertically and
horizontally, and can be scaled in either direction, as well.

The Expressions Window can be an extremely powerful
microscope on your simulation. Using it, you can view the
changing values of any number of PLUS Expressions, of your

own creation. As with all Simulation Windows, you can open
Expression Windows at any point in the simulation.

The Blocks Window shows the entry of Transactions into
blocks. It allows you to set and remove breakpoints using the
mouse or the keyboard and to visually step through the
simulation.

Most Interactive Windows have a Debug Toolbar which allows
a "Point and Shoot" debugging session using only the mouse.
The Debug Toolbar is discussed more thoroughly in Chapter 5.

Simulation Clocks
Each Simulation Object has an internal toggle switch that
causes it to print the changing vaue of its System Clock in the
rightmost pane of the Status Line of the Main Window. This
provides an easy verification that the Simulation is progressing
normally. When you click on any View of a Simulation Object, it
will display it’s clock if you have set its "Show Clock" toggle
switch. This is very useful for monitoring the status of
Experiments.

Animation
A variety of animation possibilities exist in GPSS World. The
level of realism varies from abstract visualization requiring no
effort, to highly realistic dynamic representations involving
complex user-drawn elements.

Abstract Animation
A comprehensive stylized animation capability is built into
GPSS World. This facility is provided by a large set of
Simulation Windows which show the GPSS Entities of the
simulation dynamically, as they change state during the
simulation. No additional effort is required to view such
animations, other than merely opening the window. The
graphical images may be saved for inclusion into reports,
and/or printed, as well.

Post-processing Animation
GPSS World includes an external interface that can support
simulation animation packages that are driven by trace data.
Photorealistic animations can be developed in this manner. To
use this interface, you construct an output Data Stream
obeying the formatting and content rules of the animation
package. Data Streams are discussed in the next section..

 1.4. The Modeling
Language
GPSS World contains an implementation of GPSS, the General
Purpose Simulation System, enhanced by an embedded
programming language PLUS, Programming Language Under
Simulation.

The GPSS variant includes over 50 Block Statements and 25
Commands. It includes over 35 System Numeric Attributes,
which provide instant state variables, accessible anywhere in
the model.

PLUS is a small but powerful procedural programming
language created out of only 12 statement types. Much of its
power comes from a large procedure library containing
mathematical and string manipulation functions, and a strong
set of probability distributions.

In GPSS World, a model is defined to be a sequence of Model
Statements. These are either GPSS Statements, PLUS
Procedure Statements, or PLUS Experiment Statements.
GPSS Statements, in turn, are either Block Statements or
Commands. Except for Function Follower Statements, all
GPSS Statements must reside on a single text line of up to 250
characters. Any Model Statement can be part of the model in a
Model File, or can be sent interactively to modify an existing
simulation.

The inclusion of Expressions in PLUS Statements and
parenthesized Expressions in GPSS Statements is a strong
enhancement to the modeling power and ease of use of the
language. The use of the # character to denote multiplication
has been retained. This clearly distinguishes that arithmetic
operation from the GPSS indirect addressing operation which
is denoted by the * character.

Commands are discussed in Chapter 6, Block Statements in
Chapter 7, and the PLUS Language, including the Procedure
Library, in Chapter 8.

 1.4.1 What's New

Many changes have been made to the modeling language. The
distinction of Control Statements has been removed. All GPSS
Statements which are not Block Statements are now simply
called Commands. Line numbers are ignored in GPSS World. If
used, they must begin in the first column of the text line.

Automatic truncations have been removed from GPSS World.
You must now explicitly use the INT() procedure, or some
other method, if you wish intermediate numeric results to be

truncated. This is true in all Expressions, even in VARIABLE
and BVARIABLE Statements. Similarly, the data type returned
by a System Numeric Attribute can now be either integer, real,
or string, depending on the SNA. Even those SNAs returning
parts per thousand do so as a real number of double precision
between 0 and 1000, inclusively. The old truncations and
integer SNAs can be enforced by running a Commercial
Version of GPSS World in GPSS/PC Compatibility Mode,
which is discussed below.

PLUS Statements can span any number of text lines. Although
GPSS Statements, except for Function Followers, must reside
on a single text line, the maximum length is now 250
characters.

Mathematical expressions can now be used nearly anywhere
you can use an SNA. Expressions are in integral part of the
PLUS Language, but they are also used to expand the power
of operands in GPSS Statements. When used in GPSS
Statement operands, Expressions must be parenthesized. The
permissible forms of each operand are given in the statement
descriptions in Chapters 6 and 7. Many new statement types
have been added, as well. These are discussed next.

New GPSS Statements
Several new Blocks have been added.

New GPSS Blocks
• ADOPT - Change Assembly Set.

• DISPLACE - Change the Next
Sequential Block of a given
Transaction. Save FEC residual
time. Can be used to reschedule
events.

• PLUS - Evaluate PLUS
Expression and save result in
Parameter.

• INTEGRATION - Turn the
integration of a User Variable ON or
OFF.

• OPEN - Initialize a Data Stream for
operation.

• CLOSE - End the Data Stream
operation.

• READ - Bring the next line of data
from a Data Stream into a
parameter of the Current
Transaction.

• WRITE - Send a line representing
the value of a Transaction
Parameter to the next slot in a Data
Stream.

• SEEK - Change the Current Line
Position in a Data Stream.

New Commands
Statements have been added to control the integration of
continuous state variables, to provide for multiple Model Files
and Procedure Libraries, and to invoke PLUS Experiments..

• CONDUCT -Begin a previously
registered PLUS Experiment.

• INTEGRATE - Automatically
integrate an Ordinary Differential
Equation, with optional Transaction
generation trigger values.

• INCLUDE - Insert a Text Object for
Translation.

New SNA
The new System Numeric Attribute A1 returns the Assembly
Set of the Active Transaction. This is useful in conjunction with
the new ADOPT Block which lets the Active Transaction
change its Assembly Set.

 1.4.2. Language Elements

GPSS World provides for a range of language elements that
can be molded to suit nearly any situation.

Polymorphic Data Types
Variables can now take on values with one of three types. User
controlled variables, such as Savevalues, Matrix Elements,
Transaction Parameters, and User Variables can take on
integer, real, or string values. Clock values are integer or real,
in double precision.

Conversion between types is automatic. Procedures which
require a specific data type as an argument will coerce the
argument to the appropriate type. If you pass a string to a
Procedure which requires a numeric argument, the numeric
equivalent of the string is used. Similarly, if you attempt to
WRITE a numeric value, it is converted to a line of text
automatically.

String values have many uses. They can be used in Data
Streams, to format reports and Result Files, and internally for

direct access of data. String constants are denoted by
enclosure of the string in a pair of double quotes. You can use
two double quotes together to represent a single double quote
internal to the string. For example, you would use a total of 6
double quote characters to represent a string within a string.
The inner string would be "sandwiched" by two pairs of double
quotes, and the overall string would be "sandwiched" by a
double quote character on each end. Procedure Library
contains many string procedures that can be used to create
and manipulate strings.

Initializing Data Structures
Variables and Matrix elements may be given initial values in
several ways.

• The INITIAL Command can be used to give values to
Logicswitch, Savevalue, and Matrix entities. PLUS Assignment
Statements are used to assign values to higher dimension
matrices.

• SAVEVALUE Block Statements assign values to Savevalue
Entities.

• MSAVEVALUE Block Statements assign values to Matrix
Entities.

• LOGIC Block Statements assign values to Logicswitch
Entities.

• READ and ASSIGN Block Statements assign values to
Transaction Parameters.

• PLUS Assignment Statements can be used to assign values
to User Variables and Matrices.

• The CLEAR Command normally resets the values of
Savevalues, Logicswitches, and Matrices to integer zero, This
action can be suppressed by specifying OFF in the B Operand
of CLEAR.

It is often useful to isolate initialization statements in a Text
Object. Then, only an INCLUDE Command need be asserted
to perform the complete initialization. This can be done
interactively, as well.

PLUS Experiments can control initializations to any level of
detail. Any initialization command can be invoked within an
Experiment by use of the DoCommand Library Procedure.

Multidimensional Matrices
Matrices can be defined with up to 6 dimensions. Dynamic
Matrix Windows view any cross section of a Matrix, and there
may be any number of Matrix Windows. Temporary matrices
can be created for use during procedure invocation.

Expressions
GPSS World supports the widespread use of Expressions.
They can appear in PLUS Procedures or, when parenthesized,
in GPSS Statements. This means that a powerful level of
computation can be achieved just in the Operands of Blocks
and Commands. Expressions can do simple computations,
invoke procedures that perform math or string operations,
sample probability distributions, or execute user defined
algorithms.

 1.4.3. Embedded Programming
Language

The Programming Language Under Simulation, PLUStm, is a
simple, but powerful, embedded programming language that
fills the detailed computational needs of users who require a
fine level of control of data structures, computational
algorithms, and ad hoc Block processing.

PLUS Procedure Statements can be used to define Procedures
as part of the original model, or they can be sent to an existing
simulation. This applies to PLUS Experiment Statements, as
well.

A new GPSS Block, PLUS, allows users to invoke a PLUS
Procedure as a Block routine. In effect, Users can create their
own blocks, in as complex a manner as desired.

PLUS Procedures are easily created, can reside anywhere in
the model, and can be INCLUDEd in a Procedure Library. They
can also be redefined at any time, even interactively.

PLUS Statement types include:

• Assignment• BEGIN

• DO...WHILE

• END

• EXPERIMENT

• GOTO

• IF ...THEN...ELSE• PROCEDURE

• Procedure Call

• RETURN

• TEMPORARY

 1.4.4. Procedure Libraries

GPSS World has a wide range of functions that can be
accessed as procedure calls.

String Procedure Library
To facilitate manipulation of the new string data types, a built-in
String Procedure library is available. It includes:

• Align - Return a copy of one string
placed in another, right justified.

• Catenate - Return a copy of two
strings combined into one.

• Copies - Create a string from
many copies of a string.

• Datatype - Return a string
denoting the data type of the
argument.

• Find - Return the offset of one
string in another.

• Left - Return a copy of a substring
starting on the left.

• Length - Return the count of
characters in a string.

• Lowercase - Return the lowercase
representation of a string.

• Place - Place one string in
another. Left justify.

• Polycatenate - Return a copy of
four strings combined into one.

• Right - Return a copy of a
substring starting on the right.

• String - Convert a data item to its
string equivalent.

• StringCompare - Return an
integer result if string comparison.

• Substring - Return a copy of a
substring of the string argument.

• Trim - Remove leading and trailing
white space.

• Uppercase - Return the
uppercase equivalent of a string.

• Value - Return the numeric
equivalent of a string.

• Word - Return a copy of one of the
words in a string.

Math Procedure Library
Common Math library routines include

• ABS - Absolute Value

• ATN - Arctangent

• COS - Cosine

• INT - Truncate

• EXP - Power of e

• LOG - Natural Logarithm

• SIN - Sine

• SQR - Square Root

• TAN - Tangent

New Transaction Query Procedures
Transaction state query procedures now include:

• QueryXNExist - determine the
existence of a Transaction.

• QueryXNParameter - retrieve the
value of a Transaction Parameter.

• QueryXNAssemblySet - retrieve
the Assembly Set of a Transaction.

• QueryXNPriority - retrieve the
priority of a Transaction.

• QueryXNM1 - retrieve the mark
time of a Transaction.

New Experiment Support Procedure
An new utility Procedure has been implemented for the support
of Experiments::

• DoCommand - Translate a
Command String in global
context and send it to a
Simulation Object

Built-in Probability Distributions
Over 20 built in probability distributions are available:

• Beta • LogLaplace

• Binomial • LogLogistic

• Discrete Uniform • LogNormal

• Exponential • Negative Binomial

• Extreme Value A • Normal

• Extreme Value B • Pareto

• Gamma • Pearson Type V

• Geometric • Pearson Type VI

• Inverse Gaussian • Poisson

• Inverse Weibull • Triangular

• Laplace • Uniform

• Logistic • Weibull

 1.4.5. High Performance
Translator

GPSS World features a new high performance model
Translator that is hundreds of times faster than its predecessor.
The largest models are Translated in no more than a few
seconds. Any errors that are detected are placed in an error
message queue so that they may be corrected quickly using
the full screen editor in the Text View of the Model Object.
Error correction is aided by automatic placement of the cursor
next to the offending lexical element in the model. The error list
is easily traversed by mouse or keystroke, and can be saved
with the Model Object.

 1.5. Compatibility

The following section is an extensive comparison between
GPSS World, and its predecessor, GPSS/PC. You should skip
this section if you have no experience with GPSS/PC.

GPSS World is compatible with GPSS/PC, and normally yields
results which are statistically indistinguishable from it. This
level of compatibility is available by simply correcting a few
differences, and running the simulations.

In addition, a higher level of compatibility is available called
GPSS/PC Compatibility Mode. In most cases, you can achieve
precise duplication of results. However, GPSS World utilizes a
new run time library. Its floating point round off differs slightly
from that used in GPSS/PC. Even so, most GPSS/PC models
can be modified slightly to achieve identical results when run
under the Commercial Version of GPSS World in GPSS/PC
Compatibility Mode. The procedure you should follow is
detailed below, after the discussion of differences between
GPSS World and GPSS/PC.

GPSS World has many differences from GPSS/PC. GPSS
World is based on the idea that a textual Model Object is built,
and/or modified, and then Translated in order to create a
Simulation Object. This differs from the GPSS/PC notions of
Program File and Simulation.

In GPSS World, the model loading operation of GPSS/PC has
been completely replaced. Instead of scanning each line, one
at a time, GPSS World has a full-screen editor and a Create
Simulation menu Command. Any errors detected during the
Translation are saved in an error message queue, so they may
be easily found and corrected. The speed of the Translator
assures that the detection/correction of errors can proceed
quickly.

GPSS World does not perform Keystroke Error Prevention, as
did GPSS/PC. Instead, GPSS World uses the model Translator
for creating the simulation. This improves the model load-time
by a factor of hundreds. However, it changes the error
detection mechanism. Now, errors are detected during
Translation, and are corrected by Selecting "Next Error" from
the Search submenu of the Main Window. The cursor then
automatically moves to the error, and an error message is
written in the status line at the bottom of the Main Window.

Perhaps the next most noticeable change from GPSS/PC is
that line numbers are no longer necessary, and in fact, they are
ignored by GPSS World. This means that the positioning of
Blocks is no longer specified by the line number of the Block,
only by its relative position in the Model File(s) given to the
Translator. Since the new INCLUDE Statement allows Model
Objects to, in effect, contain other plain text files, it is the
sequence of Block Statements read by the Translator that
dictates the position of Blocks in the simulation. Although

Blocks can no longer be inserted during a simulation, it turns
out that the Translation time is so fast, for most purposes it will
be as easy to retranslate the model when a change to the
Block structure is desired. Even so, the high level of
interactivity of "Manual Simulation" is retained. This means that
any Model Statement can be used during a simulation as an
Interactive Command.

The level of interactivity of GPSS World has been maintained.
Any Model Statement can be passed to a running simulation
for execution. In fact, PLUS Procedures can be defined, or
even redefined, on the fly. In the case of GPSS Commands,
this usually redefines an entity, or controls the running of the
simulation. In the case of a Block Statement, as in GPSS/PC, a
"Manual Simulation" Block entry is attempted by the Active
Transaction. All this is done using the Commands submenu,
after the model has been Translated.

Automatic truncations have been removed from GPSS World.
You must now explicitly use the INT() procedure, of some
other method, if you wish intermediate numeric results to be
truncated. This is true in all Expressions, even in VARIABLE
and BVARIABLE Statements. Similarly, the data type returned
by a System Numeric Attribute can now be either integer, real,
or string, depending on the SNA. Even those SNAs returning
parts per thousand do so as a real number of double precision
between 0 and 1000, inclusively. The old truncations and
integer SNAs can be enforced by running in GPSS/PC
Compatibility Mode.

The multitasking architecture of GPSS World has led to other
changes. To begin with, messages are now sent to represent
Commands or status changes. Therefore, online window
update is done via a queue of messages received from the
simulation. Similarly, most Commands received by the
Simulation Object are placed on the simulation�s Command
Queue before being executed one after the other. There are
two exceptions: HALT and SHOW, which are done immediately
when received. In addition, HALT deletes all remaining
Commands on the queue.

The remaining changes will be listed here and discussed more
fully, elsewhere in this manual.

• PLUS Statements can span any number of text
lines. Although GPSS Statements, except for
Function Followers, must reside on a single text
line, the maximum length is now 250 characters.

• Parenthesized mathematical expressions can
now be used nearly anywhere you can use an
SNA.

• System Numeric Attributes now may return
integer, real, or string values depending on the
SNA. In GPSS/PC Compatibility Mode, SNAs
return only integers, except as Function

Modifiers.

• A new System Numeric Attribute, A1, has been
created to return the Assembly Set of the Active
Transaction.

• The HELP Block has been dropped. It is replace
by the PLUS Block, which supports the inclusion
of complete Procedures in a model, and by the
Data Stream Blocks which support
communication with external files and programs.

• The MICROWINDOW Control Statement has
been replaced by the Expressions Window, which
is opened from the Window / Simulation Window
submenu of the Main Window Menu.

• The PLOT Control Statement has been replaced
by the Plot Window which is opened from the
Window / Simulation Window submenu of the
Main Window Menu.

• The END Control Statement has been replaced
by EXIT, which can terminate a Session. END is
now a keyword in the PLUS Language.

• The ANOVA Control Statement has been
replaced by the ANOVA Library Procedure.

• The EVENTS Control Statement has been
replaced by the FEC and CEC Snapshot
Windows which is opened from the Window /
Simulation Snapshot submenu of the Main
Window Menu.

• The GROUPS Control Statement has been
replaced by the Numeric and Transaction Groups
Snapshot Windows which is opened from the
Window / Simulation Window submenu of the
Main Window Menu.

• The RESULT Control Statement has been
replaced by the Stream IO Blocks which can
automatically write to a Result File.

• The WINDOW Control Statement has been
replaced by the Window submenu of the Model
Window Menu.

• The USERCHAINS Control Statement has been
replaced by the Userchain Snapshot Window
which is opened from the Window / Simulation
Snapshot submenu of the Main Window Menu.

• The ANITRACE Control Statement has been
dropped. Animation in GPSS World is provided
by Data Steams and third party postprocessors.

• The MOVE Block has been dropped. Animation
in GPSS World is provided by Data Steams and
third party postprocessors..

• The Positions Window and the POSITION.GPS
file have been dropped. Animation in GPSS
World is provided by Data Steams and third party
postprocessors.

• The @ file inclusion character has been
replaced by INCLUDE, which takes a double
quoted filespec as an operand.

• The Z1 System Numeric Attribute no longer
represents the total amount of physical memory
available. It now returns the value of the
maximum amount of memory that can be
allocated, as returned by the operating system.

• The following GPSS/PC source management
functions have been replaced by the Graphical
User Interface with full-screen editor and filing
options: DELETE, DISPLAY, DOS, EDIT,
RENUMBER, and SAVE.

• Integer, Real, or String Data types are
supported in Savevalues, Matrices, Named
Values, and Transaction Parameters. Clock
values may be integer or real. The unlimited
precision integer arithmetic of GPSS/PC has
been replaced.

• REPORT Commands always operate in NOW
mode. Operand A is no longer used, and must be
Null.

• A library of PLUS Procedures is now available
for use in PLUS Expressions. Procedures for
manipulating String data types and over 20
built-in probability distributions are supported.

• GPSS Matrix entities can now have up to 6
dimensions. Any 2 D Cross Section can be
viewed dynamically in a Matrix Window.

• Operator precedence has changed. The new
precedence is discussed in Chapter 3. If there is
any question, you should fully parenthesize
Expressions from GPSS/PC Program Files.

 1.5.2. Modifying Old GPSS/PC
Programs

This section is for GPSS/PC users who wish to migrate existing
GPSS/PC models to the GPSS World environment. It contains
a list of changes you should make to your GPSS/PC Program

Files. This will provide you with results that are not significantly
different from those obtained form GPSS/PC simulations. You
do not need GPSS/PC Compatibility Mode to achieve this level
of correspondence.

However, if you want to obtain precise duplication of results,
you must perform the procedure in the next section, as well.

There are many features provided to ensure an easy move to
the new system. All GPSS/PC users should note the small
number of enhancements which may require changes to your
existing Model Files. The other end of the spectrum is those
users who wish to precisely duplicate the GPSS/PC results in
order to establish the veracity of the model when running under
GPSS World. After that, it�s an easy matter to switch over to
the new mode of operation, including the floating point clock,
and the myriad of other features.

Line numbers are now ignored. Do not use old Program Files
that replaced GPSS/PC Blocks by line number. If you use them
as include files they will add to the size of the simulation, if you
use them as interactive Commands they will be executed one
at a time as Manual Simulation Statements.

You should make the following changes to your Program.

1. If you used Keystroke Error
Prevention of GPSS/PC to finish
keywords automatically, you must
type in the remaining characters
before Translating the model under
GPSS World.

2. Replace @ with INCLUDE.

3. Filespecs must be in double
quotes in INCLUDE.

4. Remove all REPORT
Commands.

5. Remove END Commands and
any labels, such as BEGIN,
COUNT, NORMAL, etc. that now
clash with GPSS World keywords.

6. Replace HELP Blocks with PLUS
and/or Data Stream Blocks.

7. Remove MOVE Blocks. Positions
Windows are no longer supported.

8. Fully parenthesize all
Expressions in VARIABLE,
FVARIABLE, and BVARIABLE
Statements.

It is probably safest to remove all the old run commands from

the old GPSS/PC Program File until you have tested your
modified model. Do not use line number replacement of Blocks
in the Savable Program. This no longer works.

 1.5.3. Strict Duplication of Results

Most GPSS/PC Program Files can be made to yield precisely
the same results when run under GPSS World. However,
because of differences in the rounding of real numbers in
floating point calculations, you may need to make a few
additional modifications to the GPSS/PC Program File, in
addition to the ones in the previous section. If you only need
results which will be statistically indistinguishable from those
obtained from GPSS/PC, you do not need to do the following
things using the Commercial Version of GPSS World.

1. This first step is to turn on
GPSS/PC Compatibility Mode in the
Model Settings. This causes GPSS
World to use an integer clock and to
truncate results, just as GPSS/PC
did.

CHOOSE File / Open to open the
Model Object

CHOOSE Edit / Settings
then on the first page check the
checkbox labeled GPSS/PC
Compatibility.

2. Now set the Random Number
Streams of GENERATE,
ADVANCE, and TRANSFER to
correspond to the SETTINGS.GPS
File you used with GPSS/PC. Next,
set the Random Number Stream of
Time Ties to 1.

 CHOOSE Edit / Settings

then select the Random
Numbers page. Then set the entry
fields of the Random Number
Streams for GENERATE,
ADVANCE, TRANSFER, and Time
Ties.

3. Make sure all seeds in any
RMULT Commands are less than
100,000,000.

4. Remove all dependencies on an
identifier being given a default
system value. For example,

RN$IDENTIFIER seeds a random
number stream with a distinct
system default value. This entity
specifier would need to be changed.

5. Do not call a Random Function
from a Random Function. Replace
any such statements.

6. Replace all fractions, occurring in
TRANSFER Blocks, with
parts-per-thousand integers.

7. Make sure Random GPSS
Function Entities do not allow any
Function Follower pair to be
associated with a probability of 1/n,
where n is the number of pairs. For
example, if a Function is defined by
4 points, do not allow any
probability to be .25. You can do
this by adding additional points until
1/n is a repeating fraction, or is not
associated with any of the Function
Follower Pairs. FN$SNORM and
FN$XPDIS do not have to be
changed.

A special DOS program, named PCAID.EXE, has been
provided to help you modify your GPSS/PC Program File. It will
correct line numbers and remind you if you have GPSS
FUNCTION Statements that need to be examined. You can
start this program in a DOS Window.

 1.5.4 Creating the GPSS World
Object

In either case, keep in mind that Model Objects are not simple
text files. They contain Settings, Bookmarks, and Result Lists
which cannot be read by external word processing programs.
For this reason, when you have finished modifying your
GPSS/PC Program File, you should use a word processing
program to copy it to the Windows clipboard. Then, in GPSS
World, open a new Model Object

 Select File / New
and paste the text into place using

 Select Edit / Paste
This process creates a valid GPSS World Model Object based
on your original model. You should now be able to get
corresponding results for simulations run under GPSS/PC and
GPSS World.

 Chapter 2 - Operating GPSS World
This chapter contains a discussion of the organization of the features available in
GPSS World and how to operate them. The first part goes through the installation
procedure and the second part discusses the normal operation of an installed
GPSS World package. Specific windows are discussed only briefly. For a more
thorough treatment of each window type please turn to Chapter 5.

 2.1. Installation
Normal installation of GPSS World places a copy of the executable files, the help
file, and the GPSS Sample Models into folders on your computer. Online HTML
Documentation, such as this Reference Manual and the GPSS World Tutorial
Manual reside on GPSS World compact disks, but are not included in the
installation and must be downloaded and/or copied separately.

2.1.1. Overview

Before you begin, we recommend that you remove any older version of the same
GPSS World Product. Do this though the Add / Remove folder in the Control Panel
of your system. You can have distinct versions of GPSS World installed at the
same time. For example, you may install the Student Version of GPSS World even
if you already have the Commercial Version installed.

After any old installation has been removed, you are ready to install GPSS World.
If you are installing from a CD into a system with the autorun capability enabled,
simply inserting the CD will start the Setup program. Otherwise, open the CD icon
in your My Computer folder and double click on the Setup icon.

It’s even easier if you are installing from a World.exe or Student.exe self-extracting
file. Just double click on it’s icon and the GPSS World setup program will begin.

 2.1.2. Installation Requirements

Configuration Requirements
1. The use of the GPSS World Package requires an IBM compatible computer
running a 32 bit Windows compatible operating system.

2. We recommend an Intel Pentium III CPU, or better.

3. Floating point math coprocessor capabilities are strongly recommended, but not
required. Most CPU chips marketed today have floating point processors.

4. A mouse is strongly recommended. Although simulations can be built and run
without a mouse, some optional operations require the use of one.

5. At least 32 megabytes of RAM memory is recommended.

6. At least 10 megabytes of hard disk space is required for installation of all
components. More is recommended for holding Model Files. In addition, adequate
swap space must be available to the Windows Virtual Memory Manager.

7. CD drive is required only if installation is from CD medium.

8. Except for the Student Version of GPSS World, a numeric user key is required
for the operation of the software. This numeric key must be obtained after the basic
installation process has completed.

Version Restrictions
1. The Student Version of GPSS World is limited to models containing no more
than 150 GPSS Block Entities.

2. The Student Version cannot open simulations saved by other GPSS World
versions.

3. Only the Commercial Version of GPSS World includes the Advanced Entity
Snapshot Windows and the GPSS/PC Compatibility Mode.

 2.1.3. File Folders/Directories

The operation of GPSS World results in the creation of several different files on
your computer. Files for notices, registration information, and user keys (not used
by Student Version) are created in the GPSS World module directory (i.e. where
the GPSSW.EXE file resides). Other file placements are controlled by you when
you open and save GPSS Wolrd Objects. You might want to use a separate
hierarchical folder for each project and/or model you are working on. Just as with
GPSS World Objects, Data Streams can be directed to specific directories in your
GPSS Open Statement. If you specify only a filename and not a path, the directory
containing your Simulation Object is used.

Although you can choose otherwise, the GPSS World setup program normally
installs the software in the Minuteman Software folder in your computer’s Program
Files folder. The Commercial Version of GPSS World will be placed in a folder
named Commercial GPSS World in the Minuteman Software folder. The Samples
folder, which holds all the Sample Models, is then placed in that. Files pertaining to
the operation of GPSS World are normally placed in the "module directory", i.e. the
one containing the GPSS World executable files. Other sharable executables may
be place in one of your computer’s system directories if they are not already
present.

Unless you direct otherwise in the File / Save As menu item, Simulation Objects
will be placed with their parent Model Objects, and Report Objects will be place
with their parent Simulation Objects. Similarly, the search for Text Objects begins
with the Model Object’s folder for INCLUDE files, or in the Simulation Object’s
folder for Data Stream Text Objects.

When you begin to build your own models you should create directories which
make sense with respect to the projects you are working on. For example, if you
are investigating two very different inventory control strategies that need two very
different models to simulate them, you may find advantages in placing them in
separate directories. On the other hand, variants on a theme may best be
organized in subfolders with the same parent.

 2.1.4. The Installation Procedure

The use of all GPSS World Family products is governed by the Minutemen
Software Program License Agreement, a copy of which prefaces this manual. In
addition, a "Read Me First" file may be part of the installed file set. If so, it contains
timely information concerning procedures and the state of the software.

Once you begin the installation, the GPSS World setup program directs you
through the process. After a short initialization, the first GPSS World Setup
Window appears.

Figure 2�1. GPSS World Setup Window 1

After reading the information in this window

 CLICK ON Next

Figure 2�2. GPSS World Setup Window 2

The MINUTEMAN Software Program License Window appears. If you agree to it,

 CLICK ON Yes

Figure 2�3. GPSS World Setup Window 3

When your name and company is correct in window 3,

 CLICK ON Next

Figure 2�4. GPSS World Setup Window 4

Window 4 lets you select the target directory for the installation. The Browse button
is available to navigate to a new target folder.

When the target directory is correct,

 CLICK ON Next

Figure 2�5. GPSS World Setup Window 5

Setup Window 5 lets you select a program group in your start menu for placement
of the GPSS World menu command. A default is provided. When it is correct,

 CLICK ON Next

Figure 2�6. GPSS World Setup Window 6

Setup Window 6 summarizes the choices you have made and allows you to go
back to previous windows in case you want to make any last minute changes.
When you are ready to finish up the installation,

 CLICK ON Next
Now you will see a short series of message boxes giving status as the GPSS
World files are being copied onto your computer. Then the last installation window
appears.

Figure 2�7. GPSS World Setup Window 7

Setup Window 7 is the last of the installation windows. It allows you to immediately
invoke GPSS World after the installation completes. You can use this to begin
work in GPSS World now, or you can always do so at a later time by using your
Start menu.

Unless you are using the Student Version of GPSS World, you will need to register
the software before you can begin working with models. Now is a good time to get
that step out of the way. To perform the registration step go ahead and check the
box which invokes the GPSS World program.

Then,

 CLICK ON Finish

 2.1.5. Software Registration

If you are using the Student Version of GPSS World, skip on to Section 2.2, The
GPSS World Environment. Student users do not need to register. Other users
must acquire a numeric key to unlock the software. If you have already registered
the software, and your key is valid for the newly installed version, you can avoid
this step by copying the old GPSSW.key and GPSSW.rgs files into the new GPSS
World module directory.

Begin the Registration process by starting GPSS World. You can select from the
Start / Programs menu. After GPSS World begins, if you do not see the
Registration Window, below, you can open it from the GPSS World Main Menu. To
do so,

 SELECT File / Register Software

Figure 2�8. The GPSS World Registration Window

The purpose of the Registration Window is to create an encrypted message you
can send to Minuteman Software in order to obtain a numeric user key. If your
method of payment is by credit card, this information is safely inserted into the
encrypted message.

The Registration Window gives you the option of having GPSS World send its own
registration message by email, or of placing the whole message on the clipboard
so you can use your own mailing procedure. In either case you should send the
registration ciphertext to registration@minutmensoftware.com. If your registration
information and payment are in order, your numeric key will be sent via email to
the address you entered into the Registration Window.

Once you have successfully generated a Registration Message you should
immediately exit from the GPSS World Environment.

 SELECT File / Exit

The next time you start GPSS World you will be given an opportunity to enter the
16 digit numeric key you received after you sent the software registration message.

The next time you start GPSS World, it will ask for your numeric

Figure 2�9. The GPSS World Key Entry Window

Enter you numeric key and

 CLICK OK

This is the only time you will have to deal with a numeric key, unless you install the
software on another computer, or upgrade to a new Version of GPSS World with
additional features. Software updates and bug fixes will not require a new key.

Next appears the Notices Reminder Window.

Figure 2�10. The Notices Reminder Window

This Window appears when a long period has elapsed since you downloaded
notices from the Minuteman Software Web site. If you click Download, GPSS
World opens the "Download Notices" Page on the Internet. You can go there
anytime you are connected to the Internet by

 SELECT File / Internet / Download Notices
When the built-in browser opens the Download Notices page, just ckick on
Download Notices and place the GPSSW.ntc file in the same folder where you
installed your GPSS World exe file. Just replace the existing GPSSW.ntc file.

In any case, the Notices window itself appears with current information on updates,
and other useful information. You can disable the Notices Window by clicking on a
checkbox in its lower left corner, and you can view it at any time using the View /
Notices menu command.

Figure 2�11. The GPSS World Notices Window

That ends the preliminaries. When you close the Notices Window you should see a
fully operational GPSS World Main Window,

 2.2. The GPSS World Environment

 2.2.1. The Main Window

The GPSS World simulation environment is the collection of all the actions
available to you when you open a Session. Everything is controlled from the GPSS
World Main Window, an example of which is shown next.

Figure 2_12. The GPSS World Main Window

The Main Window has several components. The Title bar is at the very top. Below
that is the Menu, and below that the Toolbar. Most of the action occurs in the large
empty client area, and at the very bottom is a Status line which is divided into three
parts. The left pane of the Status Line shows Command Prompts that give you
more information on the menu items you are about to use. The middle pane of the
Status Line shows status and error messages send from the GPSS World Objects
you are interacting with. Finally, there is a small pane at the right side of the Status
Line that is used to display the changing System Clock of running simulations. You
can turn this on or off for each Simulation Object by using the View / Show Clock
menu command.

 2.2.2 A Quick Overview

Using the menu of the Main Window, you can create and manipulate the Objects of
GPSS World: Model, Simulation, Report, and Text Objects. Each of these will have
one or more views that can be opened as child windows in the GPSS World Main
Window.

A typical project begins with the creation and modification of a Model Object. A
Model is just a list of Model Statements, defined in Chapter 7.

Each time you select Command / Create Simulation or Command / Retranslate
from the Main Window’s Menu, GPSS World Translates the Model Statements into
an executable Simulation Object. If errors need to be corrected, a single keystroke
(representing Search / Next Error) cycles through the circular error list, setting
the cursor in the Text View of the Model, just before each error.

Once a Simulation Object is successfully Created, you can send any Model
Statement to it to change the structure or state of the simulation. Normally, you will
send Commands, such as START, but you can redefine entities or PLUS
Procedures, as well.

You can send Model Statements to existing Simulation Objects using one of
several methods. First, some of the most common commands are listed in the
Command menu of the Main Window. Most have keyboard accelerators as well.

Second, the Custom Command dialog is invoked through Command / Custom in

the Main Window’s menu. Here you can type any Model Statement -- even a PLUS
Procedure -- and send it to an existing Simulation Object.

Third, you can load the set of function keys with you own choice of Commands.
This is done through the Edit / Settings menu item in the Main Window. Thereafter,
pressing the function key sends the Command to the Simulation Object.

Complex Procedures and lengthy Command lists can be sent using an INCLUDE
Statement associated with a previously created Text Object. You can enter
INCLUDE as a custom command (Command / Custom) or load it into a function
key. After an INCLUDE Statement is loaded into a function key (Edit / Settings),
a single keystroke sends the whole lot to the Simulation Object.

During the debugging phase of your project, be sure to make use of all the
visualization tools at your disposal. There are 10 dynamic windows that let you
view the running simulation. Most require no effort on your part except to open
them. Some add point and click debugging facilities for manipulating stop
conditions and for controlling the advance of the simulation.

Among the dynamic windows are the Plot and Expressions Windows which allow
you to visualize the evaluation of any PLUS expression as it changes dynamically.
The Tables Window can also be very enlightening, visualizing the convergence of
frequency distributions.

In addition, the Commercial Version of GPSS World has 6 more advanced
snapshot windows. These are intended for simulation professionals who need
detailed state information from within the simulation.

GPSS World is strong in the extensiveness of its Standard Reports. Unless you
choose otherwise, when a Simulation Object completes a simulation, it creates a
Report Object containing a Standard Report describing the final state and/or
results of the simulation. You can modify the content of Standard Reports by
Editing the Settings of the Simulation Object. Interim reports can often be used
effectively during the debugging/testing process. While interacting with a
Simulation Object, at any time you can command it to create a Report Object
describing all internal GPSS Entities.

You can extract just about any information you desire from a simulation by using
Data Streams. These are associated with a set of GPSS Blocks (OPEN, CLOSE,
READ, WRITE, SEEK) that allow you to trace and collect derived information from
the simulation and write them to plain text files. Such traces can be used to drive
photo-realistic animations, as well. Within GPSS World text files used in
association with Data Streams are represented as Text Objects.

After the Model is thoroughly tested, it is time to define an Experiment to quantify
results and test their statistical significance. GPSS World excels in this regard. Its
built-in programming language, PLUS, supports a special kind of PROCEDURE
statement, called, naturally, the EXPERIMENT Statement. Within an experiment,
you can run and analyze complex experiments unattended. You can even get an
automatic Analysis of Variance of the results. These features are developed in the
OneWay.gps Sample Model, and further in Lesson 19 of the GPSS World Tutorial
Manual.

Getting Help
GPSS World provides several Help aids to keep you on track. The most immediate
is the Online Help feature. Online Help is available throughout GPSS World. The l
Function Key will bring up a Help Panel for the active window or dialog. In
additional, if you press the l key when a menu item is highlighted, a context
sensitive Help Panel will appear with information pertaining to that menu item.
Within the Text View of an object, select a word and press the l key to go to the
keyword’s description in the GPSS World Language reference section of the Help
file. Finally, online Help can be initiated by a Help button in some dialog boxes.

The Internet offers more help on GPSS World. HTML Online documentation can
be found at the Minuteman Software Internet Web site, minutemansoftware.com or

the GPSS World Web site GPSS.net. These sites offer many other support options
as well. You can get to them by

 SELECT File / Internet / GPSS Web Page
in the Main Window’s menu.

These sites contain other useful resources and ways to communicate with other
users and consultants. The Student Version of GPSS World can be downloaded
from the Web site free of charge.

The official documentation of GPSS World includes this manual, the GPSS World
Reference Manual, and the GPSS World Tutorial Manual. Both are available on
the Web site and in hardcopy, as well.

Don’t overlook the extensive set of sample models. Many professionals have found
that one of the fastest ways to acquire simulation skills is to examine the work of
others. The sample models includes a wide variety of applications from traffic to
communications.

The Main Menu
Most of the action begins at the menu of the Main Window. Each of the top level
menus

File Edit Search View Window Help
have submenu items, most of which are enabled only when appropriate. When
disabled, menu commands are gray and cannot be activated.

Let’s look at each top level menu.

The File Menu
The leftmost menu id the File Menu. It is used to open and save Objects, print
views of objects, access the internet to download notices and Web pages, and to
register the software for nonstudent users.

The Edit Menu
The top items in the Edit Menu are for working with text. All GPSS World Objects
have a Text View which can be modified using these menu commands. Undo is a
one level backup facility for removing the effects of the last Text View interaction.
Cut, Copy and Paste move selections to and from the Windows clipboard. Insert
Line and Delete Line operate at the cursor location in a Text View. The Font
command opens a dialog allowing customization of the view.

The remaining three items allow you to modify attributes of GPSS World Objects.
Expression Window and Plot Window open a dialog which allow you to change
the contents of an existing dynamic Expression Window or Plot Window. Settings
allows you to view and modify the Settings of a Model, Simulation, or Report
Object. These attributes are discussed in detail below.

The Search Menu
The Search Menu helps you navigate around Text Views.

The first item, Find / Replace, opens a dialog that lets you move to the next
occurrence in specific text, and optionally replace it. A Replace All option is
available, as well.

The Go To Line item will jump to a line number in the text. This is useful at times
when an error message mentions a line number.

The next set of items are for Bookmarks. They let you place invisible marks which
get saved with the object. They form a circular list that you can traverse via the

appropriate menu commands or keystrokes. Next Bookmark jumps to that position
in the text where the next Bookmark in the list was entered. Mark enters a
Bookmark at the current cursor position. Unmark removes the current Bookmark.
Unmark All removes all Bookmarks, Select to Bookmark selects text from the
current cursor position to the current Bookmark position.

The last two items in the Search menu deal with Translation error messages.
When you try to Create a Simulation Object from a Model which contains syntax
errors, a circular list of error messages and locations is built in the Model Object,
replacing any that was there before. This list becomes part of the Model Object
and is saved with it. To traverse the list in either direction use the Next Error and
Previous Error menu commands to display the error message in the Status Line at
the bottom of the Main Window. At the same time the cursor is place just before
the error in the Text View so you can correct it. Keyboard accelerators let you
navigate the list easily from the keyboard.

The View Menu
The View menu includes menu commands for controlling what is shown in a few of
the windows. You can hide or show the Main Window’s Toolbar by toggling the first
item Toolbar. The Second Item Entity Details lets you change the format of some
of the dynamic Simulation Windows to show more or less detail onscreen. The last
menu Item Show Clock toggles a switch in the current Simulation Object. If this
switch is on in the current Simulation Object, changes in the System Clock of the
simulation are displayed in the lower right of the Status Line of the Main Window.
This is a handy way to assure yourself that a simulation is indeed running, but it
slows down the simulation somewhat.

The Command Menu
The Command Menu is concerned with creating and manipulating Simulation
Objects. The Create Simulation menu command invokes the high performance
Translator to create a Simulation Object based on the Model Statement in an
existing Model Object. Normally you will encounter errors that must be corrected
(see Search / Next Error, above). The Retranslate menu command is available to
perform the Translation again when errors have been corrected.

Next, Repeat Last Command is an easy way to do some action again on behalf of
the same Object.

The remaining menu commands represent formal GPSS Commands. Most have
accelerator keys for easy use and most can be loaded into a function key, as well.
These menu commands are disabled unless the current Simulation Object is ready
for them.

The Window Menu
The top two item in the Window Menu can be used to tidy up when many windows
are open in the Client Area of the Main Window. Tile will show a small version of
all windows and Cascade will stack them in a handy stack where all title bars can
be seen.

The next two items have submenus themselves. They are used to open Windows
and Snapshots on existing Simulation Objects. These individual windows are
discussed below. They are disabled until the current Simulation Object is ready to
oblige.

The Help Menu
The Help menu can be used to start the Online Help system. In addition, the
bottom item About GPSS World displays software version and other information.

 2.2.3. Settings

Settings are collections of values that form a common thread throughout most of
the GPSS World Objects. They are used to control the simulation, the appearance
of reports, and the contents of windows and loadable function keys.

Settings are inherited. When you Create a Simulation Object, it inherits its initial
Settings from its parent Model Object. So if you want to set values for all the
simulations in your project, you should set them in the Model Object.

Similarly, Report Objects inherit their settings from the Simulation Object that
created them. In this way, the Report contains a record of the Settings in effect
when the simulation was run.

Only Text Objects do not contain a copy of Settings. They are mere
representations of plaintext files. This is the reason that are the only GPSS World
Objects which can be opened by external text editors. The other Objects contain
Settings, Bookmarks, and in the case of Model Objects, Result Lists which are
saved with the object and confound external word processors. If you need to, you
can always transfer just the text to and from these programs using the Windows
clipboard.

Settings are viewed or modified by selecting

 Edit / Settings
after clicking on the GPSS World Object to be changed. This presents the Settings
Notebook for that Object, with 5 tabbed pages.

The Simulation Page

Figure 2�13. The Simulation Page of the Settings Notebook

The Simulation Page contains several values that you can change which affects
the limits and behavior of running simulation.

The Poll Count Setting is the number of Block entries to be attempted before
checking for any kind of interruption, such as a Command from the user.

If you use a lot of GPSS Transaction Parameters in your model, you can speed it
up a little by putting them into a Parameter Block. To do this enter the number of
Parameters to be blocked into the Parameter Block Size field, and the Parameter
number of the first Parameter in the block in the Parameter Block First field. If
you are using Names instead of numbers to refer to these Parameters, you may
need to control the values given to Parameter Names by using EQU Statements.

The Max Evaluation Depth is used to protect against circular references in sets of
PLUS Procedures. If your simulation is highly nested without circular references,
you can increase this value to accommodate it.

The Stack Size is used to allocate stack space for nested PLUS Procedures and
Library Procedures. You can save space by decreasing this value, but if you get a
Stack Overflow Error Stop during a simulation, you may have to increase it.

The Integration Tolerance field is used by the continuous simulation phase. If you
loosing this tolerance by making it larger, your integrations will be faster but may
lose some accuracy.

The Max Memory Request places a limit on the acquisition of RAM memory for
structures such as tables and matrices. Such a limit is useful to catch errors, but
you can increase it as necessary. If your RAM memory demands exceed that
available in your computer, your operating system’s virtual memory manager will
have to increase its disk activity and perhaps its disk swap space usage
significantly.

The three checkboxes at the bottom of the page control GPSS/PC Compatibility,
which is available only in the Commercial Version, and how Data Stream errors are
to be handled in the simulation.

CHECK the GPSS/PC Compatibility checkbox to operate the simulation in
GPSS/PC Compatibility mode as described above in Section 1.5. This option
automatically invokes the Single Calenday Day option, described next.

CHECK the Single Calendar Day checkbox to cause simulations to use a
single FEC time segment list instead of multiple ones. In certain simulations this
may be a little faster.

CHECK the I/O Stream Error Stops checkbox if you want any errors other
than "File Not Found" and "End of File" encountered by Data Streams in a
simulation to HALT the simulation. If this box is unchecked you can handle such
errors yourself within the simulation. See Section 4.16 for more information on
Data Streams.

The Reports Page

Figure 2�14. The Reports Page of the Settings Notebook

The Reports Page is concerned primarily with the appearance of Reports and
Plots.

CHECK the Create Standard Reports checkbox to enable the creation of
Standard Reports automatically when every simulation ends. The REPORT
Command is still available even if this is left unchecked.

CHECK the In Windows checkbox to open a Text View of each Report Object
instead of just saving them in a file. This checkbox depends on the previous
checkbox being checked,

The Standard Report Options groupbox contains the itemized GPSS Entity
subreports to be included in each Standard Report. Check those to be included.

Check the Six Places checkbox to set the printed precision of fractional real
values to 6 decimal places instead of 3 in Reports and Status Messages.

Check the Scientific checkbox to use the mantissa-exponent representation of
extreme numbers in reports and in Data Streams.

The Saved Plot Points value tells GPSS World how much space to allocate to a
circular buffer for recent Plot points. If you scroll or print a Plot Window, theses
values are used to rebuild the plot. If you don’t have enough, the leftmost segment
of the scrolled or printed plot will be missing. A value too large can waste virtual
memory.

Check the Suppress Page Numbers checkbox to prevent GPSS World from
inserting page number headers when printing the object’s Text View.

Check the Silence checkbox if you errors to be reported silently, with no audible
beep.

Check the Silence checkbox if you errors to be reported silently, with no
audible beep.

The Random Numbers Page

Figure 2�15. The Random Numbers Page of the Settings Notebook

The Random Numbers Page lets you control the internal Random Number
Streams of the simulation and the external numbering of child objects.

To keep naming of objects unique, GPSS World adds a sequence number to the
names of newly created child objects. The number to be used for the next
sequence number is kept here, in the Settings of the parent object. To change it
just modify the Child Object Sequence Number field.

The Random Number Streams groupbox contains the remaining settings on the
page. They determine which GPSS Random Number Stream is to be used for the
purpose of resolving Time Ties, time randomization in GENERATE and ADVANCE
Blocks, and Next Block in TRANSFER Blocks.

The Time Ties entry field allows you to specify that when imminent events occur
at the same time, the next event is to be selected randomly. To do so, place the
Entity Number of the Random Number Generator to be used in the Time Ties
entry field. If you use a value of 0, time ties will not be randomized. A fuzz value of
one part per billion is used in the equality criterion for real time values.

The GENERATE Blocks entry field allows you to specify which Random
Number Generator is to be used when a GENERATE Block calculates an
interarrival time from Operands A and B. If you specify a nonpositive number,
Random Number Generator number 1 is used.

The ADVANCE Blocks entry field allows you to specify which Random Number
Generator is to be used when an ADVANCE Block calculates a delay time from
Operands A and B. If you specify a nonpositive number, Random Number
Generator number 1 is used.

The TRANSFER Blocks entry field allows you to specify which Random
Number Generator is to be used when a TRANSFER Block selects a probabilistic
destination Block. If you specify a nonpositive number, Random Number Generator
number 1 is used.

If you set the Time Ties value to 0, you will effectively turn off the randomization of
time ties within the simulation. Otherwise, random Number Streams must be
specified by a strictly positive integer.

The Function Keys Page

Figure 2�16. The Function Keys Page of the Settings Notebook

Enter GPSS Statements into the fields on this page to load them into Function
Keys.

When a Simulation Object is selected, i.e. has the input focus, all you have to do to
send the loaded GPSS Statement is to press the Function Key. Using an
INCLUDE Statement permits you to send a Statement list of any complexity,
including PLUS Procedure and Experiment definitions.

The Expressions Page

Figure 2�17. The Expressions Page of the Settings Notebook

When you open an Expressions Window or a Plot Window on a Simulation Object,
you must specify the expression to be watched as well as a name to be used as a
label. This page allows you to save complex expressions with the Simulation
Object. Then, when you open a Window using the expression, you can select it
from a list instead of having to retype it.

Both the Expression Window and the Plot Window give you a chance to Memorize
Expressions. You can do this by

 SELECT Edit / Expressions Window
and

 SELECT Edit / Plot Window
And then selecting the expression and

 CLICK ON Memorize
Alternately, you can type the label and expression into this page of the Settings
Notebook. The effect is the same. You will now be able to bring back the labeled
expression simply by selecting it.

 2.3. Controlling a Session
Normal installation of GPSS World places a line in your system’s Start / Programs
Menu that you click on to start the program. Alternately, you can create a shortcut
to GPSS World and place it on the Desktop, or anywhere you like. Simply drag the
GPSS World icon from the Start / Programs menu.

When you run GPSS World the first time it registers the file types and extensions
of GPSS World with the Windows operating system. This allows Windows to
associate GPSS World with any of its Object files. Thereafter you can double click
on any of the file icons to start a GPSS World Session.

 2.3.1. Using the Main Window

Once you have started a Session you can control it using your mouse and the
keyboard. You can choose menu items by clicking with your mouse, by using
menu mnemonic keys, and by using accelerators keys. Many interactions require
you to type information using the keyboard, and the set of Functions Keys on your
keyboard can be loaded with any Commands you choose. As described in the
previous section, you Edit the Settings of an object in order to load Commands into
the Function Keys.

Before you begin, you should familiarize yourself with the Main Menu. A quick
overview is presented above, in Section 2.2.2. Many of the Main Menu items are
disabled and appear gray until they can be used. As you open and create GPSS
World Objects, the valid menu commands will become enabled as appropriate.

Using The Main Menu
Although all the GPSS World Objects have small menus on their own windows,
most actions start in the Main Menu. All menus are used in a similar fashion. Some
menus sequences result in the creation of a Dialog Window containing several
controls such as buttons and entry fields. Entry fields normally require you to use
the keyboard to type in additional information.

To initiate the menu actions, you have three choices. First, you can simply use the
mouse to click on the succession of menu items. Second you can press the a key
to activate the menu, and then press the underlined (i.e. the mnemonic) letter in
each menu item, in sequence. Third, if the lowest level menu item has an
accelerator key listed to the right of the item name in the menu, you can simply
press that combination of keys to begin the action.

The Accelerator Keys
Accelerator keys are key combinations that immediately enter a menu command
into GPSS World. Usually, they are listed just to the right of the menu item they
effect. They are enabled only when their associated menu item is. To activate an
accelerator key, hold down all keys in the combination except the last, then press
the last key, then release all keys.

GPSS World Hot Keys
Hot keys are quick ways to send GPSS World Commands to a Simulation Object.
They are:

b+a+S - Create Simulation

b+a+R - Retranslate

b+a+L - Repeat Last Command

b+a+C - CONTINUE

b+a+H - HALT

b+a+1 - STEP 1

Text View Navigation Keys
Navigation Keys let you jump to specic locations in a Text View. They are:

b+a+B - Next Bookmark

b+a+G - Go To Line

b+a+N - Next Error

b+a+P - Previous Error

b+a+F - Find / Replace

Text Editing Accelerators
Editing is faster using Text Edit Accelerators instead of menu selection. These
keys are:

b+Z - Insert Line

b+D - Delete Line

b+I - Undo

b+C - Copy to Clipboard

b+X - Cut to Clipboard

b+V - Paste from Clipboard

also,

b+h - Copy to Clipboard

j+c - Cut to Clipboard

j+h - Paste from Clipboard

General Accelerators
There are several other general purpose keys. They are:

b+O - File Open

b+S - File Save

b+P - File Print

a+q - Next Pane

j+q - Previous Pane

Online Help

The l key opens the GPSS World Help System any time it is pressed. You can then explore
the contents and index of the "Windows Help" form of the GPSS World Reference Manual.

In addition, if a menu item or control is selected, l will open context sensitive help on that
topic. Or, if the cursor is embedded in a GPSS World keyword, such as a Command Name,

in a Text View, if you press the l key, you will open the Reference manual's page on that
topic.

Using Text Views
The Text View of all GPSS World Objects have text editing capabilities. You can
enter text into a Text View by opening a file, by typing, or by pasting from the
clipboard. Text can be modified in a variety of ways.

There are two place marking indicators that you can use when a Text View has the
input focus. In a Text View, the mouse pointer is the I-beam icon that travels as
you move the mouse. The cursor, or insertion point, is the flashing vertical line in
the text window that marks the text insertion point. Text you type is placed at the
insertion point indicated by the cursor.

The editing operations available are:

Move the cursor to the position of the mouse pointer by
clicking mouse button 1.

Move the cursor by arrow keys in the
keypad.

Move the cursor and scroll using the {
and } keys.

Move the cursor to the beginning and end of a text line
by pressing g and d , respectively.

Scroll using the scroll bars of the Text
Window.

Break a text line with e or f .

Delete selected text with c .

Undo last edit with Edit / Undo .

Delete line with cursor with Edit /
Delete Line
Insert new line after cursored line with
Edit / Insert Line .

Selection operations include

Select word by double click on button 1.

Swipe select by click and hold button 1, move mouse,
release button 1.

Extended select by j + click mouse button 1 to select
from cursor to mouse pointer.

Clipboard operations include

• Cut selected text by Edit / Cut. Delete text and
place copy in clipboard. You may also use the key
combination b + X.

• Copy selected text by Edit / Copy. Copy text to
clipboard. You may also use the key combination b +
C.

• Paste to cursor by Edit / Paste . Insert a copy of
text from clipboard. You may also use the key
combination b + V.

Other operations using keyboard accelerators are described above.

You can change the font of text in a Text View. First select the text, then

CHOOSE Edit / Font

This will open the Font Dialog, where you can specify typeface, size, and character
stype for the selected text. GPSS World uses Courier as the default font. It has the
advantage of being a monospaced font with uniform character widths. This has the
advantage of easy column alignment in GPSS Statements.

 2.3.2. Building Models

The physical process of model development starts with the creation of a Model
Object which contain the Model Statements written by you. Model Statements are
defined in Chapters 6, 7, and 8 of this manual. Often it’s easiest to begin building a
simulation by modifying an existing model. The Samples folder is rich source of
small GPSS World Model Objects.

Model Statements can exist in additional Text Objects as well, permitting you to
share code across projects. Athough there’s only one Model Object in a simulation,
there can be many Text Objects. These are connected to the Model Object with
INCLUDE Statements, which take the name of the Text Object file as an argument.

Model development begins by opening a Text View of the Model Object. A
complete set of text editing operations are available for modifying and adding
Model Statements.

A model must be Translated in order to Create a Simulation Object. The
Translation is started via the Command / Create Simulation item in the main
menu of the Model Window. The Translator determines if there are syntax errors in
the model. If so, a circular queue of error messages is created so that the errors
can be found and corrected easily. If no errors are found, the resulting simulation
automatically sent to the Simulation Object, replacing any that already existed.
When the Simulation Object receives a simulation, it immediately performs all
embedded Commands in the order encountered by the Translator.

INCLUDE Commands
You can use an INCLUDE Command anywhere a sequence of Model Statements
can be used. Normally, they are used in Model Objects to incorporate statements
from one or more Text Objects. INCLUDE Statements can be nested to a depth of
5, but they cannot be used inside a PLUS Procedure.

The syntax of the INCLUDE Command is:

INCLUDE "FileSpec"

Where you replace the italicized word FileSpec with your file specification and
enclose it in double quotes. The default directory is that of the Model Object.

INCLUDE Commands have other uses, as well. You can type an INCLUDE
Command as a Custom Interactive Command. This cause a whole file of Model
Statements to be Translated and sent to the simulation.

An INCLUDE Command can be loaded into a function key, just like any other
GPSS Command. In this manner a single keystroke can initiate a complex
Command File or PLUS Procedure redefinition.

Before you use a file in an INCLUDE Command, you should Translate it by itself to
remove syntax errors. To do so, copy its Model Statements to the clipboard, open
a new temporary Model Object, paste into it from the clipboard, and Translate it
using Command / Create Simulation. This allows you to correct any Syntax
Errors before combining the Text Object into a more complicated model.

Translating Models
GPSS World features a new high performance Model Translator that is hundreds of times
faster than its predecessor. The largest models are Translated in no more than a few
seconds. Any errors that are detected are placed in a circular queue so that they may be
corrected using the full screen editor.

Simulations are Translated models. When you Translate a model by selecting
Command / Create Simulation, the GPSS World Translator checks for
syntax errors, creates a simulation, and sends it to a newly created Simulation
Object. If successful, Translation activates all the Interactive Commands and Simulation
Windows, so that the state of the newly created simulation can be monitored and
controlled. After that, you can send any Model Statement to the existing simulation
for processing.

When the Translator detects one or more errors in the model, it creates a circular
list of error messages that can be accessed from the Model Object. You can
traverse the error list quickly using the Search / Next Error or Search /
Previous Error menu commands. Both have keyboard mnemonics and
accelerators. Each stop in the list places the error message in the Status Line of
the Main Window and places the insertion point in the Model Text View just before
the syntactical element that caused the error. It’s then a simple matter to correct
each error and move to the next.

If an error the cursor is placed just after the character under the scan when the
error was detected, and the error message is displayed in the Status Line. You use
the text editor to correct each error, and then Translate the corrected model.

If an error occurs in an INCLUDEd Text Object, and you cannot find it easily, you
can paste those statements into a new temporary Model Object and Translate it by
itself.

Blocks are placed in the simulation in the same order as they were encountered by
the Translator. Block Statements sent interactively to an existing simulation cause
a temporary Block to be created and immediately destroyed after the Active
Transaction attempts to enter it. This mode is called Manual Simulation.

Commands are accumulated in an ordered list which is sent to the Simulation
Object with the simulation. The list is scanned for Immediate Commands (SHOW,
HALT, and CONDUCT), and the remainder are placed on the simulation�s
Command Queue and executed one after the other. Command lists sent
interactively to an existing simulation are treated the same way.

Dynamic simulation windows (not Snapshots) are automatically refreshed when
you Translate a model to ensure that the view is current. If an entity can no longer
be found, say, in a Table Window, the Window will be closed automatically.

Controlling Simulations
GPSS Commands are used to control the running of simulations. They are
discussed in detail in Chapter 6. They may be embedded in a model or they may
be sent as Interactive Statements.

Any Model Statement may be sent to an existing simulation. Such statements are
called Interactive Statements. You can control and view running simulations very
closely with the operations that are available. To do so, use the Command menu in
the Main Window. If the Command you need is not listed, select Command /
Custom and type it into the entry field, and select OK. This action Translates the
Command and sends it to the simulation. The Command menu is disabled until
there is a simulation to receive interactions.

You may use GPSS Block Statements and PLUS Procedure definitions as
Interactive Commands. Blocks cause the Active Transaction to enter a temporary
Block, and Procedure Statements register a user created PLUS Procedure,
replacing any of that name that may already exist.

Interactions are logged in the Journal View of the Simulation Object.

Running
Normally, a START Command is used to begin a simulation. It could be entered
interactively or could be part of the Model Object. The START Statement specifies
the Termination Count, which is an important state variable of the simulation. The
Termination Count must be decremented to zero for the simulation to end. Any
TERMINATE Statement in the simulation can decrement this count.

When the Simulation Object executes a START Command, Transactions will begin
to circulate in the simulation. Normally, the simulation will end by itself and will
produce a Standard Report when either the termination count reaches zero. If an
error stop occurs, no report is written. Reporting options can be changes in the
Settings of the Simulation Object. These are described above in Section 2.2.3.

Multiple simulations can be run unattended by using RESET, CLEAR, and START
in a sequence of Commands. These are commonly used in PLUS Experiments,
which can control and analyze extensive sets of simulation runs. PLUS
Experiments are discussed in this manual in Section 8.2.4 , and in Lesson 19 of
The GPSS World Tutorial Manual.

Stopping a Simulation

You may stop a running simulation in several ways.

• First, you can interrupt a simulation by sending a HALT Command.
HALT can be asserted by the b+a+H Hot Key, a Function Key, an
Interactive Command from the Command menu, or as part of a
Command File.

• Second, you can enter one or more stop conditions with the STOP
Command, before you START or CONTINUE the simulation. When
the simulation stops, previous stop conditions are not removed. If you
CONTINUE a simulation after a stop condition was found, the original
condition which caused the simulation to stop is ignored to allow the
stopped Transaction to proceed. STOP conditions can be controlled
by "Point and Shoot" operations in the Debug Toolbar using only the
mouse. This is discussed below, and in Chapter 5.

• Third, you can resume the simulation with a STEP Command. After
the specified number of Block entries, the simulation will stop
automatically.

• Fourth, when an error condition is detected, an Error Stop occurs.
The simulation is halted and messages are sent to identify the
reason.

• Fifth, you can simply wait for the simulation to complete. This
occurs when the termination count falls to or below 0.

In each of these cases, when the simulation stops the state of the simulation is
reported to the Journal View of the Simulation Object.

Interactive Statements

Any Model Statement can be sent to an existing simulation. These are called
Interactive Statements. They can be Commands, PLUS Procedure definitions, and
even Block Statements.

Every simulation has a Command Queue associated with it. The Simulation Object
performs each Command on the queue one after the other, until it is HALTed or
until it runs out of things to do. Even Commands in the Model, other than HALT
and SHOW, are placed on the Command queue before they are performed.

Interactive Commands are either Immediate or Queued. Immediate Commands,
such as HALT and SHOW, are performed as soon as they are received by the
Simulation Object. All other Commands are queued. They are placed at the end of
a list of Commands which have not yet been completed.

The HALT Command is a special case. Not only is it an immediate Command, but
it also deletes any remaining Queued Commands still on the Command queue.
After a HALT Command is performed, the Simulation Object has nothing more to
do on behalf of that simulation, for the moment.

Commands are not the only statements that can be used interactively. When a
PLUS Procedure Statement is sent interactively, it causes the procedure to be
registered within the simulation. Thereafter, the procedure can be invoked from
any PLUS Expression. If a Procedure with the same name already exists within the
simulation, it is redefined.

A PLUS Experiment is a special kind of Procedure. PLUS Experiments are can be
sent interactively, as well. If any like-named PLUS Procedure (or Experiment) is
currently registered with the Simulation Object, it is replaced. Then the Experiment
can be invoked using a CONDUCT Command, which is discussed in Chapter 6.

Interactive Block Statements are called Manual Simulation Statements. When
received by the Simulation Object, they cause a temporary Block to be created,
and the Active Transaction to attempt to enter it. Then the Block is destroyed. In
this manner, GPSS Blocks can be used as though they were commands, providing
for a fine level of control over the simulation. Data Stream file I/O is supported
interactively, as well. Data Streams are discussed in Section 4.16.

GENERATE Blocks are the only ones which cannot be used in Manual Simulation
Mode. Instead, SPLIT Block Statements can be used to create Transactions
interactively.

The are several ways to send a Model Statement to the simulation. You can use
the Dialog in the Command submenu of the Main Window, you can use a "Hot
Key", and you can associate a GPSS Statement with a Function Key in the Model
Settings Notebook.

To send a Command to the Simulation Object

 CHOOSE Command / Custom,
type the Command list, and

 SELECT OK
This will Translate the Command list and send it to the simulation for execution.

It is often convenient to put a list of frequently used Commands in a small text file.
You can then use an INCLUDE Command to send the whole sequence to the
Simulation Object. Even easier, you can load a function key with an INCLUDE
Command, and have the whole Command List performed by a single keystroke.

Redefining Entities

There are fifteen different entity types that you can create. The entity types are
Transactions, Blocks, Facilities, GPSS Functions, Logicswitches, Matrices,
Queues, Storages, Savevalues, Tables, Userchains, Variables, Numeric Groups,
Transaction Groups, and Random Number Generators. The better you understand
these entities and their properties, the more powerful your simulations will be.
Chapter 4 is devoted to entities.

With the exception of Transactions, entities are never deleted from the simulation.
However, some entity types can be redefined interactively. You can use
STORAGE, TABLE, QTABLE, MATRIX, or VARIABLE Commands using the same
label to do so. Similarly, PLUS Procedures may be redefined interactively.

A location label, or simply location, is a name used to label a Block Statement. This
field is not required in a Block Statement. Unlike other entity types, Blocks may not
be redefined in GPSS World. A similar flexibility can be achieved by using an
EXECUTE Block and redefining its Operand A.

Viewing
A wide variety of windows are available for viewing simulations. Multiple windows
of the same type may be opened on any simulation. All windows can be printed or
saved for later use.

Simulation windows are divided into two categories: Snapshots and Dynamic
Windows. Snapshots are available only in the Commercial Version of GPSS World.
All Simulation Snapshots and Windows are opened using the Window submenu
in the Main Window. Use Window / Simulation Snapshot for a Snapshot
and Window / Simulation Window for a Dynamic Window. The menus are
disabled until there is a simulation to see.

Snapshots are not updated online. They take a single picture that represents a
view of the simulation at a single instant.

You can take Snapshots of the following items:

• Any Transaction in the simulation.

• The Current Events Chain.

• The Future Events Chain.

• Numeric Groups.

• Userchains.

• Transaction Groups.

Dynamic Windows are updated as the simulation changes. They are refreshed
when you Translate a model or cause a RESET event. You can open an online
view of

• The Block Structure of the model.

• An arbitrary Expression list.

• The Facility Entities.

• The Logicswitch Entities.

• Any cross-section of a Matrix Entity.

• A Plot of multiple arbitrary Expressions.

• The Queue Entities.

• The Savevalue Entities.

• The Storage Entities.

• Any Table Entity.

Dynamic windows place a load on the system because large numbers of
messages returned from the simulation must be processed. We recommend that
only a few online windows be used at a time when the simulation must be run. It is
much easier to open a large number of Snapshots and Windows when the
simulation is HALTed first.

Each of these Snapshot and Dynamic Window types is treated in detail in Chapter
5.

Printing Windows

Any simulation window can be printed by selecting File / Print from the Main
Menu.

Testing
After you have created one or more GPSS models, you then normally enter a
period of testing, tracing, and debugging your simulations. GPSS World provides
you with many testing facilities, including visual aids, for use during the testing
process. In addition, the high level of interactivity provided by GPSS World allows
you to manipulate the simulations for the purpose of problem determination.

First, you need to verify that the simulation is behaving as you expect. The GPSS
World graphics windows are ideal for this purpose. We suggest that you start the
simulation, and then begin to explore the overall behavior of your models as they
converge to steady state behavior.

One of the most useful windows for debugging is the Journal View of the
Simulation Object. When you cause the Trace Indicator of a Transaction to be
turned on, all Block entries of that Transaction cause a Trace Message to be
displayed in the Journal View. You can place TRACE Blocks inside the model for
this purpose, or you can use TRACE Statements in Manual Simulation Mode, to
control the Trace Indicator of individual Transaction Entities.

For serious debugging you will probably need to place stops at certain places in
the simulation, and then observe the state of the simulation by taking snapshots
and opening dynamic windows. Snapshots of the CEC and FEC, in conjunction
with the STEP Command, are often sufficient to determine why certain events
occurred. The FEC and CEC are visible in Simulation Snapshot or can be
displayed using a REPORT Command.

Difficult debugging problems can often be best tackled by running a simulation to
an important time, and then saving the Simulation Object. Stop conditions and
memorized expressions are automatically saved with it. Then, by repeatedly
reopening it as a new Simulation Object, you can rerun the simulation from the
saved state.

All SNAs are accessible using the SHOW Command. GPSS World allows you to
redefine entities, redefine PLUS Procedures, change the values of user defined
names, and to manipulate the simulation by entering Manual Simulation
Statements. You can then continue the simulation without a retranslating.

Error Stops

An Error Stop is an error condition which prevents a Statement from completing
normally within a simulation. You must correct the conditions causing the Error
Stop before the simulation can proceed.

When an Error Stop occurs, the Simulation Object sends a series of notification
messages to the Journal View. If the nature of the error is not clear from the error
message in the data window, you should consult Chapter 13 of this manual. Each
Error Stop message is listed in Chapter 13, and usually a remedial action is
suggested. You may then enter any Statements required to understand and fix the
problem which caused the error.

Chapter 10 contains a section on finding and correcting problems in your

simulations.

The Debug Toolbar

Most of the dynamic Simulation Windows have an additional toolbar called the
Debug Toolbar that lets you debug using only mousing operations.

Figure 2�18. The Blocks Window Debug Toolbar

The Blocks window has the best Debug Toolbar because you can select a Block
Icon with the mouse, then click on the Place button to place a Stop condition that
HALTs the simulation when a Transaction attempts to enter that Block. When the
Block is selected, if you click on the Remove button, the original Stop Condition is
removed.

Most of the other Simulation Windows have toolbars without the Place and
Remove buttons. But they do have the rest. Use the Halt button to send a HALT
Command to the Simulation Object. The Continue button resumes the simulation
and the Step button causes the simulation to attempt to enter a single Block, and
then HALT.

You can view the collection of Stop Conditions in the User Stops Snapshot.

 SELECT Window / Simulation Snapshots / User Stops

Figure 2�19. The User Stops Snapshot

The User Stops Snapshot displays the set of all active Stop Conditions. A Stop
Condition is defined by a Transaction Number and a Block Entity Number. Any
attempt of a Transaction of the stated number to enter a Block of the stated
number causes a HALT Command to be invoked. The value of 0 is special. Since
no Transaction or Block has a number of 0, this value is used to indicate "Any". For
example, the window above has a single Stop Condition which occurs when any
Transaction attempts to enter Block 3.

Stop Conditions are added to the list using the STOP Command or via a Debug
Toolbar. You can remove any or all Stop Conditions by STOP ,,OFF Command,
via a Debug Toolbar, or by selecting and clicking the Remove or Remove All
buttons in the User Stops Snapshot.

Experimentation
After you have established credibility in your GPSS Model, you enter the
experimental phase of the project. During this period, you run your model
repeatedly to experiment with the effects of proposed actions on your simulated
system. The most efficient design of simulation experiments and interpretation of
data requires the application of formal statistical methods. These topics elsewhere
in this manual.

It is up to you to establish that the effects you have observed in your simulations
are above the statistical noise level. The Analysis of Variance provided by the
ANOVA Library Procedure can give you confidence that your results are due to
more than just random variability. However, the design of experiments and the
analysis of statistical data are highly developed disciplines worthy of considerable
study. You may choose to apply even more sophisticated statistical techniques to
your results.

The power of PLUS Experiments enables you to run complex experiments
unattended, even exploring Response Surfaces and collecting data for advanced
statistical treatment. Be sure to study Lesson 19 in The GPSS World Tutorial
Manual to get started with your experimentation.

The results of simulation studies often suggest new things to be studied. It is not
unusual to cycle repeatedly through the Testing and Experimentation phases in
order to refine the final designs, or to improve the model in other ways. The
interactive and unified design of the GPSS World simulation environment tries to
make the process as easy and immediate as possible.

Reports
Standard Reports are discussed in Chapter 11, ANOVA Results in Chapter 12.

 2.2.4 Using System Resources

Memory Request Limits
An arbitrary memory limit is used to protect your simulations from gross
overstatements of memory requests. It is used to trigger an error condition when a
memory request exceeds the limit. It applies to allocations of Table Entities, Matrix
Entities, and Plot Windows.

You can change the limit if you need to by altering the limit in the Simulate page of
the Model Settings Notebook. Select Edit / Settings and turn to the Simulate
page. Enter the new limit in the Max Memory Request entry field, and CLICK
on OK.

Stack Size
The simulation stack is used for nested procedure calls. You can change the limit if
you need to by altering the limit in the Simulate page of the Model Settings
Notebook. Select Edit / Settings and turn to the Simulate page. Enter the new
limit in the Stack Size entry field, and CLICK on OK.

Circular References
An arbitrary limit is used to protect your simulations from circular references. If your
simulation uses highly nested GPSS, or PLUS procedure calls, it is possible that
you may need to increase this value.

You can change the limit if you need to by altering the limit in the Simulate page of
the Model Settings Notebook. Select Edit / Settings and turn to the Simulate
page. Enter the new limit in the Max Evaluation Depth entry field, and CLICK

on OK.

 Chapter 3 - Model
Statements

A GPSS World model is a sequence of Model Statements. A
Model Statement may be either a GPSS Statement, a PLUS
Procedure definition, or a PLUS Experiment definition. A GPSS
Statement is either a Command or a Block Statement.

PLUS is an acronym for the Programming Language Under
Simulation, GPSS World�s embedded programming language.

This chapter describes the use of Model Statements in the
GPSS World simulation environment. It then discusses the
general structure of GPSS Statements. Individual GPSS
Commands are discussed in detail in Chapter 6, and Block
Statements are in Chapter 7. Of the PLUS Statements, only
PROCEDURE and EXPERIMENT are Model Statements.
PLUS is described in detail in Chapter 8.

 3.1. Using Model
Statements
Before you can run a simulation, you must Create a Simulation
Object. This is called the Initial Model Translation. It�s easy.
You just open a Model Window on the Model Object, and

 CHOOSE Command / Create Simulation
You will be told if any corrections need to be made, due to
syntax errors.

When you have Translated a model successfully, the
Simulation Object automatically gets a copy of the Translated
model, and executes any Commands embedded in the Model
Files. You can now open any of the online windows upon the
simulation. If you have put one or more START Commands
into one of the Model Files, the Simulation Object executes it in
order with the other Commands, without waiting to be told to.

Any Model Statement can be part of the Initial Model
Translation, or can be sent to an existing simulation later, as an
Interactive Statement.

 3.1.1. Initial Model Translation

When a Model is Translated successfully, its Block Structure is
created, a Procedure Registration List is created, a Command
List is created, and the whole thing is sent to the Simulation
Object.

When a model is Translated, the Block sequence is preserved,
and separately, the initial Command sequence is preserved.
When the Simulation Object receives a Command it either
performs it immediately, or places it on the Command Queue to
be dealt with, in turn.

 3.1.2 Interactive Statements

After the Initial Model Translation, you may send any Model
Statement to the existing Simulation Object. These statements
are called Interactive Statements. They are themselves
Translated, and sent to the Simulation Object, which receives
and executes them.

What happens depends on what kind of Model Statement is
sent. Procedure and Experiment Statements define or redefine
a PLUS Procedure in the simulation. Commands are either
executed immediately (SHOW or HALT), or are placed on the
simulation�s Command Queue, to be dealt with in sequence.

Interactive Block Statements are executed immediately in
Manual Simulation Mode. This means that a temporary Block is
created and the Active Transaction attempts to enter it. Then,
the Block is destroyed. At any instant in the life of a Simulation
Object, there is a GPSS Transaction called the Active
Transaction ready and waiting. It use the next to be used when
the simulation is resumed or when a Manual Simulation
Statement is received by the Simulation Object.

 3.1.3 Block Sequence

The Block structure of the simulation is set when the Model
Object is Translated. It is not altered until the next
Retranslation. During the Model Translation, as each Block
Statement is encountered by the Translator, another Block is
appended to the simulation�s Block structure.

After a simulation is STARTed, it is the original sequence of
Block Statements that determines the sequence of actions in
the simulation. Unless the flow of Transactions is modified,
each Active Transaction attempts to enter one Block after the
other in the original sequence.

Block Statements received by the simulation after the original
Model File was Translated, are NOT incorporated into the
Block structure of the simulation. Instead, they cause a
temporary block to be created, used, and destroyed in Manual
Simulation Mode.

 3.1.4 Command Sequence

Commands are either Immediate or Queued. Only HALT and
SHOW are Immediate; all others are Queued. When the
Simulation Object receives an Immediate Command it

executes it right away. Queued Commands, on the other hand
are placed in the Simulation�s Command Queue. The
Simulation Object executes one Queued Command after the
other, occasionally interrupted by Immediate Commands.

A Command List is created by the Initial Model Translation and
sent to the Simulation Object, just as Interactive Commands
are sent. As the Translator encounters Commands during the
Initial Model Translation, they are placed on the list. When the
whole model has been Translated, the Command List is sent to
the Simulation Object after the Block structure and the
Procedure Registration List.

START, CONTINUE, and CONDUCT are Queued Commands.
When the Simulation Object takes one off the Command
Queue, the simulation runs until its Termination Count is
nonpositive. More Commands may be waiting to be done after
that.

The CONDUCT Command is used to run Experiments, which
are a special kind of PLUS Procedures. Experiments are
registered in a Simulation Object like any other PLUS
Procedure, and they can have arguments passed to them by
the CONDUCT Command. If a Simulation Object has only one
Experiment and it is defined with no arguments, the CONDUCT
Command does not even have to name the Experiment since
there is no ambiguity.

The HALT Command is a special case. Not only is it an
Immediate Command, but it has the effect of clearing off all
Commands form the Command Queue. When you send a
HALT Command to the Simulation Object, the simulation is
brought to the Halted State, and all activity on behalf of the
simulation comes to an end. You are then free to control the
simulation as you please.

 3.1.5. Procedure Sequence

During the Initial Model Translation, when the Translator
encounters a Procedure or Experiment Statement, it puts the
Translated Procedure on the Procedure Registration List. The
Simulation Object registers all the user-defined Procedures
when it receives the Translated model.

When the Simulation Object receives an Interactive Procedure
Statement, it incorporates the Translated Procedure into the
simulation�s Procedure Library, possibly replacing one that�s
already there.

The invocation of a Procedure occurs when an Expression with
a Procedure Call, or a Procedure Call Statement, in a PLUS
Procedure is executed. Invocations can be performed
interactively, as well, by placing a Procedure invocation in the
operand of a SHOW Command. Experiments can only be
invoked by CONDUCT Commands

 3.1.6. Saving Objects

All GPSS World Objects can be saved and opened in a later
session. Models, Simulations, Reports, and Text Objects can
all be modified and saved at any time. The File / Open Menu
Command is available to bring the object back.

A Simulation can be saved at any point in its run for the
purposes of debugging, demonstration, replay, or simply to
save an intermediate state of the Simulation Object

The act of saving a Simulation or Experiment causes a HALT
Command to be sent to the Simulation Object. In the case of
an Experiment, you will need to save the state of the completed
part of the Experiment in Global Variables and Global Matrices
if you don’t want to restart the Experiment from the beginning
when you reopen it.

 3.2. GPSS Statements
There are two kinds of GPSS Statements: Block Statements,
which cause a GPSS Block Entity to be created, and
Commands, which do not. Commands either define a
non-Block Entity or cause an action to occur. PLUS Statements
are not discussed here.

Unlike a PLUS Statement, a GPSS Statement must reside on a
single line of text, consisting of up to 250 characters.

GPSS Statements are composed of parts called fields. A field
is a variable number of printable characters terminated by
white space or a delimiter. Although the exact composition of a
Statement varies a little, in general, a Statement is laid out as
follows: Line number (optional) | Label (optional) | Verb
(required) | Operands (depend on verb) | Comment (optional).

Arbitrary Line numbers are retained for compatibility purposes.
If used, they must begin in column 1. However, they are
ignored by the Translator. A line number given in an error
message is an absolute cardinal number, denoting the place of
the line in the Model File, and is not a user-selected line
number.

 3.2.1. GPSS Commands

The commands are described in detail in Chapter 6. They are:

BVARIABLE - Define a Boolean Variable Entity.

CLEAR - Reset statistics and remove Transaction.

CONDUCT - Execute a registered PLUS Experiment.

CONTINUE - Resume the simulation.

EQU - Assign a value to a User Variable.

EXIT - End the GPSS World Session.

FUNCTION - Define a Function Entity.

FVARIABLE - Define an Fvariable Entity.

HALT - Stop the simulation and delete all Queued Commands.

INCLUDE - Read and Translate a secondary Model File.

INITIAL - Initialize or modify a Logicswitch, Savevalue, or
Matrix Entity.

INTEGRATE - Automatically integrate a time differential in a
User Variable.

MATRIX - Define a Matrix Entity.

QTABLE - Define a Qtable Entity.

REPORT - Set the name of the Report File or request an
immediate report.

RESET - Reset the statistics of the simulation.

RMULT - Set the seeds of the first 7 Random Number
Generators

SHOW - Evaluate and display Expression.

START - Set the Termination Count and begin a simulation.

STEP - Attempt a limited number of Block entries.

STOP - Set a stop condition based on Block entry attempts.

STORAGE - Define a Storage Entity.

TABLE - Define a Table Entity.

VARIABLE - Define a Variable Entity.

 3.2.2. GPSS Block Statements

A Block Statement creates a GPSS Block. When a Transaction
enters a Block Entity, a special action occurs which is
determined by the nature of the Block. The Block structure of
the simulation is set when the Model Object is Translated. After
a simulation is STARTed, it is the original sequence of Block
Statements that determines the sequence of actions in the
simulation. Unless the flow of Transactions is modified, each
Active Transaction attempts to enter one Block after the other

in the original sequence. Block Statements received by the
simulation after the original Model File was Translated, are
NOT incorporated into the Block structure of the simulation.
Instead, they cause a temporary block to be created, used, and
destroyed in Manual Simulation Mode, which is discussed
above.

The GPSS Block Statements are described, in detail, in
Chapter 7. They are:

ADOPT - Change Assembly Set.

ADVANCE - Place Transaction on Future Events Chain.

ALTER - Test and modify Transactions in a Group.

ASSEMBLE - Wait for and destroy related Transactions.

ASSIGN - Modify Transaction Parameter.

BUFFER - Place Transaction at end of the Current Events
Chain.

CLOSE - End the Data Stream.

COUNT - Place count of entities into a Transaction Parameter.

DEPART - Decrement content of a Queue Entity.

DISPLACE - Change the Next Sequential Block of a
Transaction.

ENTER - Occupy or wait for storage units in a Storage Entity.

EXAMINE - Test group membership.

EXECUTE - Perform action specified by a different Block.

FAVAIL - Change status of a Facility Entity to "available".

FUNAVAIL - Change status of a Facility Entity to "not
available".

GATE - Test entity and modify Transaction flow.

GATHER - Wait for related Transactions.

GENERATE - Create Transaction and place on Future Events
Chain.

INDEX - Modify Transaction Parameter.

INTEGRATION - Turn the integration of a User Variable On or
Off.

JOIN - Place a member into a Numeric or Transaction Group.

LEAVE - Release storage units of a Storage Entity.

LINK - Move Transaction to Userchain Entity.

LOGIC - Modify Logicswitch Entity.

LOOP - Decrement Parameter, jump to different Block if result
is non zero.

MARK - Place value of system clock into Transaction
Parameter.

MATCH - Wait for related Transaction to reach conjugate
MATCH Block.

MSAVEVALUE - Assign value to Matrix Entity element.

OPEN - Initialize a Data Stream.

PLUS - Evaluate PLUS Expression and save result in
Parameter.

PREEMPT - Displace Facility owner.

PRIORITY - Modify Transaction priority.

QUEUE - Increment content of a Queue Entity.

READ - Bring the next line of data from a Data Stream.

RELEASE - Free Facility Entity.

REMOVE - Take a member out of Numeric or Transaction
Group.

RETURN - Free Facility Entity.

SAVAIL - Change status of Storage Entity to "available".

SAVEVALUE - Assign a value to Savevalue Entity.

SCAN - Test Transaction group, place value in Parameter.

SEEK - Change the line pointer in a Data Stream.

SEIZE - Assume ownership of or wait for a Facility Entity.

SELECT - Place selected entity number into Transaction
Parameter.

SPLIT - Create related Transaction.

SUNAVAIL - Change status of Storage Entity to "not
available".

TABULATE - Update Table Entity.

TERMINATE - Destroy Transaction, decrement Termination
Count.

TEST - Test arithmetic condition and modify Transaction flow.

TRACE - Set Trace Indicator of the Active Transaction.

TRANSFER - Move to specified Block.

UNLINK - Remove Transaction from Userchain Entity.

UNTRACE - Turn off Trace Indicator in the Active Transaction.

WRITE - Send a value to a Data Stream.

 3.3. Fields
The parts of a GPSS Statement are called fields. GPSS
Statements are of free form in the sense that you do not have
to worry about lining up fields with column numbers, except for
line numbers. The format is much the same for all statements,
with some fields being optional for some verbs. In general, the
fields of a statement are laid out left-to-right in the following
sequence:

• Line number (optional). Ignored.

• Label (variable, depends on verb field).

• Verb (required).

• Operands, including any conditional operator
(variable, depends on verb).

• Comment (optional).

 3.3.1. Line Numbers

Line numbers are ignored by GPSS World. They are permitted
only in GPSS Statements, and if used, they must begin in
column 1. They are retained for compatibility purposes.

 3.3.2. Labels

The label field allows you to name and refer to entities with
names of your choosing. A label must obey the rules of name
construction described later in this chapter. You may assign
your own values to names with EQU Commands and PLUS
Assignment Statements. This is useful when you want to
experiment with several values of some variable. However, it is
easiest to let GPSS World use its own unique internal numbers
when you name entities and Transaction Parameters. If you

choose to assign your own numbers to entity names, you
should assign the value in an EQU statement before you define
or refer to the entity by name. If you assign your own values to
names, then you are responsible for avoiding reference
conflicts.

When GPSS World encounters a new name, it assigns a
unique integer to the name. These integers are distinct and
contiguous starting at 10,000. You may use the same name to
refer to different entity types. For example You may have a
Storage Entity and a Table Entity both named Motorpool.
However if you use the name Motorpool as a label in a second
STORAGE Command, the old Storage Entity will be replaced
with a new one. Permanent Block Entities, however, are not
replaced in this manner.

Blocks are a special case. An interactive Block Statement is
executed as a temporary Block in Manual Simulation Mode. If
you need to be able to change the characteristics of a Block in
the middle of a simulation, you can redefine the named values
used in operands using EQU Statements. You can also use an
EXECUTE Block and modify its operand interactively. A
change to the permanent Block structure requires a
retranslation.

You may not use a number as a name in a Label Field. That
would violate naming conventions. If you want to explicitly
control the number of an entity, you can assign a value to a
name using an EQU statement before using the name as a
label.

You may not use an SNA as a Block Label.

 3.3.3. Verbs

The Verb Field follows the Label Field and requires a GPSS
keyword. It must be one of the GPSS Block names or one of
the Commands. A list of valid Verbs is available through the
online help facility.

 3.3.4. Operands

Most Verbs are followed by one or more operator and operand
fields. These fields depend on the verb. Some are required and
some are optional. The Online Help facility is always available
to show you which syntax is acceptable. When you want to
finish or skip an operand, you should press a delimiter key.
Traditionally, operands are separated by commas. If all
required information in a statement has been provided, you
may skip optional fields.

The forms you may use in any given Operand Field are listed
with the specific Statement descriptions in Chapters 6 and 7.
This information is available as online help, as well.

 3.3.5. Comments

There are two kinds of comment fields. First, by starting a
statement with ; or *, the whole statement is considered to be
a comment. Second, an optional comment field follows the
operand field of any statement. Function followers and
statements with expression fields do not have comments fields.

When all required operands of a statement have been
completed, you can press ; to begin a comment. At this time
you can enter a comment of both upper and lower case ASCII
characters.

 3.4. Expressions

 3.4.1. Expressions in GPSS
Statements

Expressions in GPSS World are defined as part of the PLUS
Language. You can use them in GPSS Statement Operands
and in PLUS Procedures.

Some Block operands permit the use of parenthesized PLUS
Expressions. The list of acceptable syntactic variables will then
include ParenthesizedExpression as one or the operand�s
alternative forms. Some Commands do not need to use the
outer parentheses, but if you always parenthesize PLUS
Expressions used in GPSS Statements, you will be safe.

It�s easy to go between PLUS and GPSS. Most GPSS
Statement Operands allow you to use a PLUS Expression. This
means that you can provide a simple factor, a small calculation,
or a PLUS Procedure invocation right there in the Operand. On
the other hand, by using Expressions containing SNAs, you
can access GPSS entity state variables, as well as global User
Variables, from within PLUS Procedures.

Section 8.3.2 of this manual tells you how to build PLUS
Expressions. All the building blocks except System Numeric
Attributes are discussed there. We discuss SNAs in the next
section.

 3.4.2. System Numerical Attributes

System Numerical Attributes, or SNAs, are simulation "state
variables" that are available for use through a simulation. They
return numeric or string values, and may be used in GPSS
Statement operands and in Expressions.

Some SNAs are maintained automatically, and others require a
calculation when they are called. For example, the
accumulated count of entries into a Block is available as an
SNA. There are over 50 SNA classes, each of which will
contribute to the power of your simulations. It is wise to
become familiar with all of them. Many SNAs, such as PR, are
evaluated on behalf of the active Transaction. This means that
some attribute of a Transaction is necessary in order to
completely evaluate the SNA. Such SNAs cannot be evaluated
unless there is an Active Transaction. For example, you cannot
refer to Transaction Parameters in the operands of
GENERATE Blocks because when a Transaction enters a
GENERATE Block for the first time, it has no Parameters.
Other SNAs, such as the system clock C1, can be evaluated
without referring to a Transaction.

SNA Entity Specifiers
Most SNAs may be specified in one of many forms, beginning
with the SNA class. For example the SNA W22 returns the
number of Transactions waiting in Block number 22. The Block
identifier in this case is the number 22, but there are several
other possibilities. This SNA could have been specified using
any of the following entity specifiers:

• Wj - where j is a positive integer, the number of
the Block in the simulation.

• W$Name - where Name is the location of the
desired Block.

• W*j - where j is a positive integer, the number
of the Parameter of the active Transaction which
contains the number of the desired Block. This is
indirect addressing.

• W*Name - where Name is the name of the
Parameter of the Active Transaction which
contains the number of the desired Block. This is
indirect addressing.

• W*$Name - where Name is the name of the
Parameter of the Active Transaction which
contains the number of the desired Block. The $
is not needed and is used only as a separator.
Essentially, this is identical to W*Name. This is
indirect addressing.

• W*Parameter - denotes that either the W*j, the
W*Name, or the W*$Name may be used.

The Matrix Entity SNA class MX is a special case. It may
contain up to 3 indirect addresses. For example the SNA
MX*Sales(*Partnumber,*January) locates the Matrix Entity
whose number is in the Transaction parameter named Sales,
and then retrieves the element whose row and column

numbers are in the Parameters named Partnumber and
January, respectively. Normally, the Active Transaction would
have already passed through three ASSIGN blocks initializing
the Parameters Sales, Partnumber, and January with the
numbers or name values desired.

Some SNA classes, such as A1, AC1, C1, M1, MP, PR, and
TG1, are "atomic" SNAs. Atomic SNAs are complete and do
not need an entity name or number to complete the evaluation
of the SNA

When you are in any operand field, the valid SNA forms are
available in an online help message.

SNAs Available
The following SNAs are available for use in the operand fields
and Expressions of commands and statements. In all cases
Entnum must be replaced by any entity specifier. The entity
specifier could be a name (preceded by a $ separator) or
number, or for indirect addressing, it could be an asterisk,*,
followed by a name or number. The formal rules for building
operands are given in the Appendix.

Here is a complete list of SNAs available in GPSS World:

• A1 - Assembly Set of the Active Transaction.
Integer value.

• AC1 - Value of absolute system clock.
Simulated time since last CLEAR. Real value.

• BVEntnum - Result of evaluating Boolean
Variable Entity Entnum. Real value.

• C1 - Value of relative system clock. Simulated
time since last RESET. Real value.

• CAEntnum - Average Userchain content. The
time weighted average number of chained
Transactions for Userchain Entnum. Real value.

• CCEntnum - Total Userchain entries. The count
of all Transactions chained to Userchain Entnum.
Integer value.

• CHEntnum - Current Userchain content. The
current number of Transactions chained to
Userchain Entnum. Integer value.

• CMEntnum - Maximum Userchain content. The
maximum number of Transactions chained to
Userchain Entnum. The "high water mark".
Integer value.

• CTEntnum - Average Userchain residence time.
The average duration of Transactions at
Userchain Entnum. Real value.

• FEntnum - Facility busy. If Facility Entity
Entnum is currently busy, FEntnum returns 1.
Otherwise FEntnum returns 0. Integer value.

• FCEntnum - Facility capture count. The number
of times Facility Entity Entnum has been SEIZEd
or PREEMPTed by a Transaction. Integer value.

• FIEntnum - Facility Entnum interrupted. If
Facility Entity Entnum is currently preempted,
FIEntnum returns 1. Otherwise FIEntnum returns
0. Integer value.

• FNEntnum - Function. Result of evaluating
Function Entity Entnum . Real value.

• FREntnum - Facility utilization. The fraction of
time Facility Entity Entnum has been busy.
FREntnum is expressed in parts-per-thousand
and therefore returns a value 0-1000, inclusive.
May be nonintegral. Real value.

• FTEntnum - Average Facility holding time. The
average time Facility Entity Entnum is owned by a
capturing Transaction. Real value.

• FVEntnum - Facility in available state.
FVEntnum returns 1 if Facility Entity Entnum is in
the available state, 0 otherwise. Integer value.

• GNEntum - Numeric Group count. GNEntnum
returns the membership count of Numeric Group
Entnum. Integer value.

• GTEntnum - Transaction Group count.
GTEntnum returns the membership count of
Transaction Group Entnum. Integer value.

• LSEntnum - Logicswitch set. LSEntnum returns
1 if Logicswitch Entity is in the "set" state, 0
otherwise. Integer value.

• MBEntnum - Match at Block. MBEntnum returns
a 1 if there is a Transaction at Block Entnum
which is in the same Assembly Set as the Active
Transaction. MBEntnum returns a 0 otherwise.
Integer value.

• MPParameter - Transit Time, Parameter.
Current absolute system clock value minus value
in Parameter Parameter. Real value.

• MXEntnum(m,n) - Matrix Savevalue. The value
in row m, column n of Matrix Entity Entnum is
returned. In Matrices of more than 2 dimensions,
all other indices are assumed to be 1. Unlike MX
class SNAs, PLUS Expressions can refer to any
element of a higher dimension matrix.

• M1 - Transit time. M1 returns the absolute
system clock minus the "Mark Time" of the
Transaction. Real value.

• NEntnum - Block entry count. The total number
of Transactions which have entered Block
Entnum is returned. Integer value.

• PParameter or *Parameter - Parameter value.
PParameter or *Parameter returns the value of
Parameter Parameter of the Active Transaction.
Integer, real, or string value.

Indirect addressing uses the notation
SNA*Parameter.

• PR - Transaction priority. The value of the
priority of the Active Transaction. Integer value.

• QEntnum - Current Queue content. The current
count value of Queue Entity Entnum. Integer
value.

• QAEntnum - Average Queue content. The time
weighted average count for Queue Entity
Entnum. Real value.

• QCEntnum - Total Queue entries. The sum of
all entry counts for Queue Entity Entnum. Integer
value.

• QMEntnum - Maximum Queue content. The
maximum count of Queue Entity Entnum. The
"high water mark". Integer value.

• QTEntnum - Average Queue residence time.
The time weighted average of the count for
Queue Entity Entnum. Real value.

• QXEntnum - Average Queue residence time
excluding zero entries. The time weighted
average of the count for Queue Entity Entnum not
counting entries with a zero residence time. Real
value.

• QZEntnum - Queue zero entry count. The
number of entries of Queue Entity Entnum with a
zero residence time. Integer value.

• REntnum - Available storage capacity. The
storage content (or "tokens") available for use by
entering Transactions at Storage Entity Entnum.
Integer value.

• RNEntnum - Random number. RNEntnum
returns a random integer 0-999 from Random
Number Generator Entnum. Integer value.

• SEntnum - Storage in use. SEntnum returns the
amount of storage content (or "tokens") currently
in use by entering Transactions at Storage Entity
Entnum. Integer value.

• SAEntnum - Average storage in use. SAEntnum
returns the time weighted average of storage
capacity (or "tokens") in use at Storage Entity
Entnum. Real value.

• SCEntnum - Storage use count. Total number
of storage units that have been acquired from
Storage Entity Entnum. Integer value.

• SEEntnum - Storage empty. SEEntnum returns
1 if Storage Entity Entnum is completely
available, 0 otherwise. Integer value.

• SFEntnum - Storage full. SFEntnum returns 1 if
Storage Entity Entnum is completely used, 0
otherwise. Integer value.

• SREntnum - Storage utilization. The fraction of
total usage represented by the average storage in
use at Storage Entity Entnum. SREntnum is
expressed in parts-per-thousand and therefore
returns a value 0-1000, inclusive. May be
nonintegral. Real value.

• SMEntnum - Maximum storage in use at
Storage Entity Entnum. The "high water mark".
Integer value.

• STEntnum - Average holding time per unit at
Storage Entity Entnum. Real value.

• SVEntnum - Storage in available state.
SVEntnum returns 1 if Storage Entity Entnum is
in the available state, 0 otherwise. Integer value.

• TBEntnum - Nonweighted average of entries in
Table Entity Entnum. Real value.

• TCEntnum - Count of nonweighted table entries
in Table Entity Entnum. Integer value.

• TDEntnum - Standard deviation of nonweighted

table entries in Table Entity Entnum. Real value.

• TG1 - Remaining Termination Count. TG1
returns the count that is decremented by
TERMINATE Blocks with a positive A operand.
This value is initialized by START Statements
and indicates completion of the simulation when it
is 0. Integer value.

• VEntnum - Result of evaluating arithmetic or
floating point Variable Entity Entnum. Real value.

• WEntnum - Current Block count. The current
number of Transactions in Block Entity Entnum.
Integer value.

• XEntnum - Savevalue. The value of Savevalue
Entity Entnum is returned. Integer, real, or string
value.

• XN1 - Active Transaction number. The
Transaction number of the Active Transaction is
returned. Integer value.

• Z1 - Free memory. Value returned by the
Operating System. Integer value.

Special rules apply when a simulation is run in GPSS/PC
Compatibility Mode. This are discussed more fully below.

Operators
Operators are used to combine data elements in Expressions.
Data are coerced if a specific type is required by the operator.
For example, if a numeric operation is to be performed on a
variable with a string value, the numeric equivalent derived
from the characters in the string is used.

The operators used in GPSS World are:

^ Exponentiation. A^B returns A raised to the power of B.

Multiplication. A # B returns the numeric product of A and
B.

/ Division. A / B returns the quotient of A divided by B.

\ Integer Division. A \ B returns the result of integer division of
A by B.

@ Integer Remainder. A @ B returns the Modulo Division of A
by B.

- Subtraction. A - B returns the difference of A and B.

+ Addition. A + B return the sum of A and B.

>= �GE� Greater Than or Equal To. A >= B
returns 1 if A is numerically greater than or equal
to B, 0 otherwise.

<= �LE� Less Than or Equal To. A <= B returns
1 if A is numerically less than or equal to B, 0
otherwise.

> �G� Greater Than. A > B returns 1 if A is
numerically greater than B, 0 otherwise.

< �L� Less Than. A < B returns 1 if A is
numerically less than B, 0 otherwise.

= �E� Equal. A = B returns 1 if A is numerically
equal to B, 0 otherwise.

!= �NE� Not Equal. A != B returns 1 if A is
numerically different from B, 0 otherwise.

& �AND� Logical And. A & B returns 1 if and
only if both A and B are non zero, 0 otherwise.

| �OR� Logical Or. A �OR� B returns 1 if A or B or
both are non zero, 0 otherwise.

Precedence
When Expressions are evaluated, the precedence of operators
determines the order of operations. An operator with a higher
precedence is evaluated before an operator with a lower
precedence. The precedence of operators is as follows, from
highest to lowest:

^ Exponentiation

/ \ Multiplication, Division, Integer Division

@ Integer Remainder

- + Addition, Subtraction

>= <= > < Comparison Operators

= != Equal, Not Equal

& Logical And

| Logical Or

Indirect Addressing
All entities have positive entity numbers. When you refer to an
entity by name, the value of the name is matched with the
entity number of the entity. Indirect addressing means that the
entity number is in a Transaction parameter. To use indirect
addressing, you must have an asterisk, [*], in the operand. For
example, the SNA Q*2 uses the value of parameter 2 as the
Queue Entity number. This SNA returns the current content of
that Queue Entity.

You must move an entity number (or name value) into a
Transaction parameter before the SNA is evaluated.

Indirect addressing uses the notation SNA*Parameter. As
another example, to SEIZE the Facility whose number is the
value returned by the function whose number is in a parameter
named Tellerselector, you would type

 SEIZE FN*Tellerselector

 3.4.3. Expressions in GPSS/PC
Compatibility Mode

In GPSS World, intermediate results and SNAs are never
truncated unless you explicitly do so. However, for compatibility
purposes, intermediate result truncations are retained in
GPSS/PC Compatibility Mode. When simulations are run this
way, SNAs always return truncated integers (unless used as
Function Modifiers), and the intermediate results obtained while
evaluating Bvariable Entities and Variable Entities, are

truncated.

The use of GPSS/PC Compatibility Mode is discussed in
Chapter 1.

In Compatibility Mode, when an Expression is used to define
an SNA, its result is always truncated to an integer. You should
choose the time units of the simulation so that these
truncations are not significant.

In Compatibility Mode, the evaluation of an Expression is
affected by the Command it is used in.

• SHOW performs all operations as double
precision floating point numbers and display the
result in the data window as a double precision
floating point number.

• VARIABLE creates a GPSS arithmetic variable
which, when evaluated by an SNA call, performs
all operations as double precision floating point
numbers, then truncates all intermediate results
before proceeding to the next operation. Finally it
truncates and returns the overall result.

• FVARIABLE creates a GPSS "floating point"
variable which, when evaluated by an SNA call,
performs all operations as double precision
floating point numbers, then truncates the result.
Fractional values may be considered by an
appropriate choice of units, such as
"thousandths". Then an SNA value of 500 is
interpreted as the number 1/2.

• BVARIABLE creates a GPSS Boolean variable
which, when evaluated by an SNA call, performs
all operations as double precision floating point
numbers, then returns 1 if the result is non zero, 0
otherwise.

• FUNCTION Commands, of types other than C,
evaluate the argument and select a list member
based on the result to determine the final value,
which is truncated.

• C Type FUNCTION evaluation begins with the
evaluation of the argument. The result is always
an integer, and it is used to identify the line
segment of the Function. The argument is then
used in a double precision linear interpolation to
arrive at the double precision result of the
Function. If the argument is an RN class SNA, a
random fraction between 0 and .999999,
inclusively, is used. If the Function is not used as
a "Function Modifier" the final result is truncated.

• SNAs, except continuous Functions used as

Function Modifiers, return an integer.

 3.5. Names
You can create names to refer to Blocks, User Variables, or
other GPSS Entities. Names must begin with an alphabetic
character, and may contain up to 200 alphabetic and numeric
characters, and underscores [_].

Your primary tasks in selecting a name are, first, to avoid using
a Keyword, System Numeric Attribute, or System Numeric
Attribute Class, and second, to use something meaningful that
can be remembered.

A name may not be a verb or partial verb, a keyword, or a valid
SNA. If you are unsure of which names are illegal, you will be
safe if you include an underscore [_] in the names you create.
Names beginning with at least 3 letters and then a digit are
also safe. In any case, GPSS World will not let you create an
invalid name.

 3.5.1. Labels

Names used in the Label field of a GPSS Statement are used
to refer to GPSS Entities, and are called Entity Labels, or just
Labels. Block Labels are also called Locations.

Locations are assigned values corresponding to the Block
Entity number. You should not use a Block location name for
any other purpose. GPSS World will cause an Error Stop to
occur if you attempt to do so. This eliminates the possibility of
inadvertently altering which Block is associated with a label.

When a Simulation Object receives a name from a Session, it
assigns a unique numeric value to the name. These
system-defined numbers start at 10,000. You can assign your
own value, of any data type, later.

If you want to force a named entity to have an entity number of
your choosing, you must use the name in an EQU Statement
before you define (or reference) the entity by name. It is then
up to you to avoid different names inadvertently referring to the
same entity. You may use a single name to refer to one entity
of each entity type. For example, the SNAs Q$BARBER and
F$BARBER refer to different entities. The first refers to a
Queue Entity, the second to a Facility Entity. There is no
confusion when the same name refers to different entity types.

When an entity is created with a label, it takes the current value
of the label to keep as its permanent Entity Number. Even if the
Named Value is later changed, the Entity Number of the
created entity is not.

If it can, the Simulation Object will create a GPSS entity when it
first encounters a name reference to that entity type. However,
entities which cannot be created without additional information,
such as Storage Entities, must be defined by GPSS
Commands before they are referenced. The entities which
must be defined before they are referenced are listed in
Chapter 4.

 3.5.2. User Variables

In addition to using Names as Labels, you can use them to
represent your own values. Such variables are called User
Variables, and are created by their occurrence in an EQU
Command or in a PLUS Assignment Statement. They serve the
traditional purpose of programming variables. A user created
name which is first assigned a value with an EQU Command,
but later appears as an Entity Label, is still known as a Label.

User Variables can be used to hold numeric or string values
during a simulation. They can be referenced in PLUS
Expressions, and can be altered by an EQU Command or an
assignment Statement in a PLUS Procedure. In addition, they
can be automatically updated by integration. This is discussed
in Chapter 4, under the section Continuous Simulation.

 3.5.3. The Scope of Names

Except for temporary names, all user-created names are
known throughout the whole model. The exceptions are those
names appearing in the TEMPORARY or the TEMPORARY
MATRIX Statements of a PLUS Procedure. New instances of
temporary Named Values or Matrices are created when the
PLUS Procedure is invoked and deleted when the PLUS
Procedure exits. These names override any other like-named
items in the Model during execution of the PLUS Procedure.
Other names used in PLUS Procedures refer to entities known
globally throughout the model.

Within an Experiment, you should place the results of
simulations into Global Variables and Global Matrices in order
to preserve them across simulations. For example the ANOVA
Library Procedure requires a Global Matrix Entity to be passed
as an argument. Also, the DoCommand Library Procedure is
available during an Experiment. Any strings passed to
DoCommand should not include the names of TEMPORARY
and TEMPORARY MATRIX variables, because the string is
Translated in a Global Scope where temporary variables are
not recognized.

 3.6. Numbers
Numbers may stored internally in any of three data types,
integer, real, and string. Most variables can take on any of
these three data types. Since numeric operators coerce their
operands into suitable form, all three data types may be used
in Expressions,

Integers are stored as 32 bit twos complement numbers. If an
integer overflows it is converted into a real value.

Real values are stored as 64 bit double precision floating point
numbers. The exponent can range from -308 to 308, whereas
the precision is limited to approximately 15 decimal digits.

Strings are stored as an array of ASCII characters of any
length, limited by the Max Memory Request in the
Simulation Page of the Simulation Object’s Settings. You can
view or change the Settings by choosing the Edit / Settings
menu item.

System Numerical Attributes now return values that may be
either integer, real, or string. You must refer to the definition of
the SNA given above to determine the possible data types
returned.

Similarly, the system clock is a numeric value which may be
either integer or real. This eliminates the need to use large time
values to assure fine time granularity.

GPSS function entities are evaluated in double precision form,
and the Y values in function follower Statements are, too. This
limits precision to approximately 15 decimal digits for the Y
value.

SNAs involving GPSS Variable Entities (all types) and those
requiring a standard deviation or a division are calculated in
double precision floating point format. As a result, these SNAs
can experience numeric overflow and/or underflow. Since
Expressions are evaluated as double precision floating point
numbers, intermediate values are limited to 15 decimal digits of
precision and 307 decimal digits of magnitude.

If an overflow occurs during the evaluation of an Expression,
an Error Stop occurs. Arithmetic exceptions may occur when
divisions, standard deviations, or logarithms are evaluated. An
invalid argument to the library functions can also cause an
Error Stop.

In the printing of report statistics, when a number in the report
is too large for its space in the report, the format of the report is
disrupted, but the correct value is printed and the report
continues.

 3.7. Using Strings
Strings are arrays of ASCII characters. Nearly any variable can
take on a string value. Arithmetic operators will coerce string
values to their numeric equivalent before executing their
operations.

String constants are enclosed in double quote marks. When
you input a string, such as the file specification in an INCLUDE
Command, or a REPORT Command, you must enclose the
sequence of ASCII characters in double quotes. Similarly,
string values written in Standard Reports and in response to
SHOW commands are shown enclosed in double quotes.

To insert a "string within a string" you should use 4 additional
double quote characters around the inner string, which is to be
sandwiched by 2 pairs of double quotes. When two double
quotes together are encountered by the Translator, a single
quote is placed in the target string.

Strings are used when you write out simulation results to a
Result File. Strings may also be used to format your own ad
hoc simulation reports. The Data Stream Blocks OPEN,
CLOSE, READ WRITE, SEEK are available for these
purposes. Stings are also used by the DoCommand Library
Procedure during Experiments. Another use for strings is to
create a trace for input to an animation post-processor.

You can create and manipulate strings using the routines in the
PLUS Procedure Library. These are discussed in detail in
Chapter 8.

Chapter 4 - GPSS Entities
GPSS is built around several elementary abstractions called entities. In
order for you to be able to create complex simulation, you must acquire
an understanding of these entities and of the rules by which they may be
manipulated. GPSS entities are abstract objects that exist in a simulation.
If you prefer a more concrete notion, you may think of an entity as a set of
numbers in the memory of your computer. The collection of all the entities
is called the simulation. The most prominent entity types are Transactions
and Blocks, because simulations, to a large extent, consist of many
Transactions moving from one Block into the next. Transactions are the
only entity types which can be deleted from the simulation. In all, there are
a dozen or so entity types, and a simulation may contain many instances
of any entity type. To be effective in creating simulations you must
understand the properties of each of the GPSS entities and how to use
GPSS Blocks in order to cause interactions among the entities.

GPSS entities are numbered. When you use a name to refer to an entity,
the integer value associated with the name is used to find the entity.
However you do not normally assign these integer values to names,
although the EQU statement enables you to do so. GPSS World normally
assigns a unique value greater than or equal to 10,000.

Most GPSS entities are created automatically when needed. For example,
a reference to a Facility Entity using the name Barber will cause a Facility
to be created if none existed before. This convenience can sometimes
cause your simulation to use a lot of virtual memory due to a bug in your
GPSS model. Your simulations can be extremely large. The use of virtual
memory provides for simulations taking up to half a gigabyte (512
Megabytes).

Some entities must be specifically declared before they can be used.
Generally these have an attribute, such as size, which must be made
known to the Simulation Object. The name in the label field, called an
Entity Label, is then used to refer to the entity.

The following entities must be declared before they can be used:

• Storage entities must be declared in
STORAGE Statements.

• Arithmetic Variables must be declared in
VARIABLE Statements.

• "Floating point" Variables must be declared
in FVARIABLE Statements.

• Boolean Variables must be declared in
BVARIABLE Statements.

• Matrices must be declared in MATRIX
Statements, or Temporary Matrix PLUS
Declarations.

• Tables must be declared in TABLE
Statements.

• Qtables must be declared in QTABLE
Statements.

• Functions must be declared in FUNCTION

and Function Follower Statements.

• Transaction Parameters must be declared in
ASSIGN, MARK, READ, SELECT, SPLIT,
COUNT or TRANSFER SUB Blocks before
they are referenced.

Some entity types bear one or more special relationships to Transactions.
Storage and Facility Entities can be partially or wholly owned by
Transactions. Other Transactions may then come to rest in the model
while they wait for ownership. It is up to you to assure that ownership is
eventually released by the original owners, by causing them to enter
RELEASE, RETURN, or LEAVE Blocks. Otherwise, the simulation may
not complete successfully. Some Blocks such as PREEMPT and
FUNAVAIL have options which divert the path of the owning Transaction.
However, it is still up to you to provide for the release of the owned entity.

 4.1. Transaction Entities
Transactions move from Block to Block in a simulation in a manner which
represents the real-world system you are modeling. Once a Transaction
begins to move in the simulation, it continues to enter Blocks as long as it
can. During a simulation, the Transaction which is attempting from Block
to Block is called the Active Transaction. If a Transaction fails to find
favorable conditions when it attempts to enter a Block, it may come to
rest. Then, another Transaction is chosen to begin to move through the
simulation until it, in turn, comes to rest.

Transactions are numbered sequentially throughout a session starting
with 1. A CLEAR statement begins the numbering of Transactions at 1
again.

The behavior of a Transaction is determined somewhat by several state
variables called Transaction Attributes. The important attributes of
Transactions are:

• Parameters - Transaction Parameters are a set of values
associated with a Transaction. Each Transaction may have
any number of Parameters. Each Parameter has a
Parameter Number, by which it is referenced, and a value.
The Parameter Number is a positive integer. The value of
any Parameter of the active Transaction may be returned by
the SNA PParameter where Parameter is the name or
number of the Parameter. If a Block operand specifies
Parameter name or number as the desired value,
P$Parameter or PParameter should not be used, use only
the Parameter Name or Number by itself.

For efficiency, you can allow GPSS World to directly access
Parameters by using Parameter Blocks in your simulation. A
Parameter Block is an array of contiguous Parameters that
are allocated and freed as a single segment of memory.
When you create the first Parameter, whose Parameter
Number is in range, all the others Parameters in the
segment are allocated as well. When you reference a
Parameter in a Parameter Block, the Simulation Object can
go directly to it, rather than having to check each Parameter
individually. This can save a lot of time. All you have to do to
use Parameter Blocks is to declare them in the Simulate

Page of the Model Settings Notebook. This is discussed in
Chapter 2.

Parameters are used in GPSS indirect addressing. When
the number of the desired GPSS entity is kept as a
Parameter value of the Active Transaction, the name or
number of the desired GPSS entity specifier can be
replaced with an indirect reference to the Transaction
Parameter. There is a more detailed description of this in
Section 3.4.

Transaction Parameters must be created and assigned
values before they can be referenced. ASSIGN, MARK, and
TRANSFER SUB, SELECT, SPLIT and COUNT Blocks
create a Transaction Parameter if one does not exist.

• Priority - the priority of a Transaction determines the
preference it receives when it and other Transactions are
waiting for the same resource. Transactions with higher
priority values receive preference. The most important
priority queues in the simulation are the Current Events
Chain, Facility Delay Chains, and Storage Delay Chains.
The Future Events Chain is not a priority chain. These
structures are explained in more detail in Chapter 9. The
effect of priority is that a Transaction will be chosen ahead
of lower priority Transactions when a new Active
Transaction, or a new Facility or Storage owner must be
chosen. Transactions within a priority are usually scheduled
first come, first served.

• Mark Time - The absolute clock time that the Transaction
first entered the simulation or entered a MARK Block with no
A operand.

• Assembly Set - A positive integer kept internally in each
Transaction. Assembly Sets are used to synchronize
Transaction in ASSEMBLE, GATHER, and MATCH Blocks.
When a Transaction is created by a GENERATE Block, its
Assembly Set is set equal to its Transaction Number. When
a Transaction is created by a SPLIT Block, its Assembly Set
is set equal to that of the parent Transaction. A Transaction
can modify its Assembly Set by entering an ADOPT Block.

• Delay Indicator - A flag kept in each Transaction that is
set by Block entry refusal, and is reset by entry into
TRANSFER SIM Block. It is used by TRANSFER SIM
Blocks to redirect Transactions.

• Trace indicator - A flag kept in each Transaction that
causes a trace message to be generated each time the
Transaction enters a Block. The Trace Indicator is set by a
TRACE Block and reset by an UNTRACE Block.

• Current Block - The Entity Number of the Block which
contains the Transaction.

• Next Block - The Entity Number of the Block which the
Transaction will attempt to enter next.

• Chains - The state of a Transaction is determined to some
degree by the chains on which it resides. Chapter 9 contains
a more detailed description of Transaction chains. A
Transaction is said to be in exactly one of several states:

• ACTIVE - The Transaction is the highest
priority Transaction on the Current Events
Chain.

• SUSPENDED - The Transaction is waiting
on the Future Events Chain or the Current
Events Chain to become the active
Transaction.

• PASSIVE - The Transaction has come to
rest in the simulation on a User Chain, Delay
Chain, or Pending Chain.

• TERMINATED - The Transaction has been
destroyed and no longer exists in the
simulation.

In addition, there is another state which is not mutually exclusive with the
others:

• PREEMPTED - The Transaction has been
preempted at a Facility and is on one or more
interrupt Chains.

The Active Transaction
At any instant during the discrete phase of a simulation, one specific
Transaction is attempting to enter a new GPSS Block. That Transaction is
called the Active Transaction. Generally, the active Transaction moves as
far as it can through the simulation. When it cannot move further, another
Transaction is chosen to be the Active Transaction. There can be no more
than one Active Transaction.

More specifically, the Active Transaction is the highest priority Transaction
on the Current Events Chain when the last Block scheduling occurred.
This is described in more detail in Chapter 9.

Related SNAs
The SNAs associated with Transactions are:

• A1 - Assembly Set. A1 returns the Assembly Set of the
Active Transaction.

• MBEntnum - Match at Block. MBEntnum returns a 1 if
there is a Transaction at Block Entnum which is in the same
Assembly Set as the Active Transaction. MBEntnum returns
a 0 otherwise. This SNA class should not be used in a
Refuse Mode GATE or TEST Block condition test, you
should use MATCH Blocks instead.

• MPParameter - Transit Time, Parameter. Current absolute
system clock value minus value in Transaction Parameter

Parameter.

• M1 - Transit Time. M1 returns the absolute system clock
minus the "Mark Time" of the Transaction.

• PParameter or *Parameter - Parameter value. PParameter
or *Parameter returns the value of Parameter Parameter of
the Active Transaction.

• PR - Transaction priority. The value of the priority of the
Active Transaction.

• XN1 - Active Transaction. The Transaction Number of the
Active Transaction.

 4.2. Block Entities
The GPSS Block entity is the basic structural element of the simulation. It
is useful to think of a GPSS model by its Block diagram. This is the
connected network of Block symbols which correspond to the positions of
Block entities in the simulation. Representations of the Block diagram can
be viewed in the Block Input Window or a Blocks Window. Each
Transaction in the model is contained in exactly one Block, but most
Blocks may contain many Transactions.

The sequence of Blocks encountered by various Transactions determines
the nature and much of the outcome of any simulation. Each Transaction
enters one Block then the next, until it is TERMINATEd or the simulation
ends. Transactions occasionally must wait in a Block until conditions are
favorable for entry into the next Block. This may happen in any of several
ways, the details of which are better described in Chapter 9.

Each type of Block is associated with an action that transforms other
entities in the simulation. These actions are described in Chapter 7 and
are supervised by the Transaction Scheduler, described in Chapter 9. In
general, a Block first determines if the active Transaction can enter. If so,
several Block, Transaction, and system wide statistics are updated. Then
the Block-specific action occurs and the Transaction�s next Block is
chosen. Usually, the "Next Sequential Block" (NSB) is scheduled.

The permanent Blocks in a simulation are created during the Initial Model
Translation from the Block Statements in the model. The order of Blocks
in the Translated simulation is the same as the order of Block Statements
encountered by the Translator. Line numbers are ignored by GPSS
World.

Block Statements sent to an existing simulation create a one-time
temporary Block in a mode called "Manual Simulation". Such interactive
Statements cause the active Transaction to attempt a Block entry and
then destroy the Block. In this way, Block statements can be used
interactively to control the simulation. After the Block action occurs, the
active Transaction resumes its old path in the model unless you had
entered a TRANSFER statement or some other Block statement with an
alternate destination. This is discussed further under manual simulation in
Chapter 2.

Related SNAs
The SNAs associated with Blocks are:

• NEntnum - Block entry count. The total number of
Transactions which have entered Block Entnum is returned.

• WEntnum - Current Block count. The current number of
Transactions in Block Entnum is returned.

 4.3. Facility Entities
A Facility is an entity which has several attributes, the most important of
which is ownership. A Facility may be owned by a single Transaction, in
which case it is said to be busy. Or it may not be owned at all, in which
case it is said to be idle. Unlike a Storage Entity, a Facility cannot be freed
by a Transaction which never owned it. Transactions acquire ownership of
a Facility by successfully entering a SEIZE or PREEMPT Block. A
PREEMPT Block has the power to displace the existing owner of the
Facility. If a Transaction cannot acquire ownership, it comes to rest on a
Facility Transaction Chain.

A Facility has several waiting lines for Transactions which are waiting for
some Facility-oriented event to occur. Each Facility has a Delay Chain for
normally waiting Transactions, a Pending Chain for Interrupt Mode
preemptions which were not allowed, and an Interrupt Chain for
previously preempted Transactions. Transactions waiting on a Delay
Chain, a Pending Chain, or an Interrupt Chain are said to be "in
contention" for the Facility. Each Transaction which owns a Facility must
eventually give up ownership by entering a RELEASE or a RETURN
Block. Since a contending Transaction will generally become the owner of
the Facility, contention for a Facility carries the obligation of eventually
releasing the Facility.

Those Transactions which fail in their attempt to enter a SEIZE Block
come to rest in priority order on the Delay Chain of the Facility. When a
Facility is freed by an owning Transaction, the next owner is chosen from
occupants of the Facility�s Transaction chains. The pending Interrupt
Mode preemptors are chosen first, followed by previously preempted
Transactions, followed by Transactions waiting normally in priority order
on the Delay Chain.

Entity States
A Facility that is owned by a Transaction is in the "busy" state. If a Facility
is not owned by a Transaction, it is in the "idle" state.

A Facility may be available or unavailable. When it is available,
Transactions acquire and give up ownership of the Facility normally.
When the Facility is unavailable, ownership is not given to newly arriving
Transactions. FAVAIL Blocks are used to place a Facility in the available
state, and FUNAVAIL Blocks are used to place it in the unavailable state.
Any Transactions present at the Facility at the time it was made
unavailable are disposed of as specified in the FUNAVAIL Block
operands.

Related Blocks
There are several GPSS Blocks which can be used with Facilities:

• SEIZE Blocks attempt to take ownership of a Facility.

• RELEASE Blocks relinquish ownership of a Facility.

• PREEMPT Blocks attempt to take ownership of a Facility,
possibly displacing the existing owner.

• RETURN Blocks relinquish ownership of a Facility.

• FAVAIL Blocks place a Facility in the available state.

• FUNAVAIL Blocks place a Facility in the unavailable state.

Related SNAs
The SNAs associated with Facilities are:

• FEntnum - Facility busy. If Facility Entnum is currently
busy, FEntnum returns 1. Otherwise FEntnum returns 0.

• FCEntnum - Facility capture count. The number of times
Facility Entnum has been SEIZEd or PREEMPTed by a
Transaction.

• FIEntnum - Facility Entnum interrupted. If Facility Entnum
is currently preempted by a Transaction in an Interrupt Mode
PREEMPT Block, FIEntnum returns 1. Otherwise FIEntnum
returns 0.

• FREntnum - Facility utilization. The fraction of time Facility
Entnum has been busy. FREntnum is expressed in
parts-per-thousand and therefore returns a real value
between 0 and 1000.

• FTEntnum - Average facility holding time. The average
time Facility Entnum is owned by a capturing Transaction.

• FVEntnum - Facility in available state. FVEntnum returns 1
if Facility Entnum is in the available state, 0 otherwise.

 4.4 Function Entities
GPSS Function Entities are used to return a value derived from some
argument, such as a random number. Actually, any SNA may be used as
an argument. A Function is defined by a FUNCTION Command followed
by one or more Function Follower Statements. The A operand of the
FUNCTION Statement specifies the argument, and the B operand of the
FUNCTION statement specifies the Function type and the number of data
pairs to appear on the Function Follower Statements. It is the numbers,
names, and/or SNAs in the Function Follower Statements that complete
the definition of the function entity.

For many purposes, it is more convenient to use PLUS Procedures than
Function Entities. The PLUS Language is described in Chapter 1.

However, GPSS Functions are well suited for use as list based functions
and empirical probability distributions. In addition, a GPSS Function may
be much more efficient in terms of computer time than an equivalent
Procedure.

There are 5 different types of function entities:

• Type C - "Continuous" valued Function. Performs a linear
interpolation. A random argument is a special case.

• Type D - Discrete valued Function. Each argument value
or probability mass is assigned an separate value. A random
argument is a special case.

• Type E - Discrete, "attribute valued" Function. Each
argument value or probability mass is assigned an SNA to
be evaluated. A random argument is a special case.

• Type L - List valued Function. The argument value is used
to determine the list position of the value to be returned.

• Type M - List valued Function. The argument value is used
to determine the list position of the SNA. This SNA is
evaluated and returned as the result of the function.

A Function used in operand B of an ADVANCE or GENERATE Block is
called a "Function Modifier". The double precision floating point result of
the function is multiplied by the evaluated A operand. The result is then
used as the time increment required by the Block.

The values specified in a FUNCTION declaration, i.e. in Function Follower
statements, are kept internally as double precision floating point values.
These values have a precision limited to approximately 15 decimal digits
and a magnitude limited to 306 decimal digits. Linear interpolation when
evaluating a random function entity involves a random fraction from
0-.999999 taken from the specified random number generator. This
random number is multiplied by the interpolation factor and added to the
base of the interval.

The FUNCTION Command is discussed in more detail in Chapter 6

Related SNA
The SNA associated with functions is:

• FNEntnum - Function. Result of evaluating Function
Entnum.

 4.5. Logicswitch Entities
A Logicswitch Entity is the simplest entity with only two states: "Set" or
"Reset". There are BLOCKS which alter a Logicswitch and SNAs which
return the state of a Logicswitch.

Logicswitches are given the value of 0 when created, or when a CLEAR
Command (without the OFF option) is sent to the Simulation Object.

Related Block
• LOGIC Blocks set, reset, or invert the state of a Logicswitch Entity.

Related SNA
The SNA associated with Logicswitches is:

• LSEntnum - Logicswitch set. LSEntnum returns 1 if
Logicswitch is in the "set" state, 0 otherwise.

 4.6. Matrix Entities
A Matrix Entity is an array of elements, each of which can take on a value.
The size of a Matrix is limited by the Maximum Memory Request in the
Simulate page of the Model Settings Notebook. You can adjust this if you
need to increase the permitted matrix size.

Matrices can have up to 6 dimensions, and can be global and permanent,
or local and temporary. A permanent Matrix Entity is defined by a MATRIX
Command in the model, or one sent to an existing simulation. Such Matrix
Entities have global scope, and can be referenced anywhere in the model.
The elements of global Matrices are given the value of 0 when created, or
when a CLEAR Command (without the OFF option) is sent to the
Simulation Object.

Temporary Matrices are defined by Temporary Matrix Declarations in
PLUS Procedures. They are created when a Procedure is invoked, and
destroyed afterward. They have local scope, and can be referenced only
within the Procedure in which they are declared. Elements of Temporary
Matrices are not initialized. You cannot use one in an Expression until you
assign it a value.

Related Block
• MSAVEVALUE Blocks modify or assign a value to an
element of a Matrix Entity.

Related Command
• INITIAL Commands assign a value to a matrix element,
without the need for an Active Transaction.

Related PLUS Statements
• Temporary Matrix Declarations are used to create
temporary Matrices in PLUS Procedures.

• Assignment Statements can assign a value to any element
of any Matrix defined globally or local to the Procedure.

Related SNA
The SNA associated with matrices is:

• MXEntnum(m,n) - Matrix Savevalue. The value in row m,
column n of Matrix Entity Entnum is returned. In Matrices of
more than 2 dimensions, all other indices are assumed to be
1. Unlike MX class SNAs, PLUS Expressions can refer to
any element of a higher dimension matrix.

 4.7. Queue Entities
Queue Entities must not be confused with QUEUE Blocks, which are
instances of Block entities. Queue Entities are used primarily for the
collection of statistics. An accumulation of current count, total entries, total
entries finding a zero current count, the maximum count, and the
count-time product. QUEUE and DEPART Blocks are used to update the
statistics associated with a Queue Entity. The usual procedure is to
"sandwich" a SEIZE, PREEMPT, or ENTER Block between QUEUE and
DEPART Blocks. Then the queuing statistics for the associated Facility or
Storage Entity are kept and reported automatically. Several basic Queue
Entity statistics can be retrieved by SNA calls. Also, frequency
distributions can be accumulated by the use of QTABLE Commands.

Entity States
The most important attribute of a Queue Entity is its content. The content
of a Queue Entity changes when QUEUE and DEPART Blocks are
entered. It can be thought of as the count of items in a waiting line.
Several statistics related to the content are maintained automatically.
These are accessible through the SNAs described below.

Related Blocks
There are several GPSS Blocks which can be used with Queue Entities:

• QUEUE Blocks increase the content of a Queue Entity.

• DEPART Blocks reduce the content of a Queue Entity.

Related SNAs
The SNAs associated with Queue Entities are:

• QEntnum - Current Queue content. The current count
value of Queue Entnum.

• QAEntnum - Average Queue content. The time weighted
average count for Queue Entnum.

• QCEntnum - Total queue entries. The sum of all Queue
entry counts for Queue Entnum.

• QMEntnum - Maximum Queue contents. The maximum
count of Queue Entnum. This is the "high water mark".

• QTEntnum - Average Queue residence time. The time

weighted average of the count for Queue Entnum.

• QXEntnum - Average Queue residence time excluding
zero entries. The time weighted average of the count for
Queue Entnum not counting entries with a zero residence
time.

• QZEntnum - Queue zero entry count. The number of
entries of Queue Entnum with a zero residence time.

 4.8. Storage Entities
A Storage Entity is associated with a number of storage units which are
allocated and returned by Transactions. Storage Entities can be used as
"token pools" for controlling the flow of Transactions in the model.

When a Transaction ENTERs a Storage Entity, it utilizes or occupies one
or more storage units of the Storage Entity. A Transaction is denied entry
into an ENTER Block if its storage demand cannot be met. Such a
Transaction comes to rest on the Delay Chain of the Storage Entity. Then
it must wait until other Transactions free enough storage by entering
LEAVE Blocks.

Storage capacity may be released by any Transaction, even if it had not
previously ENTERed the Storage Entity. However, if more capacity is
released than was declared in the STORAGE Command an Error Stop
occurs.

When a Transaction enters a LEAVE Block and gives up one or more
storage units, other Transactions are sought which can have their storage
demands satisfied. A "first-fit-with-skip" discipline is used to schedule
Transactions which are waiting. This means that each Transaction on the
Delay Chain is tested for fit in the Storage Entity, starting with the highest
priority. If a fit is found, the Transaction is removed from the Storage
Delay Chain, allowed to enter the ENTER Block, and placed on the CEC
behind its priority peers. Then the next Transaction on the Storage Delay
Chain is tested.

ENTER and LEAVE Blocks are used to update the statistics associated
with a Storage Entity and several SNAs are available which return derived
statistics.

Storage entities must be defined by a STORAGE Command.

Entity States
A Storage Entity is empty when all storage units are allocatable and full
when no storage units are allocatable. A Storage Entity may be neither
empty nor full. In addition, a Storage Entity is either available or
unavailable. Storage requests are granted only if the Storage Entity is in
the available state.

Related Blocks
There are several GPSS Blocks which can be used with Storage Entities.

• ENTER Blocks attempt to increase the contents of (place
tokens in) a Storage Entity.

• LEAVE Blocks decrease the contents of (remove tokens
from) a Storage Entity.

• SAVAIL Blocks place a Storage Entity in the available
state.

• SUNAVAIL Blocks place a Storage Entity in the
unavailable state.

Related SNAs
The SNAs associated with Storage Entities are:

• REntnum - Unused storage capacity. The storage content
(or spaces available for use by "tokens") available for use by
entering Transactions at Storage Entity Entnum.

• SEntnum - Storage in use. SEntnum returns the amount of
storage content (or "token" spaces) currently in use by
entering Transactions at Storage Entity Entnum.

• SAEntnum - Average storage in use. SAEntnum returns
the time weighted average of storage capacity (or "token"
spaces) in use at Storage Entity Entnum.

• SCEntnum - Storage use count. Total number of storage
units that have been acquired from Storage Entity Entnum.

• SEEntnum - Storage empty. SEEntnum returns 1 if
Storage Entity Entnum is completely unused, 0 otherwise.

• SFEntnum - Storage full. SFEntnum returns 1 if Storage
Entity Entnum is completely used, 0 otherwise.

• SREntnum - Storage utilization. The fraction of total usage
represented by the average storage in use at Storage Entity
Entnum. SREntnum is expressed in parts-per-thousand and
therefore returns a real value between 0 and 1000,
inclusively.

• SMEntnum - Maximum storage in use at Storage Entity
Entnum. The "high water mark".

• STEntnum - Average holding time per unit at Storage
Entity Entnum.

• SVEntnum - Storage Entity in available state. SVEntnum
returns 1 if Storage Entity Entnum is in the available state, 0
otherwise.

 4.9. Savevalue Entities
A Savevalue Entity is associated with a variable that can take on any
value. The value may be assigned or modified by Blocks and may be
returned by an X class SNA.

Savevalues are given the value of 0 when created, or when a CLEAR
Command (without the OFF option) is sent to the Simulation Object.

Related Block
• SAVEVALUE Blocks assign or modify the value of a
Savevalue Entity.

Related Command
• INITIAL Commands assign a value to a Savevalue Entity,
without the need for an Active Transaction.

Related SNA
The SNA associated with Savevalue Entities is:

• XEntnum - Savevalue. The value of Savevalue Entity
Entnum is returned.

 4.10. Table Entities
A Table Entity is a set of integers used to accumulate data for a
histogram. Each integer represents a frequency class in a histogram.

A Table Entity is defined by a TABLE Command.

Related Blocks
• TABULATE Blocks update the histogram data
accumulated in a Table Entity.

Related SNAs
The SNAs associated with tables are:

• TBEntnum - Nonweighted average of entries in Table
Entity Entnum.

• TCEntnum - Count of nonweighted table entries in Table
Entity Entnum.

• TDEntnum - Standard deviation of nonweighted table
entries in Table Entity Entnum.

 4.11. Userchain Entities
A Userchain Entity contains is a special Transaction Chain, called a User
Chain, that can be manipulated by LINK and UNLINK Blocks. Userchains
are useful for modeling complex scheduling and queuing algorithms. They
provide closer control of Transaction queuing than is available with entity
Delay Chains.

A flag called a "Link Indicator" is part of each Userchain Entity. The Link
Indicator is useful for using a User Chain to control the queuing of
Transactions on a resource. It is discussed in detail with the descriptions

of LINK and UNLINK Blocks in Chapter 7.

Related Blocks
There are two GPSS Blocks which can be used with Userchain Entities:

• LINK Blocks conditionally place a Transaction on a User
Chain.

• UNLINK Blocks remove Transactions from a User Chain.

Related SNAs
The SNAs associated with Userchain Entities are:

• CAEntnum - Average Userchain content. The time
weighted average number of chained Transactions for
Userchain Entity Entnum.

• CCEntnum - Total Userchain entries. The count of all
Transactions that have been chained to to the User Chain of
Userchain Entity Entnum.

• CHEntnum - Current Userchain content. The current
number of Transactions chained at User Chainentity
Entnum.

• CMEntnum - Maximum Userchain content. The maximum
number of Transactions chained at Userchain Entity
Entnum. The "high water mark".

• CTEntnum - Average Userchain residence time. The
average duration of Transactions at Userchain Entity
Entnum.

 4.12. Variable Entities
A Variable Entity is a complex expression which can be calculated on
demand. All Variable Entities may be defined from Expressions which
include constants, SNAs, arithmetic library functions and arithmetic and
logical operators. Expressions are discussed in Chapter 8.

A variable is defined by a VARIABLE, FVARIABLE, or BVARIABLE
Command.

• VARIABLE creates a GPSS arithmetic variable entity
which, when evaluated by an SNA call, evaluates the
Expression and returns the overall result. In GPSS/PC
Compatibility Mode, intermediate results are truncated.

• FVARIABLE creates a GPSS "floating point" variable entity
which, when evaluated by an SNA call, evaluates the
Expression and returns the result.

• BVARIABLE creates a GPSS Boolean variable entity
which, when evaluated by an SNA call, evaluates the
Expression, then returns 1 if the result is non zero, 0
otherwise. BVARIABLES return 1 if true, 0 if false.

Related SNAs
The SNAs associated with variables are:

• BVEntnum - Result of evaluating Boolean Variable Entity
Entnum.

• VEntnum - Result of evaluating arithmetic or floating point
Variable Entity Entnum.

 4.13. Numeric Group Entities
A Numeric Group Entity is a set of numeric values. Numeric Groups are
useful for recording events or for describing the state of a process which
you are simulating.

Numeric Group operations are faster for integers than for real values.

Related Blocks
There are several GPSS Block s which can be used with Numeric Groups
Entities:

• JOIN Blocks place a value into a Numeric Group.

• REMOVE Blocks take a value out of a Numeric Group.

• EXAMINE Blocks test values in a Numeric Group.

Related SNA
The SNA associated with Numeric Groups is:

• GNEntnum - Numeric Group count. GNEntnum returns the
membership count of Numeric Group Entity Entnum.

 4.14. Transaction Group
Entities
A Transaction Group is a set of Transactions. There is no limit to the
number of Transaction groups you may have, and no limit to the number
of groups to which a single Transaction may belong. Transaction Groups
are useful for classifying and accessing Transactions. The active
Transaction can test the Transaction Parameters of the members of any
Transaction Group.

Related Blocks
There are several GPSS Blocks which can be used with Transaction
Groups:

• JOIN Blocks place the entering Transaction into a

Transaction Group.

• REMOVE Blocks take some group members out of a
Transaction Group.

• EXAMINE Blocks test members of a Transaction Group.

• SCAN Blocks test and/or modify members of a
Transaction Group.

• ALTER Blocks test and/or modify members of a
Transaction Group.

Related SNA
The SNA associated with Transaction Groups is:

• GTEntnum - Transaction Group count. GTEntnum returns the
membership count of Transaction Group Entnum.

The GPSS World random number streams are generated by a maximal
period 32 bit multiplicative congruential algorithm. The period is 231-2 and
does not include 0. You may include any number of random number
generators in the simulation without declaring them. The initial seed of the
random number generator is the same as the entity number of the random
number generator entity. However, only random number generators
numbered 1 through 7 can be controlled by an RMULT statement.

 4.15. Random Number
Generators
The GPSS World Pseudo-random number generation algorithm is based
on Lehmer�s Multiplicative-Congruential algorithm, with a maximal period.
The algorithm produces pseudo-random numbers in the open interval 0 to
2,147,483,647 and it generates 2,147,483,646 unique random numbers
before repeating itself. There is an additional shuffling step used by GPSS
World. The RN class SNA returns 0-999, inclusively and the evaluation of
random functions uses a random number drawn from 0-.999999,
inclusively.

The important attributes of random number generators are:

• Seeds. Unless changed by an RMULT statement, the
initial seed is equal to the entity number of the random
number generator. For example, RN2 starts with a seed of
2.

• System usage. GPSS World uses Random Number
Generators in the scheduling of time ties, in Fractional Mode
TRANSFER Blocks and to sample random numbers for
GENERATE and ADVANCE Blocks. You can select which
random number generator number is to be used as the
source of the random number. This is set in the "Random"
page of the Model Settings Notebook.

• SNA Values. When accessed as an SNA, a random
integer value 0-999 is returned. You may build larger
random numbers by using Expressions such as
1000#RN2+RN2 to define a new variable entity. The newly
defined random numbers are returned by calls to a V class

SNA. You may find it more convenient to use the built-in
probability distributions in the Procedure Library. They are
discussed in Chapter 8.

• Interpolation values. Fractional values 0-.999999 are
drawn from the random number stream when used for
interpolation in a continuous random Function.

Related SNAs
The SNAs associated with Random Number Generator Entities are:

• RNEntnum - Random number. RNEntnum returns a
random integer 0-999 from Random Number Generator
Entity Entnum.

 4.16. Data Streams
A Data Stream is a sequence of text lines used by a GPSS World
simulation. Each Data Stream is identified by a unique number, so that
many can be processed at the same time within in a single simulation.
Data Stream numbers are arbitrary positive integers, assigned by you.

You can use a Data Stream to read and write to a file, or to maintain a set
of directly accessible data in the memory of your computer.

The basic unit of a Data Stream is the text line, which is a string of
printable characters, including blanks. The built-in library of string
Procedures can be used to manipulate text lines. When a string is used
as a text line, unprintable characters encountered by a READ or WRITE
operations cause the line to be truncated.

Elementary operations involving Data Streams, such as READ, WRITE,
and SEEK each involve a single line of text. Data read from a file is
stripped of any terminating CR or LF character before being brought into
the simulation. Similarly, a CR/LF sequence is added automatically to any
text string written by the simulation. Therefore, you do not need to add
control characters within your simulation. You will pass a text string with
no CR or LF to a WRITE Block, and you will receive a text string with no
CR or LF from a READ Block.

There are twotypes of Data Streams:

1. Input/Output (or just, I/O) Streams for
accessing files,

2. In-Memory Streams for testing, and for
direct access of internal data.

Each Data Stream has a Current Line Position. This is a 1-relative index
to the next line position to be read or written. For example, if a READ is
issued when the Current Line Position is 1, the first text line in the Data
Stream is retrieved. The SEEK Block can be used to change the Current
Line Position in I/O Streams and In-Memory Streams.

A WRITE to an I/O Stream or to an In-Memory Stream is operated in
either Insert Mode or Replace Mode. The Current Line Position is used

slightly differently in these two modes.

There are 5 GPSS Blocks used to process Data Streams: OPEN and
CLOSE, which initialize and complete Data Stream processing,
respectively. READ and WRITE, which add to and retrieve text lines from
the Data Stream, respectively. SEEK is used to set the Current Line
Position in I/O Streams and In-Memory Streams.

 4.16.1 GPSS Blocks for Data Streams

OPEN
The OPEN Block initializes the Data Stream and sets the Current Line
Position to 1.

You determine which type of Data Stream is to be used by how you
specify Operand A of OPEN. This operand requires a string constant to
describe the Data Stream. Remember that String constants are PLUS
Expressions. You must parenthesize any PLUS Expression when you use
it as a GPSS Block Operand.

An I/O Stream is described by a file specification and an In-Memory
Stream is described by a null string.

For example, in the OPEN Block Statement, you could specify

OPEN ("MYFILE.TXT")

to open an I/O Stream, or

OPEN ("")

to open an In-Memory Stream.

If, when you create an I/O Stream, you use a file name without a path, the
directory of the Simulation Object is assumed to be the location of the file.
When an existing file is found, it is completely loaded into virtual memory
during the processing of the OPEN Block. If no file is found, it is assumed
that you are creating one, and processing continues.

CLOSE
The CLOSE Block releases resources used by the Data Stream, and
returns the error code. For IO Streams, it writes the data from virtual
memory to the disk file.

READ
The READ Block retrieves the next text line. In IO and In-Memory
Streams it retrieves the text line at the Current Line Position, and
increments the Current Line Position. If no text line is there, the Active
Transaction takes the Alternate Destination but does NOT store an error
code internally.

WRITE
The WRITE Block passes a line of text to the Data Stream.

The action depends on which mode the WRITE Block operates in. If
Operand D of WRITE is ON, Insert Mode is used. This is the default. If
Operand D is OFF, Replace Mode is used.

Insert Mode
This is the default mode for WRITE Blocks.

Action:

1. Move all text lines at, or after, the Current Line Position down one
position.

2. If the Current Line Position is after the last text line, set it to just after
the last text line in the Data Stream.

3. Place a copy of the new text line at the Current Line Position.

4. Increment the Current Line Position.

Replace Mode

Action:

1. If the Current Line Position is after the last text line, fill any intervening
line positions with null text lines.

2. Delete any text line at the Current Line Position.

3. Place a copy of the new text line at the Current Line Position.

4. Increment the Current Line Position.

SEEK
The SEEK Block sets the Current Line Position. The Current Line Position
is never allowed to be less than 1. Attempts to do so, set it to 1.

 4.16.2. Using Data Streams

You select the type of Data Stream by the way you specify Operand A of
OPEN.

I/O Streams
If you specify a file specification in Operand A of OPEN, an I/O Stream is
created. If you do not include a file path in the specification, GPSS World
assumes you are using the Simulation Object’s directory.

In an I/O Stream, when you issue an OPEN, the whole file is brought into
the memory of your computer. When you CLOSE, the whole file is written
out to disk. Actual file writing only occurs at CLOSE time.

No error occurs if a file cannot be found. In that case, GPSS World
assumes you intend to create one. If you need to verify that the file
existed, you should issue a READ before continuing.

Here�s a simple example using an I/O Stream. This is a small GPSS
model segment that opens a file, reads the first text line from it, issues a
SEEK to text line 20, writes a text line there, and closes.

**

* *

* Read and Modify MYFILE.TXT *

* *

**

GENERATE 1,,,1

OPEN ("MYFILE.TXT"),1,Done ;Copy the file to memory

READ Text_Parm,1,Done ;Place text line in parm

SAVEVALUE Opening_Line,P$Text_Parm ;Text line to safeplace

SEEK 20,1 ;Access text line 20

WRITE ("New Line 20"),1,Done ;Replace the line

Done CLOSE Error_Parm,1 ;Copy the file to disk

SAVEVALUE File_Error,P$Error_Parm ;Put in Standard Report

TERMINATE 1

In-Memory Streams
If you use a null string in Operand A of OPEN, you create an In-Memory
Stream. In an In-Memory Stream, all text lines are kept in memory. When
you CLOSE, all lines are deleted.

In operation, an In-Memory Stream works exactly like an I/O Stream,
except that no data is in the stream when you start to use it, and the data
is not saved when you are done. The simulation must load the Stream
with text lines before it can read from it.

In-Memory Streams provide the advantage of direct access to data
utilizing the SEEK Block and allow you to test the use of Data Streams
without actually accessing a file.

 4.16.3. How to Test for Errors

You can choose to handle Data Stream Errors yourself within the
Simulation or you can force the Simulation to Error Stop when one is
encountered. Normally no Error Stop occurs. This is controlled by a
Setting on the Simulation Page of the Simulation’s Settings. To change
this setting choose the Edit / Settings menu item, and check the I/O
Stream Error Stops checkbox.

Errors and other unexpected conditions cause a Data Stream Error Code
to be stored internally, and cause the Active Transaction entering the
Block to take the Alternate Block Destination, if any. A CLOSE Block can
retrieve the Data Stream�s error code. Only the first non zero Error Code
is remembered. All others are discarded.

An Alternate Destination can be specified as Operand C in OPEN,
CLOSE, READ, and WRITE Blocks. The Active Transaction will go to the
Alternate Destination Block, instead of the Next Sequential Block, if an
error condition occurs. If you do not use these operands, you are
essentially ignoring error conditions, for the time being. Normally, you
should use the Alternate Destination operands to send the Active
Transaction to a CLOSE Block which retrieves the Error Code. You could
then place the code in a Savevalue and terminate the simulation.

When the Active Transaction enters a CLOSE Block, the stored Error
Code is placed in a Transaction Parameter. In addition, if the error code is
non zero, and you have specified CLOSE Operand C, the Alternate
Destination will be taken by the Active Transaction.

End of Data
A special case occurs when the Active Transaction enters a READ Block,
but there is no text line at the Current Line Position. This happens
normally when you have read all the text lines in a file. This condition
causes the Alternate Destination to be taken by the Active Transaction,
but does NOT cause an error code to be stored internally.

Error Codes
• 0 - No Errors.

• 10 - OPEN Error. Filename too long.

• 11 - OPEN Error. Error while reading an external file.

• 12 - OPEN Error. Memory request was denied while trying
to read an existing file.

• 13 - OPEN Error. Stream is already open.

• 21 - READ Error. A memory request was denied while
trying to perform a READ.

• 22 - READ Error. Data Stream has not been successfully opened.

• 31 - WRITE Error, A memory request was denied while
trying to

perform a WRITE.

• 32 - WRITE Error. Data Stream has not been successfully
opened.

• 41 - CLOSE Error. An I/O Error prevented the file from
being written to disk.

• 43 - CLOSE Error. Data Stream has not been successfully
opened.

• 51 - SEEK Error. Data Stream has not been successfully
opened.

 4.17. Continuous Simulation
GPSS World can automatically integrate systems of ordinary differential
equations. Integration of User Variables in GPSS World is extremely
easy. One or more INTEGRATE statements, and variable initialization, is
all that is needed. Integration is done automatically by a modified variable
step 5th order Runge-Kutta-Fehlberg method, RKF4(5).

Systems of ordinary differential equations, of any order, can be simulated.
Plot and Expressions Windows are available for online viewing of the
states of variables.

 4.17.1. How to Set up an Integration

There are two things to do in order to set up the automatic integration of a
User Variable. You must assert an INTEGRATE Command and you must
give the variable an initial value.

Let us assume you have a simple ordinary differential equation of the form

y� = f(-)

where f(-) is an Expression, possibly involving the System Time, i.e. the
AC1 System Numeric Attribute, and other User Variables. f(-) is the
derivative of y with respect to time.

First, put the derivative in parentheses and set up the INTEGRATE
Command as

Y_ INTEGRATE (f(-))

Second, make sure Y_ has a starting value, such as

Y_ EQU 100.3

Then, when the simulation advances the clock, it automatically sees to it
that the value of the User Variable Y is kept current.

Since several single letter names clash with SNA classes, here we
append an underscore to be sure that the name is unique. All other User
Variables involved in the derivative, must be initialized, as well. PLUS
Assignment Statements can also be used to assign values to User
Variables.

Integrations are automatically begun in the active, or "enabled" state.
However, you can turn an integration ON or OFF while a simulation is
running by using one or more INTEGRATION Blocks. This is discussed in
Chapter 7.

 4.17.2. Basic Concepts

A derivative states how fast a variable is changing. For example, if your
inventory is building up at a rate of 2 units an hour, and your simulation is
in units of seconds, all you need to do is add

 Inventory INTEGRATE (2.0 / 3600)

and

 Inventory EQU 1 00

or whatever the starting Inventory value is.

The rate of change (the derivative) leads GPSS World to automatically
increase the numeric value of Inventory throughout the simulation. When
sales occur, you can simply decease the Inventory using a PLUS
Procedure. The discrete sales event differs fundamentally in that it occurs
with no simulated time duration, reducing the value of Inventory instantly.

Integration takes a lot more computer time than the evaluation of a closed
form expression. In an example as simple as this one where the variable
can be calculated as a function of time, it is much faster to simply
calculate the value of the variable given the simulated time, than to
integrate the User Variable. Integration should generally be reserved for
those cases where you don�t have the solution of the differential equation.

 4.17.3. Threshholds

Integrated User Variables create Transactions when they cross
thresholds. This makes it easy to use a continuously modeled value to
trigger discrete events.

Each INTEGRATE Command may have zero, one, or two numeric
thresholds. Operands B and C can be used to specify threshold 1, and/or
operands D and E can be used to specify threshold 2. In either case, the
first operand of the pair determines the value of the threshold, the second
indicates the Block which will receive generated Transactions.

During the integration, if the value of the integrated variable crosses the
value of a threshold, from either direction, a new Transaction is created. It
is given a priority of 0, and is scheduled to enter the Block associated with
that threshold in the INTEGRATE Command. The Transaction�s time of
entry into the model is estimated by a linear interpolation. To improve
accuracy, the integration ministep is decreased when a threshold is
imminent.

Thresholds may be constants, parenthesized Expressions, or even
Procedure Calls. In addition, the Transactions generated by a threshold
crossing may be used to move the threshold.

Both thresholds behave identically; there is no need to specify one as
upper and the other as lower. It is the crossing of the threshold (in either
direction) that triggers a Transaction arrival. If the direction of crossing is
meaningful to your model, you will have to either keep track of the state of
the integrated variable, or test for the direction of crossing when the
Threshold Event occurs.

 4.17.4 Higher Order Equations

You must reduce the order of higher order ordinary differential equations.
If you have higher order differential equations, before you enter them into
GPSS World, you should rewrite them as a system of first order
equations. This is relatively easy, and requires that you introduce a new
variable for each of the intermediate derivatives.

For example, if you have

25 y��� - 6 y� + y = 0.

Let

u = y �

v = u � = y��

For even higher orders, we would continue to introduce variables.

Then, substituting into the original equation and using only one first order
derivative, we have

25 v� - 6 u + y = 0.

Now we have the following system of equations:

y� = u

u� = v

v� = 6/25 u - 1/25 y

In GPSS World, you could use the following Statements

Y_ INTEGRATE U_

U_ INTEGRATE V_

V_ INTEGRATE ((6/25) # U_ - (1/25) # Y_)

To these, you must add EQU Statements that initialize U_, V_, and Y_

 4.17.5. Continuous Only

If you want to do a purely continuous simulation, you still need to create a
termination condition by entry into a TERMINATE Block. Therefore,
include a GPSS segment such as

GENERATE End_Time

TERMINATE 1

In the model, which is begun by a

START 1

 4.17.6. Phases

Simulations run in alternate continuous and discrete phases. At any
instant where events are scheduled, the simulation runs in a discrete
phase. The clock does not advance within an instant in a discrete phase.
Between instants, the simulation runs in a continuous phase, during which
the integrations proceed in small time increments called ministeps. Plotted
integration variables report intermediate values at the end of ministeps.

When a threshold crossing generates a Transaction, the simulation goes
into a discrete phase. In this manner, the continuous and the discrete
phases can be closely interrelated. Conversely, User Variables can be
assigned new values in a discrete phase even if they are being integrated.
You can do so using an EQU Command, or a PLUS Assignment
Statement. If you want such assignments to occur within the running of
the simulation, you must define a PLUS Procedure that makes the
assignment. For example, if you defined a PLUS Procedure as

 PROCEDURE SetPop(Pop_Level)Foxes
= Pop_Level ;

you could reinitialize the FOXES User Variable by entering a PLUS Block,
such as

 PLUS (SetPop(200))

or by using a parenthesized Expression that invokes SetPop() in some
other kind of Block.

 4.17.7. Integration Error

A Model Setting called the Integration Tolerance is used to limit the local
truncation error of integrations. This setting applies to all integrations
performed during the simulation. If you make the tolerance smaller, the
integrations will take longer, but will be more accurate. This is set in the
Simulate Page of the Model Settings Notebook.

 CHOOSE View / Settings / Model

Then select the Simulate page. Then fill in the desired value in the entry
box marked "Integration Tolerance". The installation default is 10-6.

 4.17.8. Related Command

• INTEGRATE Commands set up automatic integrations.

4.17.7. Related Block

• INTEGRATION Blocks turn the integration of variables ON
or OFF.

Chapter 5 - GPSS World Windows
This chapter is a display of all the major windows in GPSS World. The general operation of GPSS World is described in Chapter 2
of this manual.

Figure 5�1. The Main Window

Figure 5�2. The Model Text Window

Figure 5�3. The Simulation Journal Window

Figure 5�4. The Report Window

Figure 5�5. Details View of the Blocks Window

Figure 5�6. Non-detail View of the Blocks Window

Figure 5�7. The Expressions Window

Figure 5�8. The Edit Expressions Dialog

Figure 5�9. Detail View of the Facilities Window

Figure 5�10. Nondetail View of the Facilities Window

Figure 5�11. Detail View of the Logicswitches Window

Figure 5�12. Nondetail View of the Logicswitches Window

Figure 5�13. The Matrix Cross Section Dialog

Figure 5�14. The Matrix Window

Figure 5�15. The Plot Window

Figure 5�16. The Edit Plot Dialog

Figure 5�17. Detail View of the QueuesWindow

Figure 5�18. Nondetail View of the QueuesWindow

Figure 5�19. Detail View of the SavevaluesWindow

Figure 5�20. Nondetail View of the SavevaluessWindow

Figure 5�21. Detail View of the Storages Window

Figure 5�22. Nondetail View of the Storages Window

Figure 5�23. The TableWindow

Figure 5�24. The User Stops Window

Figure 5�25. The Current Events Chain Snapshot

Figure 5�26. The Future Events Chain Snapshot

Figure 5�27. The Numeric Groups Snapshot

Figure 5�28. The Transaction Snapshot

Figure 5�29. The Userchains Snapshot

Figure 5�30. The Transaction Groups Snapshot

Figure 5�31. The Journal Window

Chapter 6 - GPSS
Commands
You use Commands to define entities and to control the
running of simulations. Commands may be part of the Initial
Model Translation, or they may be sent as Interactive
Statements to an existing simulation.

As part of the Initial Model Translation, Commands are sent to
the Simulation Object as a group, after all the Blocks have
been sent. Otherwise, they are sent when you enter them.
These are called Interactive Commands.

To send a Command to an existing simulation use the
Command menu in the Model Window. This will Translate a
Command and send it to the Simulation Object for execution.

Every simulation has a Command Queue associated with it.
The Simulation Object performs each Command on the queue
one after the other, until it is HALTed or until it runs out of
things to do. Even Commands in the Model File, other than
HALT and SHOW, are placed on the Command Queue before
they are performed.

Commands are either Immediate or Queued. Immediate
Commands, such as HALT and SHOW, are performed as soon
as they are received by the Simulation Object Other
Commands are queued. They are placed at the end of a list of
Commands which have not yet been completed. When a
Simulation Object has no more Immediate Commands to do on
behalf of a simulation, it performs the next Command on the
simulation�s Command Queue. If a simulation is running when
an Immediate Command is received, the simulation is
temporarily suspended while the Immediate Command is
performed.

The HALT Command is a special case. Not only is it an
Immediate Command, but it also deletes any remaining
Commands still on the Command Queue. After a HALT
Command is performed, the Simulation Object has nothing
more to do on behalf of that simulation.

It is often convenient to put a list of frequently used Commands
in a small text file. You can then use an INCLUDE Command to
send the whole sequence to the Simulation Object. Even
easier, you can load a function key with an INCLUDE
Command, and have the whole Command list performed by a
single keystroke. Chapter 2 shows you how to do this.

The Commands are:

BVARIABLE - Define a Boolean Variable Entity.

CLEAR - Reset statistics and remove Transaction.

CONTINUE - Resume the simulation.

EQU - Assign a value to a User Variable.

EXIT - End the GPSS World Session.

FUNCTION - Define a Function Entity.

FVARIABLE - Define an Fvariable Entity.

HALT - Stop the simulation and delete all Queued Commands.

INCLUDE - Read and Translate a secondary Model File.

INITIAL - Initialize or modify a Logicswitch, Savevalue, or
Matrix Entity.

INTEGRATE - Automatically integrate a time differential in a
User Variable.

MATRIX - Define a Matrix Entity.

QTABLE - Define a Qtable Entity.

REPORT - Set the name of the Report File or request an
immediate report.

RESET - Reset the statistics of the simulation.

RMULT - Set the seeds of the first 7 Random Number
Generators

SHOW - Evaluate and display Expression.

START - Set the Termination Count and begin a simulation.

STEP - Attempt a limited number of Block entries.

STOP - Set a Stop Condition based on Block entry attempts.

STORAGE - Define a Storage Entity.

TABLE - Define a Table Entity.

VARIABLE - Define a Variable Entity.

Operands
Statements usually have one or more operands which you
must fill in. Most operands have several different forms which
are valid. In the descriptions which follow, a valid class of
operands may be described by an italicized word. You must
choose a member of the class and type it into the Operand
field. For example, if one of the valid forms of an operand is
given as PosInteger, you could type:

21

The italicized words are usually suggestive, but you may need
to refer to the formal definition in the Appendix.

Windows
A wide variety of windows are available for you to observe the
effects of Commands on your simulations. In general, windows
are specialized by the entity type.

• Model Window - Text View � Full screen
textual model editor.

• Journal Window - Record session events.

• Blocks Window - Online view of Block
dynamics.

• Expressions Window - Online view of values of
Expressions.

• Facilities Window - Online view of Facility Entity
dynamics.

• Logicswitches Window - Online view of
Logicswitch Entity dynamics.

• Matrix Window - Online view of the dynamics of
a Matrix cross-section.

• Plot Window - Online view of a plot of up to 8
Expressions.

• Queues Window - Online view of Queue Entity
dynamics.

• Savevalues Window - Online view of Savevalue
Entity dynamics.

• Storages Window - Online view of Storage
Entity dynamics.

• Table Window - Online view of Table Entity
dynamics.

• Transaction Snapshot - Picture of the state of a
Transaction in the simulation.

• CEC Snapshot - Picture of the state of the
Current Events Chain in the simulation.

• FEC Snapshot - Picture of the state of the
Future Events Chain in the simulation.

• Numeric Groups Snapshot - Picture of the state
of the Numeric Groups in the simulation.

• Userchains Snapshot - Picture of the state of
the Userchain Entities in the simulation.

• Transaction Groups Snapshot - Picture of the
state of the Transaction Groups in the simulation.

BVARIABLE
A BVARIABLE Command defines a
Bvariable Entity.

NAME BVARIABLE X

Label/Operand
NAME - Entity Label for this entity. Required. The field must be
Name.

X - Expression. Required. Must be Expression. Expressions
are discussed in Section 3.4.

Example
LINE11 BVARIABLE (BV$CLK�AND�BV$PHASE2)

This example defines a Bvariable Entity which is to be
evaluated when a BV$LINE11 SNA is encountered. When it is
evaluated, the result is 1 ("TRUE") if the CLK and the PHASE2
Bvariable Entities are TRUE when evaluated. Otherwise, the
LINE11 Bvariable returns a 0 ("FALSE").

Action
The BVARIABLE Command is a Queued Command. When the
Simulation Object receives one, it places it at the end of the
simulation�s Command Queue.

When a BVARIABLE Command is performed, the Simulation
Object creates or redefines a GPSS Bvariable Entity. The
Bvariable Entity so created is evaluated when a System
Numerical Attribute in the BV class, referring to this particular
entity, is encountered by the Simulation Object.

The Expression contained in a BVARIABLE Command is
evaluated according to the rules in Chapter 3, and may include
calls to PLUS Procedures or to Library Procedures. The final
result is converted to integer 0, if 0, or to integer 1 if the result
was not zero. The evaluation proceeds differently in GPSS/PC
Compatibility Mode.

Expressions must be well-formed according to the rules of
elementary algebra. A formal definition can be found in the
Appendix. You may use any of the arithmetic and logic
operators listed in Section 3.4. If SNAs are used in the
Expression field, they are evaluated with respect to the Active
Transaction. A Named Value which has not been explicitly
assigned a value cannot be used as an item in an Expression.
To do so, you must assign a value to it before the Expression is
evaluated. Assignments to User Variables are done by EQU
Commands or in PLUS Procedures.

Expressions in BVARIABLE Command are not limited to logical
operators. They may include arithmetic operators and calls to
Library Procedures. The truth values of TRUE and FALSE are
treated internally as integer 1 and 0, respectively.

Once a Bvariable Entity is created in a simulation, it is never
destroyed. However, it may be redefined later by an interactive
BVARIABLE Command.

GPSS/PC Compatibility
• All SNAs are truncated in GPSS/PC Compatibility Mode.

• In Bvariable Entity evaluation in GPSS/PC Compatibility
Mode, the intermediate results are truncated.

Related SNA
• BVEntnum - Result of evaluating Bvariable
Entity Entnum.

CLEAR
A CLEAR Command returns the
simulation to the unused state.

CLEAR A

Operand
A - ON or OFF. If the A Operand is omitted, ON is assumed.
Optional. The operand must be ON, OFF or Null.

Action
The CLEAR Command is a Queued Command. When the
Simulation Object receives one, it places it at the end of the
simulation�s Command Queue.

The CLEAR Command resets all statistics accumulators, clears
all Transactions from the simulation, then primes each
GENERATE Block with its first Transaction.

The state of all Facility Entities and Storage Entities is reset to
show an unoccupied condition. The contents of all Blocks
become 0.

When a CLEAR or CLEAR ON Command is performed:

• All Transactions are removed from the
simulation.

• Current counts are set to 0.

• System clock is set to 0.

• Facilities are made idle and available.

• Tables are set to 0.

• Storages are set to full availability.

• Space-time products of Facilities, Storages,
Queues, and User Chains are set to 0.

• Total counts are set equal to 0.

• Minimum and maximum values are set equal to

current content in Queues Entities, Userchain
Entities, and Storage Entities.

• Random number generators are not reset.

• The local count of generated Transactions in a
GENERATE Block is set to 0.

• Members are removed from all numeric Groups.

• Savevalue Entities are set to zero.

• Logicswitch Entities are reset.

• Matrix elements are set to 0.

If a CLEAR OFF is used, all of the above occur except the last
three items. When Operand A is off, Savevalue Entities,
Logicswitch Entities, and Matrix Elements are left unchanged.

Special Restrictions
None.

Related SNAs
None.

CONDUCT
A CONDUCT Command begins an
experiment.

CONDUCT A

Operands
A - PLUS Experiment Procedure Call. Optional. The operand
must be ProcedureCall.

Action
The CONDUCT Command is an Immediate Command.that can
only be sent to a HALTed Simulation Object.

The CONDUCT Command begins and passes
arguments to a pre-registered PLUS Experiment in a
Simulation Object. If the Simulation Object has only a
a single Experiment with no arguments, operand A is
not required in the CONDUCT Command.

Example
CONDUCT MyExperiment(NumberOfTellers,

StartingReplicateNumber)

In this example, the PLUS Experiment MyExperiment is started
just like any other Procedure. The global User Variables
NumberOfTellers and StartingReplicateNumber are used to tell
the experiment where to begin or resume the simulation runs.
The arguments are evaluated in the global context and passed
to the invoked Experiment.

Once you have begun an Experiment with a CONDUCT
Command, your ability to interact with the simulation is limited.
You can always display the running Simulation System Clock (
View / Clock), but generally you will have to HALT the
Experiment in order to interact with the Simulation Object.

Special Restrictions
A CONDUCT Command cannot be issued by a DoCommand
invocation.

Only HALT Commands are available during an Experiment.

The DoCommand Library Procedure can be invoked only
during an Experiment.

Related SNAs
None.

CONTINUE
A CONTINUE Command causes a
halted simulation to resume.

CONTINUE

Operands
None.

Example
CONTINUE

This Command is used to resume the execution of a
simulation.

Action
The CONTINUE Command is a Queued Command. When the
Simulation Object receives one, it places it at the end of the
simulation�s Command Queue.

The CONTINUE Command causes a halted simulation to
resume. A simulation is halted when it encounters a Stop
Condition, is issued a HALT Command, encounters an Error
Stop. Stop, or ends normally. Conditions can be set by a STOP
or STEP Command.

If the simulation had encountered a Stop Condition, the
CONTINUE Command skips the original Stop Condition but
does not remove it. If the same condition occurs again, the
simulation will stop again. Stop Conditions must be removed
explicitly by the OFF option in a STOP Command, or in the
Blocks Window. When a model is Translated, all Stop
Conditions are removed. This is discussed in Chapter 2 in the
Section, Setting Stop Conditions.

A CONTINUE can be used when a simulation has been
interrupted by a HALT Command. Since a HALT command
removes all Commands from the simulation�s Command
Queue, only the simulation, and not succeeding Commands,
will be resumed.

When the Simulation Object processes a CONTINUE
Command, it first determines if a positive Termination Count
exists. This means that a previous START Command has not

been completed. If the Termination Count is not strictly
positive, CONTINUE causes the optional standard report to be
written but does not schedule any Transactions. Otherwise, the
Simulation Object calls the Transaction scheduler to begin
processing Transactions again.

Hot Key
A CONTINUE Command can be sent to the simulation by
pressing the b + a + C key combination. A GPSS World
window must have the input focus.

EQU
An EQU Command evaluates an
Expression and assigns the result to a
Named Value.

NAME EQU X

Label/Operand
NAME - Named Value to receive a value. Required. The field
must be Name.

X - Expression. Required. Must be Expression. Expressions
are discussed in Section 3.4.

Examples
Price EQU 19.95

This Command defines the name Price and assigns the value
19.95 to it. Future references to the Named Value Price will use
a numeric value of 19.95.

Action
The EQU Command is a Queued Command. When the
Simulation Object receives one, it places it at the end of the
simulation�s Command Queue.

When the Simulation Object processes an EQU Command, it
creates or redefines a Named Variable and evaluates the
Expression in the Command. The name so created is
associated with a value equal to the result of the evaluated
Expression. This value replaces references to the defined
name when an operand or Expression is evaluated later.

Named Values may be used for their intrinsic value as User
Variables, or they may be used as entity specifiers as Entity
Labels. Normally, you will not assign a value to a name used
as an Entity Label. System defined names, i.e. names which
have not yet appeared in an EQU Command, are not valid by
themselves in Expressions or operands. However, they may be
used as an entity specifier in an SNA. The Simulation Object
will automatically assign a distinct value to such a name.

The Expression contained in a EQU Command is evaluated
according to the rules in Chapter 3, and may include calls to
PLUS Procedures or to Library Procedures. Expressions must
be well-formed according to the rules of elementary algebra. A
formal definition can be found in the Appendix. You may use
any of the arithmetic and logic operators listed in Section 3.4. If
SNAs are used in the Expression field, they are evaluated with
respect to the Active Transaction. A Named Value which has
not been explicitly assigned a value cannot be used as an item
in an Expression. To do so, you must assign a value to it
before the Expression is evaluated. Assignments to User
Variables are done by EQU Commands or in PLUS
Procedures.

Once a Named Value is created in a simulation, it is never
destroyed. However, User Variables may change values as a
result of later EQU Commands, assignments in PLUS
Procedures, or integration. The numerical integration of User
Variables is discussed in Chapter 1, and below under the
INTEGRATE Command.

Special Restrictions
• The values of Block labels may not be changed
in an EQU Command.

• SNAs are evaluated with respect to the Active
Transaction.

• If a name used as an entity specifier is changed
after the entity is defined, you will not be able to
access the original entity by using that name.

• FVARIABLE and BVARIABLE entities share the
same name space.

• If you wish to assign a numeric value to an
entity name for use in a SELECT Block, make
sure the name/number assignments in the EQU
Commands precede the entity definitions. For
example:

100 Stor1 EQU 1

200 Stor1 STORAGE 10000
In SNAs and operands, this STORAGE may now
be referred to by the number 1 or the name Stor1.

Related SNAs
None.

EXIT
An EXIT Command concludes the
GPSS World Session.

EXIT

Operands
None.

Action
The EXIT Command is a Queued Command. When the
Simulation Object receives one, it places it at the end of the
simulation�s Command Queue.

The EXIT Command ends the session immediately. It is
intended for use in Batch Mode, so that an "invisible Session"
can be run and terminated without window operations.

EXIT should not normally be used in a fully windowed GPSS
World Session. It causes immediate cessation of the Session,
and does not provide for the saving of modified Model Files.

Special Restrictions
None.

Related SNAs
None.

FUNCTION
A FUNCTION Command defines the
rules for a table lookup.
There are several types of Function Entities. Each has its own
rules pertaining to the table lookup. For each, the lookup table
is specified in one or more Function Follower Statements. Type
C Functions are a special case. They use a table lookup,
followed by a linear interpolation.

The use of Function Commands to define probability
distributions has been largely supplanted by the built-in
distributions in the Procedure Library. This is discussed in
Chapter 8. The old Function Types are still supported by GPSS
World.

NAME FUNCTION A,B

Label / Operands
NAME - Entity Label this entity. Required. The field must be
Name.

A - Function argument. Required. The operand must be Name,
PosInteger, String, ParenthesizedExpression, SNA, or
SNA*Parameter.

B - Function type (one letter) followed immediately by the
number of data pairs in the Function Follower Statements.
Required.

Action
The FUNCTION Command is a Queued Command. When the
Simulation Object receives one, it places it at the end of the
simulation�s Command Queue.

A FUNCTION Command together with one or more Function
Follower Statements defines a GPSS Function Entity. Later
references to an SNA of the class FN can evaluate the
Function and return the result. Operand A of the FUNCTION
Command is evaluated numerically. There are several types of
Functions which must be considered individually. The type is
specified in Operand B of the FUNCTION Command.

Each FUNCTION Command must be followed immediately by
a list of data pairs, separated by slashes, which define a table.
The text lines that contain the list are called Function Follower
Statements. Each data pair has an X value and a Y value (or
SNA) separated by a comma. Function Follower Statements
create tables in the simulation which allow a mathematical
function of one variable to be evaluated. When the Simulation
Object encounters a reference to an FNEntnum SNA, it
evaluates the Function Entity and returns the result. The tables
and the manner in which they are referenced depends on the
Function type.

Function Modifiers
FN class SNAs used in Operand B of GENERATE or
ADVANCE Statements are called Function Modifiers. When a
Transaction enters a GENERATE or ADVANCE Block with a
Function Modifier, the result of the Function is multiplied by
Operand A of the Block and used as the time increment.

Operand C of an ASSIGN Statements is also called a Function
Modifier, although it is specified differently. In this case, only
the entity specifier, not the FN class SNA, is used in the
ASSIGN Statement. When a Transaction enters an ASSIGN
Block with a Function Modifier, Operand C is used to determine
the Function Entity number. Then the result of evaluating that
Function is multiplied by Operand B of the ASSIGN Block and
the result is used as the ASSIGN value.

Function Types
There are 5 different type of Function Entities:

Type C Functions
Type C - "Continuous" valued Function. Given an X value, after
a linear interpolation, the Function returns a Y value. A random
argument is a special case.

In Function Follower Statements of C type Functions, the X and
Y Values must be Integer, or Real.

In a C type Function, without a random argument, the data
pairs in the Function Follower Statements define a piecewise
linear Function of the argument. The first data pair defines the
left end point and the last data pair defines the rightmost end
point. The X and Y values are stored as double precision
floating point numbers.

The Function evaluation begins with the evaluation of the
argument. The result is used to identify the line segment of the
Function. The argument is then used in a double precision
linear interpolation to arrive at the double precision result of the
Function. If the argument falls outside the end points of the
Function definition, the value at the nearest end point is
returned.

When Operand A of the FUNCTION Command is an RN class
SNA, the Function is said to have a random argument. A type
C Function with a random argument is used to define a
"continuous" probability distribution. This is a special case. The
Function is specified as the cumulative distribution function
(CDF) with 0 as the value of the left end point and 1 the value
of the right end point. As before, the CDF is specified as a
piece wise linear function. A random number between 0 and
.999999, inclusively, is taken from the random number stream
and is used in a linear interpolation to arrive at the double
precision value of the Function.

Example

Output FUNCTION V$Input,C3

1.1,10.1/20.5,98.7/33.3,889.2

This example defines a piece wise linear function with two line
segments. When the Function Entity is evaluated for a
FN$Output SNA, first the Function argument V$Input is
evaluated. If the argument result is outside the defined range,
1.1 to 33.3, the nearest endpoint is returned. For example, if
V$Input returns 1 or less, FN$Output returns 10.1.

If the argument result falls within a defined line segment, a
linear interpolation is performed. For example, if V$Input
returns 25, then FN$Output returns the result of the following
calculation:

98.7 + (889.2-98.7) # (25-20.5)/(33.3-20.5).

Therefore, FN$Output returns 376.6101563.

Example

Xpdis FUNCTION RN200,C24

0,0/.1,.104/.2,.222/.3,.355/.4,.509/.5,.69/.6,.915/.7,1.2/.75,1.38

.8,1.6/.84,1.83/.88,2.12/.9,2.3/.92,2.52/.94,2.81/.95,2.99/.96,3.2

.97,3.5/.98,3.9/.99,4.6/.995,5.3/.998,6.2/.999,7/.9998,8

In this example we define the Function Entity named Xpdis.
The FUNCTION Command names the Function, used random
number generator 200, and tells GPSS World that it is to be a
type C Function Entity with 24 data pairs to follow in one or
more Function Follower Statements.

This is an example of an approximation to a negative
exponential distribution with mean of 1. You can use a built in
probability distribution from the Procedure Library, which is
slightly more accurate, but Function Entities are generally more
efficient.

Type D Functions
Type D - Discrete valued function. Each argument value or
probability mass is assigned an numeric value. A random
argument is a special case.

In Function Follower Statements of D type Functions, the X
Values must be Expression, and the Y Values must be Integer,
Real, or Name.

In a D type Function, without a random argument, the data
pairs in the Function Follower Statements define a set of
argument values which are associated with specific Function
values. The X values in the Function Follower Statements must
be non decreasing. They are stored internally in double
precision. When the Function is evaluated, the X values from
the Function Follower Statements are searched from lowest to
highest value. When an X value is found which is greater than
or equal to the argument value, the corresponding Y value is
returned. If there is no such X value, the Y value or named
value associated with the largest X value is returned.

Example

DIis1 FUNCTION X$A2,D5

1.1,6.9/2.1,7/6.33,9.4/7,10/9.9,12.01

A D type Function with a random argument is used to define a
discrete probability distribution. The Function is specified as a
cumulative distribution function (CDF) with 0 as the value of the
left end point and 1 the value of the right end point. When such
a Function is evaluated, a random number between 0 and
.999999 is taken from the random number stream and is used.
The smallest X value in the Function Follower Statement that is
greater than or equal to the random number is selected. The
associated Y value is returned as the value of the Function.

Example

Ran1 FUNCTION RN1,D5

0,0/.2,7.2/.4,6.667/.8,9.92/1.0,10

Type E Functions
Type E - Discrete, "attribute valued" function. Each argument
value or probability mass is assigned an SNA to be evaluated.
A random argument is a special case.

In Function Follower Statements of E type Functions, the X
Values must be Expression, and the Y Values must be Integer,
Real, Name, SNA, or ParenthesizedExpression.

A type E Function is evaluated in the same way as a type D
Function, except that a type E Function requires one more
step. After the appropriate X value is chosen, the associated
SNA (Y value) is evaluated and returned as the result of the
Function.

Example

Edisc FUNCTION X$QRA,E5

1,S$Stor1/3,S$Stor2/5,S$Stor3/9,S$Stor5/10,S$Stor6

Type L Functions
Type L - List valued function. The argument value is used to
determine the list position of the value to be returned.

In Function Follower Statements of L type Functions, the X
Values must be Integer, and the Y Values must be Integer,
Real, or Name.

The Function Follower Statements define a list of values from
which the result is chosen. When the Function is evaluated, the

argument is evaluated and used as the ordinal number (X
value) of the list member. The Y value with that position within
the list is returned as the result. If the argument is too large or
less than 1, an Error Stop occurs. X values must begin with 1
and be incremented by 1 for each successive data pair. X
values may not be omitted in Function Follower Statements.

Example

Listtype FUNCTION Q$Barber,L5

1,PAR1/2,PAR2/3,PAR3/4,PAR4/5,PAR5

Type M Functions
Type M - Attribute list valued function. The argument value is
used to determine the list position of the SNA to be evaluated
and returned as the result.

In Function Follower Statements of M type Functions, the X
Values must be Expression, and the Y Values must be Integer,
Real, Name, SNA, or ParenthesizedExpression.

A type M Function is evaluated in the same way as a type L
Function, except that a type M Function requires one more
step. After the list position is chosen, the associated SNA is
evaluated and returned as the Y value.

Example

Mlist FUNCTION X$Name1,M5

1,Q$Nnam1/2,Q$NamX/3,Q$Nam4/4,Q$Nam6/5,F$Tan1

Rules For Functions
You must obey several rules when you create a Function. They
apply to both FUNCTION Commands and/or Function Follower
Statements.

• The X values of Function Follower
Statements must be non
decreasing.

• Function Follower Statements are
NEVER line numbered.

• A Function which has a random
argument must describe a valid
cumulative probability distribution in
the Function Follower Statements.

• All fields in a Function Command
are required.

• All X values and Y values in
Function Follower Statements are
required.

• The number of data pairs stated in
the B Operand of the FUNCTION
Commands must correspond to
pairs separated by slashes, [/], in
the Function Follower Statements.

• X1, the first probability value
specifying a random continuous
Function must be 0. CDF values
must be nonnegative,
nondecreasing, and may not
exceed 1.

• Function Follower Statements
have no comments field.

• In a Function Follower Statement,
an X value is followed by [,], [,] is
followed by a Y value, a Y value is
followed by [/] or [CR], and [/] is
followed by an X value.

• CDFs must be nondecreasing
between 0 and 1, inclusively. Any
missing probability in C type
Functions is given to the rightmost
interval, otherwise missing
probability is an error.

• C,D, and L type Functions cannot
have SNAs for Y values.

• E and M type Functions must
have SNAs, or parenthesized
Expressions, for Y values.

• L and M type Functions may not
have random arguments.

• The Function Follower Statements
of L and M type Functions must
have sequential X values starting
with 1.

The special rules applied when running in GPSS/PC
Compatibility Mode are discussed in Chapter 3.

Related SNA
• FNEntnum - Function. Result of evaluating
Function Entnum.

FVARIABLE
An FVARIABLE Command defines a
"floating point arithmetic" Variable
Entity.

NAME FVARIABLE X

Label / Operand

NAME - Entity Label for this entity. Required. The field must be
Name.

X - Expression. Required. Expressions are discussed in
Section 3.4.

Example
VAR1 FVARIABLE 5#LOG(Q$WAITINGLINE)

This Command defines a "floating point" type Variable Entity
which is to be evaluated when a V$VAR1 is encountered.
Variables defined by both VARIABLE and FVARIABLE
Commands are accessed by SNAs of class V. When the
V$VAR1 SNA is evaluated, the Expression defining the
Variable Entity named VAR1 must be evaluated. It begins with
the evaluation of the Q$WAITINGLINE SNA. The logarithm of
the double precision result is calculated and multiplied by 5.
The result is truncated and returned as the value of the SNA.

Action
The FVARIABLE Command is a Queued Command. When the
Simulation Object receives one, it places it at the end of the
simulation�s Command Queue.

When an FVARIABLE Command is performed, the Simulation
Object creates or redefines a GPSS Variable Entity. The
Variable Entity so created is evaluated when a System
Numerical Attribute in the V class, referring to this particular
entity, is encountered by the Simulation Object.

The Expression contained in an FVARIABLE Command is
evaluated according to the rules in Chapter 3, and may include
calls to PLUS Procedures or to Library Procedures. The
evaluation proceeds differently in GPSS/PC Compatibility
Mode.

Expressions must be well-formed according to the rules of
elementary algebra. A formal definition can be found in the
Appendix. You may use any of the arithmetic and logic
operators listed in Section 3.4. If SNAs are used in the
Expression field, they are evaluated with respect to the Active
Transaction. A Named Value which has not been explicitly
assigned a value cannot be used as an item in an Expression.
To do so, you must assign a value to it before the Expression is
evaluated. Assignments to User Variables are done by EQU
Commands or in PLUS Procedures.

Once a Variable Entity is created in a simulation, it is never
destroyed. However, it may be redefined later by an interactive
FVARIABLE Command.

If the simulation is not run in GPSS/PC Compatibility Mode,
FVARIABLE and VARIABLE Commands are treated the same.

GPSS/PC Compatibility
• All SNAs are truncated in GPSS/PC Compatibility Mode.

Related SNA
• VEntnum - Result of evaluating a Variable Entity
Entnum.

HALT
A HALT Command interrupts the
simulation and purges the Command
Queue.

HALT

Operands
None

Action
A HALT Command is an Immediate Command, and therefore
is not placed on the Command Queue by the Simulation
Object. Instead, it is performed immediately, causing the
simulation to be placed in the Halted State, and removing any
remaining Commands from the Command Queue. The
simulation may be resumed by a later CONTINUE Command.

Example
HALT

This in the only way to use the GROUPS Command.

Hot Key
A HALT Command can be sent to the simulation by pressing
the b + a + H key combination. A GPSS World simulation
window must have the input focus.

INCLUDE
The INCLUDE Command Translates a
file of Model Statements.

INCLUDE A

Operand
A - Filespec. A string representing the file specification of the
Secondary Model File or Command List to be Translated.
Required. Operand must be String.

Example
INCLUDE "SAMPLE1.GPS"

In this example, when the Translator encounters the INCLUDE
Command, it will include the statements from the
SAMPLE1.GPS Model File in the created simulation. Since no
file path is given, GPSS World assumes the file is in the
Project�s Model Directory.

Action
The INCLUDE Command is an Immediate Command.

Operand A is used as the file specification of a Command List
or a Secondary Model File. If a path is not included in the
filespec, the location of the model file that contains the
INCLUDE command will be used.

When an INCLUDE Command is Translated, it causes the
GPSS World Translator to replace it with a Model File, and to
Translate that in place of the INCLUDE Command. The
Translator opens the Secondary Model File and Translates
each Model Statement one at a time.

Model Statements in a Command File or Secondary Model File
are treated as if they occurred in line, in place of the INCLUDE
Command. Nesting is allowed to a depth of 5. When all Model
Statements have been Translated, they are sent to the
Simulation Object for processing.

If any errors are detected, GPSS World sounds an audio
signal, generates a syntax error message and attempts to find
additional errors. The error message contains the offending line
number in the Secondary Model File. Handling errors is
discussed in Chapter 2. Audio sounds can be suppressed by
selecting Silence in the Options page of the Configuration

Notebook.

For testing purposes, it may be more convenient to Translate
each Secondary Model File by itself, before using it in an
INCLUDE Command. Here�s how:

1. Read the Secondary Model File
in a Model Window.

2. Translate the partial model
represented in the Model Window.

3. Correct Syntax Errors.

4. Save the Secondary Model File.

INCLUDE Commands can be entered interactively, or loaded
into Function Keys, just like any other GPSS Statement. This is
discussed in Chapter 2.

Model File Numbers
Model File Numbers are used in the Blocks Window and in
Error Stop messages to identify the Block Statement that
created a given Block Entity.

As the Translator encounters Model Files, it assigns an integer
to be used later to identify the file. The Model Object is
assigned the number 0, and succeeding INCLUDE Files are
assigned succeeding integers as they are encountered by the
Translator. Thereafter, Block Entities can be associated to the
appropriate text line in the Model File.

Each occurrence of a file causes a distinct Model File Number
to be assigned. Multiple occurrences of a single file are also
assigned distinct numbers. Since each occurrence causes a
distinct set of Blocks to be created, distinct Model File Numbers
are required for unique identification.

Special Restrictions
• You may use INCLUDE Commands to nest
Model Files to a maximum depth of 5.

• You cannot place an INCLUDE Command
inside a PLUS Procedure.

INITIAL
An INITIAL Command initializes a
Logicswitch Entity, Savevalue Entity,
or an element of a Matrix Entity.

INITIAL A,B

Operands
A - Logicswitch, Savevalue, or Matrix element specified as
SNA. Operand A must have the form of an LS, X, or MX class
SNA. Required. The operand must be LSPosInteger,
LS$Name, XPosInteger, X$Name, MXPosInteger(m,n) or
MX$Name(m,n). Coordinates (m,n) must be Name or
PosInteger.

B - Value to be assigned. The default is 1. Optional. The
operand must be Null, Number, String or Name.

Action
The INITIAL Command is a Queued Command. When the
Simulation Object receives one, it places it at the end of the
simulation�s Command Queue.

The INITIAL Command causes a value, specified by Operand
B, to be assigned to the Logicswitch, Savevalue, or Matrix
Entity as specified by the LS, X, or MX class SNA in Operand
A. If Operand B is not used, a value of 1 is assigned to the
entity, or element.

If Operand A specifies a Logicswitch Entity, only the value of 0
or 1 is assigned. If Operand B is explicitly specified as 0, the
value of 0 is assigned. Otherwise, the value 1 is assigned.

The INITIAL Command can be used when there is no Active
Transaction, or when Transaction Parameter contents cannot
be relied upon. However, a fuller range of operands are
available using LOGICSWITCH, SAVEVALUE, and
MSAVEVALUE Block Statements interactively.

Example
INITIAL X$Quote,"Now is the time ... "

This Command assigns a string constant to the Savevalue
Entity, QUOTE.

INITIAL MX$Inventory(Part_39,Stocklevel),200

This Command assigns the value 200 to the element of Matrix
Entity named Inventory with row number of Part_39, and
column number of Stocklevel. The names Part_39 and
Stocklevel must have previously been assigned the appropriate
integers in EQU Commands.

Special Restrictions
• Operand A must have the form of an LS, X, or
MX class SNA.

• You cannot use Transaction Parameters in any
part of Operand A.

Related SNAs
• LSEntnum - Logicswitch. The value of
Logicswitch Entity Entnum is returned.

• MXEntnum(m,n) - Matrix element value. The
value in row m, column n of Matrix Entity Entnum
is returned.

• XEntnum - Savevalue. the value of Savevalue
Entity Entnum is returned.

Related Blocks
• LOGIC - assign a value to a Logicswitch Entity.

• MSAVEVALUE - assign a value to or increment
an element of a Matrix Entity.

• SAVEVALUE - assign a value to or increment a
Savevalue Entity.

INTEGRATE
An INTEGRATE Command sets up the
integration and thresholds of a
continuous variable.

NAME INTEGRATE A,B,C,D,E

Operands
NAME - User Variable. Required. The field must be Name.

A - Derivative. Required. The operand must be Name, Number,
String, ParenthesizedExpression, or SNA.

B - Threshold 1. Optional. The operand must be Null, Name,
Number, String, ParenthesizedExpression, or SNA.

C - Arrival Block 1. Optional. The operand must be Null, Name,
PosInteger, ParenthesizedExpression, or SNA.

D - Threshold 2. Optional. The operand must be Null, Name,
Number, String, ParenthesizedExpression, or SNA.

E - Arrival Block 2. Optional. The operand must be Null, Name,
PosInteger, ParenthesizedExpression, or SNA.

Examples
Rabbits INTEGRATE (a_ # Rabbits)
- (b_ # Rabbits # Foxes)

Foxes INTEGRATE (- c_ # Foxes) +
(d_ # Rabbits # Foxes)

Rabbits EQU 10000

Foxes EQU 1500

a_ EQU 0.9

b_ EQU 0.4

c_ EQU 0.2

d_ EQU 0.1

This example defines a "Predator-Prey" model relating a rabbit
population to a fox population. The Expressions in the
INTEGRATE Commands are used as the derivatives with
respect to time. The values of the constants in the Expressions,
and the initial values of the populations are set by the EQU
Commands. When the simulation runs, the integrations are
performed automatically when the clock advances.

X_ INTEGRATE
(Y_),0.707,Wake_Up

Y_ INTEGRATE (-X_)

X_ EQU 1.0

Y_ EQU 0.0

This example defines a coupled system of ordinary differential
equations (ODEs) whose solution is X_=cos(Y_VAR) and
Y_=-sin(X_VAR). The expressiions in the INTEGRATE
Commands are used as the derivatives with respect to time.
The initial values of the continuous variables are set by the
EQU Commands. When the simulation runs, the integrations
are performed automatically between discrete time instants.

A threshold is used for the User Variable X_. When this
variable crosses the value 0.707, from either direction, a new
Transaction is created and scheduled for the Block labeled
WAKE_UP.

X is an SNA Class, and therefore cannot be used as a Named
Value. Here we use X_. It�s always safe to create names if they
include an underscore character.

Action
The INTEGRATE Command is a Queued Command. When the
Simulation Object receives one, it places it at the end of the
simulation�s Command Queue.

When an INTEGRATE Command is performed, the data
structures are set up so that a User Variable will be integrated
automatically when the system clock advances. Integrations
are done using a modified fifth order Runge Kutta Fehlberg
method (RK4(5)), with a variable step size.

All User Variables involved in an integration must be given
initial values before the simulation runs. You can do this with
EQU Commands or by Assignment Statements in PLUS
Procedures.

Operand A of the INTEGRATE Command is used for the
derivative of the User Variable with respect to time. It can be
very simple or quite complex. In the latter case you may want
to define a PLUS Procedure and place a Procedure Call in the
parenthesized Expression used for Operand A.

Each INTEGRATE Command may have zero, one, or two
numeric thresholds. Operands B and C can be used to specify
threshold 1, and/or operands D and E can be used to specify
threshold 2. In either case, the first operand of the pair
determines the value of the threshold, the second indicates the
Block which will receive generated Transactions.

During the integration, if the value of the integrated variable
crosses the value of a threshold, from either direction, a new
Transaction is created. It is given a priority of 0, and is
scheduled to enter the Block associated with that threshold in
the INTEGRATE Command. The Transaction�s time of entry

into the model is estimated by a linear interpolation. To improve
accuracy, the integration ministep is decreased when a
threshold is imminent.

Thresholds may be constants, parenthesized Expressions, or
even Procedure Calls. In addition, the Transactions generated
by a threshold crossing may be used to move the threshold.

Integrations are automatically begun in the active, or "enabled"
state. However, you can turn an integration on or off while a
simulation is running by using one or more INTEGRATION
Blocks. This is discussed in Chapter 7.

Phases
Simulations run in alternate continuous and discrete phases. At
any instant where events are scheduled, the simulation runs in
a discrete phase. The clock does not advance within an instant
in a discrete phase. Between instants, the simulation runs in a
continuous phase, during which the integrations proceed in
small time increments called ministeps. Plotted integration
variables report intermediate values at the end of ministeps.

When a threshold crossing generates a Transaction, the
simulation goes into a discrete phase. In this manner, the
continuous and the discrete phases can be closely interrelated.
Conversely, User Variables can be assigned new values in a
discrete phase even if they are being integrated. You can do so
using an EQU Command, or a PLUS Assignment Statement. If
you want such assignments to occur within the running of the
simulation, you must define a PLUS Procedure that makes the
assignment. For example, if you defined a PLUS Procedure as

Procedure SetPop(PopLevel) BEGIN

Foxes = PopLevel ;

END ;
you could reinitialize the Foxes User Variable by entering a
PLUS Block, such as

PLUS (SetPop(200))
or by using a parenthesized Expression that invokes SetPop()
in some other kind of Block.

Integration Error
A Model Setting called the Integration Tolerance is used to limit
the local truncation error of each individual integration. If you
make the tolerance smaller, the integrations will take longer,
but will be more accurate. This is set in the Simulate Page of
the Model Settings Notebook.

 CHOOSE View / Settings / Model

then select the Simulate page. Then fill in the desired value
in the entry box marked Integration Tolerance. The
installation default is 10-6.

Continuous state modeling is also discussed in Chapter 2.

Related Block
• INTEGRATION - Enables or disables the
integration of a User Variable.

Related Windows
• Expressions Window - Online view of values of
Expressions.

• Plot Window - Online view of a plot of up to 8
Expressions.

Restrictions
• If either Operand B or Operand C is used, both must be used.

• If either Operand D or Operand E is used, both must be used.

MATRIX
A MATRIX Command defines a GPSS
Matrix Entity.

NAME MATRIX A,B,C

Label / Operands
NAME - Entity Label for this entity. Required. The field must be
Name.

A - Unused field (for compatibility with older GPSS
implementations).

B - Number of matrix rows. Required. The operand must be
PosInteger.

C - Number of matrix columns. Required. The operand must be
PosInteger.

Example
Inventory MATRIX ,1000,5

This Command defines a Matrix Entity named Inventory with
1000 rows and 5 columns.

Action
The MATRIX Command is a Queued Command. When the
Simulation Object receives one, it places it at the end of the
simulation�s Command Queue.

A MATRIX Command causes a Matrix Entity to be created in
the simulation. A Matrix Entity must be defined specifically in a
MATRIX Command before it can be referenced.

The A Operand serves no purpose in GPSS World because
there is no need to specify the precision of the Matrix elements.
This operand is retained only for compatibility with older GPSS
versions.

A Matrix Entity can have up to 6 dimensions. However, only the
first two dimensions can be accessed in an MSAVEVALUE
Block. In this case, all missing coordinates are presumed to be
1.

PLUS Procedures can access all elements of any matrix. If you
need to use matrices of more than 2 dimensions, you will have
to create one or more PLUS Procedures to access them.
Matrices defined in a MATRIX Command have global scope
and are known to all PLUS Procedures. In addition, temporary
matrices with local scope can be created for the duration of a
PLUS Procedure invocation. This is discussed further in
Chapter 8.

Matrix Entities are never deleted from the simulation. However,
a Matrix Entity may be redefined by another MATRIX
Command.

Memory Restriction
• Matrix Entities are limited to the maximum
memory request in the Model Setting Notebook.
This is discussed in Chapter 2.

Related SNA
• MXentnum(m,n) - Matrix Entity element. The
value in row m, column n of matrix entnum is
returned. Only names, integers or P class SNAs
can be used for row and column values.

Related Block
• MSAVEVALUE - assign or increment an
element of a Matrix Entity.

Related Windows
• A Matrix Entity can be viewed in an online
Matrix Window. This window shows a 2
dimensional cross section of any matrix.

• Any SNA can be viewed in an Expressions or
Plot Window.

QTABLE
A QTABLE Command initializes a
queue time frequency distribution
table.

NAME QTABLE A,B,C,D

Label/Operands
NAME - Entity Label for this entity. Required. The field must be
Name.

A - Name of Queue Entity. Required. The operand must be
PosInteger or Name.

B - Upper limit of first frequency class. The maximum argument
which causes the first frequency class to be updated. Required.
The operand must be Number or String.

C - Size of frequency classes. The difference between the
upper limit and lower limit of each frequency class. Required.
The operand must be Number or String.

D - Number of frequency classes. The operand must be
PosInteger.

Action
The QTABLE Command is a Queued Command. When the
Simulation Object receives one, it places it at the end of the
simulation�s Command Queue.

By using a QTABLE Command, statistics will be kept
automatically for Transactions which enter QUEUE and
DEPART Blocks. The Queue Entity being measured is
specified in the A Operand of the QTABLE definition
Command.

When a Transaction enters a QUEUE Block which refers to a
Queue Entity which has one or more Qtables, a special
timestamp is created and kept with the Transaction. To collect
a data item, a Transaction must enter a DEPART Block which
refers to this same Queue Entity. When such a DEPART Block
is entered, a table argument is calculated by subtracting the old
saved timestamp from the current system time. If the calculated
table argument is less than or equal to the B Operand of the
QTABLE Command, the first frequency class of the table is
chosen. If the table argument does not fit into the first
frequency class, the class is chosen by dividing the argument
value by the C Operand of the QTABLE Command. The lower
limit of a frequency class is included in the previous class. If the
table is not large enough to accommodate this value, the last
frequency class in the table is chosen.

Then the integer in the chosen frequency class and the total
count for all classes is incremented by the B Operand of the
DEPART Block. Finally, accumulators for the mean and
standard deviation of the Qtable argument are updated.

A Qtable Entity can be redefined by a second QTABLE
Command with the same label as the first.

Example
WaitTimes QTABLE WaitingLine,100,100,10

In this simple example, the distribution of the QUEUE-DEPART
intervals is entered into the table named WaitTimes. The
QTABLE Command creates a table with a total of 10 frequency
classes.

All time intervals at or below 100 cause the first frequency
class of the table to be updated. Normally this means that the
integer for the first frequency class is increased by 1, However,
a weighting factor is available in the B Operand of the DEPART
Block. This has the effect of adding the weighting factor to the
integer for the frequency class. The weighting factor applies to

the mean and standard deviation as well, having the same
effect as multiple entries into the DEPART Block.

If the time interval of the Transaction is greater than 900, it will
be placed in the tenth, and last, frequency class. If the time
interval falls in neither the first nor the last frequency class, it is
used to choose from the equally spaced frequency classes
from the second to the ninth.

For example, if the time interval is 290, the third frequency
class would be updated.

The statistics collected in a Qtable Entity are printed in the
standard report. A sample report is in Chapter 11.

Related SNAs
• QEntnum - Current queue content. The current
count value of queue Entnum.

• QAEntnum - Average queue content. The time
weighted average count for queue Entnum.

• QCEntnum - Total queue entries. The sum of all
queue entry counts for queue Entnum.

• QMEntnum - Maximum queue contents. The
maximum count (high water mark) of queue
Entnum.

• QTEntnum - Average queue residence time.
The time weighted average of the count for queue
Entnum.

• QXEntnum - Average queue residence time
excluding zero entries. The time weighted
average of the count for queue Entnum not
counting entries wit a zero residence time.

• QZEntnum - Queue zero entry count. The
number of entries of queue Entnum with a zero
residence time.

Memory Restriction
• Qtable Entities are limited to the maximum
memory request in the Model Setting Notebook.
This is discussed in Chapter 2.

Related Blocks
• QUEUE - register statistics from the beginning
of a waiting time.

• DEPART - register statistics for the end of a

waiting time using an optional weighting factor.

Related Windows
• A Qtable Entity can be viewed in an online
Table Window.

• Any SNA can be viewed in an Expressions or
Plot Window.

REPORT
A REPORT Command causes a report
to be created immediately.

REPORT A,B

Operands
A - Must be Null.

B - NOW, to write a Standard Report, immediately. Optional.
the operand must be NOW or Null.

Example
REPORT

This Command directs GPSS World to create a Standard
Report immediately.

REPORT ,NOW

This Command is kept for campatibility purposes. As in the
previous example, it causes a Standard Report to be created
immeditely.

Action
The REPORT Command is a Queued Command. When the
Simulation Object receives one, it places it at the end of the
simulation�s Command Queue.

When a Simulation Object encounteres a REPORT command it
immediately creaets a Standard Report according to the "In
Windows" Setting of the Simulation Object. This can be found
on the Reports page of the Settings Notebook.

If the "In Windows" option is set, the Simulation Object creates
a new Report Object containing the new Standard Report. It
may then be saved in a file or discarded. If "In Window" is not
set, the Standard Report is created, given a sequential serial
number, and placed in a file.

REPORT no longer uses operand A, and always assumes the
NOW Operand is used in Operand B. It ignores the "Create
Standard Report" Setting, which is used for automatic Standard
Report creation, and it ignores operand B of the START
Command used for the current simulation.

You do not normally need to use the REPORT Command.
Reports are managed automatically according to the
Configuration Settings. This is discussed in Chapter 11.

Related Setting
• Standard Reports are normally sent to Report Windows but
can be sent directly to file. This is controlled by the "In Window"
setting in the Reports Page of the Settings Notebook.

RESET
A RESET Command marks the
beginning of a measurement period.

RESET

Operands
None.

Action
The RESET Command is a Queued Command. When the
Simulation Object receives one, it places it at the end of the
simulation�s Command Queue.

A RESET Command initializes the statistics accumulators
without removing Transactions from the simulation. This is
useful for replication of simulation experiments, and for
throwing away data representing a transient startup period.

RESET sets the measurement period start time to equal the
current system clock, and then initializes the statistics
accumulators for Facilities, Queues, and Storage Entities. This
provides for the start of a new time window used in the
gathering of statistics.

A RESET Command does not remove Transactions form the
simulation, whereas a CLEAR Command does

RESET has no effect on the random number generators, the
system clock or the numbering of Transactions.

When a RESET Command is performed.

• Space-time products of Facilities, Storages,
Queues, and Userchain Entities are set to 0.

• Total counts are set equal to current counts.

• Minimum and maximum values are set equal to
current content in Queues, Userchains, and
Storage Entities.

• Random number generators are not reset.

• The Relative Clock (time since last RESET) is
set to 0.

• Table statistics are reset to 0.

RMULT
An RMULT Command sets the seeds
for random number generators.

RMULT A,B,C,D,E,F,G

Operands
A - Seed for random number generator number 1. Optional.
The operand must be Null, or PosInteger.

B - Seed for random number generator number 2. Optional.
The operand must be Null, or PosInteger.

C - Seed for random number generator number 3. Optional.
The operand must be Null, or PosInteger.

D - Seed for random number generator number 4. Optional.
The operand must be Null, or PosInteger.

E - Seed for random number generator number 5. Optional.
The operand must be Null, or PosInteger.

F - Seed for random number generator number 6. Optional.
The operand must be Null, or PosInteger.

G - Seed for random number generator number 7. Optional.
The operand must be Null, or PosInteger.

Example
RMULT ,,111

In this example, random number generator 3 is initialized with a
seed of 111.

Action
The RMULT Command is a Queued Command. When the
Simulation Object receives one, it places it at the end of the
simulation�s Command Queue.

The RMULT Command initializes up to 7 random number
generators with new seeds. Only random number generators

numbered 7 or below can be controlled by an RMULT
Command. However, since the default seed of a random
number generator is its entity number, you can in fact have any
number of random number generators, and you can choose the
initial seed of each. After the first simulation run the seeds can
only be controlled easily with the RMULT Command on
generators 1-7.

You can select which random number stream GPSS World
uses it to calculate random time increments in ADVANCE and
GENERATE Blocks, in Fractional Mode TRANSFER and
TRANSFER PICK Blocks and to resolve the scheduling of time
ties. This is set in the "Random" page of the Model Settings
Notebook.

 CHOOSE View / Settings / Model

then select the Random page. Then fill in the desired
Random Number Stream Entity number in the corresponding
entry boxes. The installation default is to use Random Number
Stream number 1 in each case.

Since GPSS World uses multiplicative congruential random
number generators, it is possible to control pairs of random
number streams for variance reduction purposes. This is done
by matching the seeds of the random number generators. If s is
the seed for the first random number generator, then a choice
of 2147483647-s for the seed of the second random number
generator will generate a stream of random numbers with
antithetic properties.

Special Restriction
• Random number seeds must be positive
integers.

Related SNA
• RNEntnum - Random number. RNEntnum
returns a random integer 0-999 from the random
number generator Entnum.

Related Window
• The ANOVA Window can perform Analysis of
Variance and calculate confidence intervals.

SHOW
A SHOW Command sends an
Expression for evaluation by the
Simulation Object, and writes the
result in the Status Line.

SHOW X

Operand
X - Expression.

Example
SHOW 2#LOG(Q$Barber)

This Command finds the natural logarithm of the SNA
Q$Barber, doubles it, and writes the result in the Status Line of
the Model Window.

Action
The SHOW Command is an Immediate Command. It is
performed when received by the Simulation Object.

The SHOW Command evaluates an Expression in the context
of the simulation, and writes the result in the Status Line of the
Model Window. Additional messages are sent to any open
Journal Windows.

The rules for evaluating Expressions may be found in Section
3.4. Expressions must be well-formed according to the rules of
elementary algebra. You may used any of the arithmetic and
logic operators listed in Section 3.4.

If SNAs are used in the Expression field, they are evaluated
with respect to the Active Transaction. If there is no Active
Transaction because no simulation has been started, an error
message will be written. Names which have not been explicitly
assigned values cannot be used in Expressions. To do so you
must assign a value by an EQU Command before the
Expression is evaluated.

Examples

SHOW C1

shows the system clock in the Status Line.

SHOW 4#(SQR(2)+SIN(C1))

shows the result of 4 times the sum of the square root of 2 and
the sine of the system clock.

SHOW N1^W$Chair

shows the result of raising the number of Transactions to have
entered Block 1 to the power of the number of Transactions
waiting at the Block named Chair.

Special Restrictions
• Some SNAs cannot be evaluated unless there
is an Active Transaction.

• SHOW displays up to 38 characters or digits.

Related Windows
• Any valid Expression can be viewed in an
Expressions or Plot Window.

START
A START Command begins a
simulation.

START A,B,C,D

Operands
A - Termination count. Required. The operand must be
PosInteger.

B - Printout operand. NP for "no printout". Default is to print a
standard report. Optional. The operand must be NP or Null.

C - Not used. Kept for compatibility with older dialects of
GPSS.

D - Chain printout. 1 to include the CEC and FEC in the
standard report. Optional. The operand must be Null, or
PosInteger.

Action
The START Command is a Queued Command. When the
Simulation Object receives one, it places it at the end of the
simulation�s Command Queue.

The START Command is used to set up and begin the actual
simulation. The simulation does not end until the termination
count, which is set by Operand A, reaches zero or becomes
negative. TERMINATE Blocks are used to reduce the
termination count.

The simulation may stop short if a HALT Command is issued,
or if a Stop Condition is detected.

Operands B and D are used to control automatic report
generation. If Operand B is not used, an standard report is
written. If Operand B is NP, which stands for "no printout", no
standard report is written. If Operand D is nonzero, the Current
Events Chain (CEC) and the Future Events Chain (FEC) are
reported. Otherwise they are not reported. A further discussion
of the control and contents of the standard report may be found
in Chapters 11 and 12.

Operand C is kept for compatibility with older versions of
GPSS. It was used as a "snap" count to put out a report
periodically. This Function is available by using more than one
START and REPORT Command.

When a START Command is performed:

• The Termination Count is set.

• Any generate Blocks marked "not started" are
primed with a single Transaction.

• Random number generators are not reset.

• If time is 0, a RESET of the statistics
accumulators is performed. See the discussion of
the RESET Command in this chapter.

Example
START 1000,,,1

In this example, the Termination Count is set to 1000 and the

simulation is started. When the Termination Count reaches
zero or becomes negative (by reduction due to TERMINATE
Blocks in the simulation), a standard report is written which
includes information on the Current Events Chain (CEC) and
the Future Events Chain (FEC).

Related SNA
• TG1 - Termination count.

Related Blocks
• TERMINATE - destroy Transaction and
optionally reduce the termination count.

STEP
A STEP Command causes the
simulation to proceed a specified
number of Block entries.

STEP A

Operand
A - Block entry count. Required. A must be a positive integer,
more formally, PosInteger.

Example
STEP 1

This Command causes the simulation to proceed exactly one
Block entry and then to stop. The simulation is then said to be
in the "Halted" state.

Action
The STEP Command is a Queued Command. When the
Simulation Object receives one, it places it at the end of the
simulation�s Command Queue.

The STEP Command causes the Simulation Object to simulate
the specified number of Block entries. When a simulation
reaches the required number of Block entries, the Simulation
Object sends a message to the Status Line, and any Journal
Windows that are open. The message gives the time, the
Active Transaction number, the current Block of the Active
Transaction, and the next scheduled Block of the Active
Transaction.

A simulation started by a STEP Command does not end when
the termination count goes to zero, it ends when the required
number of Block entries have occurred.

When a STEP Command is performed:

• The termination count is not set.

• Any generate Blocks marked "not started" are
primed.

• Random number generators are not reset.

Hot Key
A STEP 1 Command can be sent to the simulation by pressing
the b + a + 1 key combination. A GPSS World window must
have the input focus.

Related Windows
• The stepping of simulations can be viewed
dynamically in the Blocks Window.

STOP
A STOP Command sets or removes a
Stop Condition.

STOP A,B,C

Operands
A - Transaction number. A must be a positive integer. If the A
Operand is omitted, any Transaction number will satisfy the
condition. Optional. The operand must be Null, or PosInteger.

B - Block number. If the B Operand is omitted, any Block will
satisfy the condition. Optional. The operand must be Null,
Name, or PosInteger.

C - ON or OFF. If the C Operand is omitted, ON is assumed.
Optional. The operand must be ON, OFF or Null.

Example
STOP 100,52

This Command inserts a Stop Condition which will cause a
running simulation to stop when Transaction number 100
attempts to enter Block number 52.

Action
The STOP Command is a Queued Command. When the
Simulation Object receives one, it places it at the end of the
simulation�s Command Queue.

The STOP Command with the ON option inserts a Stop
Condition into the simulation but does not cause the simulation
to start. A subsequent START, STEP, or CONTINUE must be
entered.

When a simulation reaches a Stop Condition, the Simulation
Object sends a message to the Status Line, and any Journal
Windows that are open. The message gives the time, the
Active Transaction number, the current Block of the Active
Transaction, and the next scheduled Block of the Active
Transaction.

When a Stop Condition is detected, established Stop
Conditions remain in force. If a CONTINUE Command is
issued, the CONTINUE Command skips the original Stop
Condition but does not remove it. If the same condition occurs
again, the simulation will stop again. Stop Conditions must be
removed explicitly by entering a new STOP Command

containing the OFF option. They are also removed when a
model is Translated.

STOP Commands can be sent by using mousing operations in
the Blocks Window. This is discussed in more detail in Chapter
5.

If you skip the A Operand, any Transaction will satisfy the Stop
Condition. If you skip the B Operand, any Block will satisfy the
Stop Condition. A STOP Command with no operands will
cause the simulation to stop immediately.

Any number of Stop Conditions may be established.

The STOP Command with the OFF option removes any
existing Stop Conditions that satisfy the Transaction and Block
conditions specified by operands A and B.

Examples
STOP

With no operands, the STOP Command will cause any
subsequent simulation to stop immediately.

STOP ,,OFF

This Command removes all Stop Conditions from the
simulation.

STOP 2

This Command will cause the simulation to stop when
Transaction 2 becomes the Active Transaction.

STOP ,Chair

This Command will cause the simulation to stop when any
Transaction attempts to enter the Block at location CHAIR.

STOP ,Chair,OFF

This Command will remove all Stop Conditions that specify
Chair as the Block name.

Related Windows
• Mouse operations can be used in the Blocks
Window to place and remove Stop Conditions.

STORAGE
A STORAGE Command defines a
Storage Entity.

NAME STORAGE A

Label / Operand
NAME - Entity Label for this entity. Required. The field must be
Name.

A - Total storage capacity. Required. The operand must be
PosInteger.

Example
MotorPool STORAGE 20

This Command defines a Storage Entity named MotorPool with
a total capacity of 20 units.

Action
The STORAGE Command is a Queued Command. When the
Simulation Object receives one, it places it at the end of the
simulation�s Command Queue.

A STORAGE Command defines a Storage Entity in the
simulation. When a Transaction attempts to enter an ENTER
Block, its storage demand is compared with the available
storage at the Storage Entity. If the demand can be granted,
the Transaction is allowed to enter the ENTER Block and the
available storage capacity of the Storage Entity is reduced. If
the Transaction�s demand cannot be satisfied, the Transaction
comes to rest in the simulation on the Delay Chain of the
Storage Entity. Storage Entities are explained in more detail in

Chapter 4.

A Storage Entity may be redefined by entering a new
STORAGE Command with the same label as the old one.

If you must refer to Storage Entities by number, not name, an
EQU Command should precede the STORAGE definition. This
is necessary if you wish to reference a range of STORAGES in
a SELECT or COUNT Block.

Related SNAs
• REntnum - Unused storage capacity. The
storage content (or "token" spaces) available for
use by entering Transactions at storage Entnum.

• SEntnum - Storage in use. SEntnum returns the
amount of storage content (or "token" spaces)
currently in use by entering Transactions at
storage Entnum.

• SAEntnum - Average storage in use. SAEntnum
returns the time weighted average of storage
capacity (or "token" spaces) in use at storage
Entnum.

• SCEntnum - Storage use count. Total number
of storage units that have been entered in (or
"token" spaces that have been used at) storage
Entnum.

• SEEntnum - Storage empty. SEEntnum returns
1 if storage Entnum is completely unused, 0
otherwise.

• SFEntnum - Storage full. SFentnum returns 1 if
storage Entnum is completely used, 0 otherwise.

• SREntnum - Storage utilization. The fraction of
total usage represented by the average storage in
use at storage Entnum. SREntnum is expressed
in parts-per-thousand and therefore returns an
real value 0-1000, inclusively.

• SMEntnum - Maximum storage in use at
storage Entnum. The "high water mark".

• STEntnum - Average holding time per unit at
storage Entnum.

• SVEntnum - Storage in available state.
SVEntnum returns 1 if storage Entnum is in the
available state, 0 otherwise.

Related Blocks
• ENTER - take or wait for available storage
space.

• LEAVE - release storage space for use by other
Transactions.

Related Windows
• GPSS storage entities are visible in the
Storages Window.

• Any SNA can be viewed in an Expressions or
Plot Window.

TABLE
A TABLE Command initializes a
frequency distribution table.

NAME TABLE A,B,C,D

Label / Operands
NAME - Entity Label for this entity. Required. The field must be
Name. The length of a Table name is limited to 32 characters.

A - Table argument. The data item whose frequency
distribution is to be tabulated. Required. The operand must be
ParenthesizedExpression, SNA or SNA*Parameter.

B - Upper limit of first frequency class. The maximum argument
which causes the first frequency class to be updated. Required.
The operand must be Number or String.

C - Size of frequency classes. The difference between the
upper limit and lower limit of each frequency class. Required.
The operand must be Number or String.

D - Number of frequency classes. Required. The operand must
be PosInteger.

Action
The TABLE Command is a Queued Command. When the
Simulation Object receives one, it places it at the end of the
simulation�s Command Queue.

A TABLE Command is used to define a GPSS Table Entity for
collecting a frequency distribution, its cumulative relative
frequencies, its mean, and its standard deviation.

To collect a data item, a Transaction must enter a TABULATE
Block which refers to this TABLE. When a TABULATE Block is
entered, the table argument (Operand A in the TABLE
Command) is evaluated. If it is less than or equal to the B
Operand of the TABLE Command, the first frequency class of
the table is chosen. If the table argument does not fit into the
first frequency class, the class is chosen by dividing the
argument value by the C Operand of the TABLE Command.
The lower limit of a frequency class is included in the previous
class. If the table is not large enough to accommodate this
value, the last frequency class in the table is chosen.

Then the integer in the chosen frequency class and the
accumulated count is incremented by the B Operand of the
TABULATE Command. The default increment is 1.

Finally, accumulators for the mean and standard deviation of
the table are updated.

A Table Entity can be redefined or reinitialized by a second
TABLE Command with the same label as the first.

Example
SalesTable TABLE P$Price,9.95,10,10

In this simple example, the distribution of the Price Parameter
of Transactions is entered into the table named SalesTable.
The TABLE Command creates a table with a total of 10
frequency classes.

All Price values at or below 9.95 cause the first frequency class
of the table to be updated. Normally, this means that the
integer for the first frequency class is increased by 1. However,
a weighting factor is available in the B Operand of the
TABULATE Block. This has the effect of adding the weighting
factor to the current integer value in the appropriate frequency
class. The weighting factor applies to the mean and standard
deviation as well, having the same effect as multiple entries
into the TABULATE Block.

If the value of the Price Parameter is greater than 89.95, the
tenth, and last, frequency class will be updated. If the value of

the Price Parameter falls in neither the first nor the last
frequency class, it is used to choose from the equally spaced
frequency classes from the second to the ninth.

For example, if the Price value is 29.49, the third frequency
class would be updated.

The statistics collected in a GPSS Table Entity are printed in
the standard report. An example is in Chapter 11.

Memory Restriction
• Table Entities are limited to the maximum
memory request in the Model Settings Notebook.
This is discussed in Chapter 2.

Related SNAs
• TBEntnum - Nonweighted average of entries in
table Entnum.

• TCEntnum - Count of nonweighted table entries
in table Entnum.

• TDEntnum - Standard deviation of nonweighted
table entries in table Entnum.

Related Blocks
• TABULATE - register statistics for a data item in
a Table Entity.

Related Windows
• A Table can be viewed in the online Table
Window.

• Any SNA can be viewed in an Expressions or
Plot Window.

VARIABLE
A VARIABLE Command defines an
arithmetic Variable Entity.

NAME VARIABLE X

Label / Operand
NAME - Entity Label for this entity. Required. The field must be
Name.

X - Expression. Required. Expressions are discussed in
Section 3.4.

Example
Var1 VARIABLE 5#LOG(Q$WaitingLine)

This Command defines a Variable Entity which is to be
evaluated when a V$Var1 is encountered. When this SNA is
evaluated, the Expression defining the Variable Entity named
Var1 is evaluated and returned as the result.

Action
The VARIABLE Command is a Queued Command. When the
Simulation Object receives one, it places it at the end of the
simulation�s Command Queue.

When a VARIABLE Command is performed, the Simulation
Object creates or redefines a GPSS Variable Entity. The
Variable Entity so created is evaluated when a System
Numerical Attribute in the V class, referring to this particular
entity, is encountered by the Simulation Object.

The Expression in a VARIABLE Command is evaluated
according to the rules in Chapter 3, and may include calls to
PLUS Procedures or to Library Procedures. The evaluation
proceeds differently in GPSS/PC Compatibility Mode.

Expressions must be well-formed according to the rules of
elementary algebra. A formal definition can be found in the
Appendix. You may use any of the arithmetic and logic
operators listed in Section 3.4. If SNAs are used in the
Expression field, they are evaluated with respect to the Active
Transaction. A Named Value which has not been explicitly
assigned a value cannot be used as an item in an Expression.

To do so, you must assign a value to it before the Expression is
evaluated. Assignments to User Variables are done by EQU
Commands or in PLUS Procedures.

Once a Variable Entity is created in a simulation, it is never
destroyed. However, it may be redefined later by an interactive
VARIABLE Command.

If the simulation is not run in GPSS/PC Compatibility Mode,
FVARIABLE and VARIABLE Commands are treated the same.

GPSS/PC Compatibility
• All SNAs are truncated in GPSS/PC Compatibility Mode.

• In Variable Entity evaluation in GPSS/PC Compatibility Mode,
the intermediate results are truncated.

Related SNA
• VEntnum - Returns the result of evaluating an
arithmetic Variable Entity Entnum.

Related Windows
• Any SNA can be viewed in an Expressions or
Plot Window.

Chapter 7 - Block
Statements
You use Block Statements to create GPSS Block Entities.
Block Statements which are part of the Initial Model Translation
create permanent Blocks in the simulation. A Block Statement
sent to an existing simulation creates a one-time temporary
Block to be used in a mode called Manual Simulation. This is
discussed in more detail in Section 2.3.

A model is simply a sequence of Model Statements. A GPSS
World Model Statement is either a GPSS Statement or a PLUS
Procedure definition. The GPSS Statements, in turn, are either
Block Statements, which cause a Block to be created, or
Commands, which do not. Any Model Statement can be sent to
an existing simulation as an Interactive Statement.

This chapter contains reference information for each Block
Statement supported by GPSS World.

The GPSS Block statements are:

ADOPT - Change Assembly Set.

ADVANCE - Place Transaction on Future Events Chain.

ALTER - Test and modify Transactions in a Group.

ASSEMBLE - Wait for and destroy related Transactions.

ASSIGN - Modify Transaction Parameter.

BUFFER - Place Transaction at end of the Current Events
Chain.

CLOSE - End the Data Stream.

COUNT - Place count of entities into a Transaction Parameter.

DEPART - Decrement content of a Queue Entity.

DISPLACE - Change the Next Sequential Block of a
Transaction.

ENTER - Occupy or wait for storage units in a Storage Entity.

EXAMINE - Test group membership.

EXECUTE - Perform action specified by a different Block.

FAVAIL - Change status of a Facility Entity to "available".

FUNAVAIL - Change status of a Facility Entity to "not
available".

GATE - Test entity and modify Transaction flow.

GATHER - Wait for related Transactions.

GENERATE - Create Transaction and place on Future Events
Chain.

INDEX - Modify Transaction Parameter.

INTEGRATION - Turn the integration of a User Variable On or
Off.

JOIN - Place a member into a Numeric or Transaction Group.

LEAVE - Release storage units of a Storage Entity.

LINK - Move Transaction to Userchain Entity.

LOGIC - Modify Logicswitch Entity.

LOOP - Decrement Parameter, jump to different Block if result
is nonzero.

MARK - Place value of system clock into Transaction
Parameter.

MATCH - Wait for related Transaction to reach conjugate
MATCH Block.

MSAVEVALUE - Assign value to Matrix Entity element.

OPEN - Initialize a Data Stream.

PLUS - Evaluate PLUS Expression and save result in
Parameter.

PREEMPT - Displace Facility owner.

PRIORITY - Modify Transaction priority.

QUEUE - Increment content of a Queue Entity.

READ - Bring the next line of data from a Data Stream.

RELEASE - Free Facility Entity.

REMOVE - Take a member out of Numeric or Transaction
Group.

RETURN - Free Facility Entity.

SAVAIL - Change status of Storage Entity to "available".

SAVEVALUE - Assign a value to Savevalue Entity.

SCAN - Test Transaction group, place value in Parameter.

SEEK - Change the line pointer in a Data Stream.

SEIZE - Assume ownership of or wait for a Facility Entity.

SELECT - Place selected entity number into Transaction
Parameter.

SPLIT - Create related Transaction.

SUNAVAIL - Change status of Storage Entity to "not
available".

TABULATE - Update Table Entity.

TERMINATE - Destroy Transaction, decrement Termination
Count.

TEST - Test arithmetic condition and modify Transaction flow.

TRACE - Set Trace Indicator of the Active Transaction.

TRANSFER - Move to specified Block.

UNLINK - Remove Transaction from Userchain Entity.

UNTRACE - Turn off Trace Indicator in the Active Transaction.

WRITE - Send a value to a Data Stream.

Operands
Statements usually have one or more operands which you
must fill in. Most operands have several different forms which
are valid. In the descriptions which follow, a valid class of
operands may be described by an italicized word. You must
choose a member of the class and type it into the operand
field. For example, if one of the valid forms of an operand is
given as PosInteger, you could type:

21
The italicized words are usually suggestive, but you may need
to refer to the formal definition in the Appendix.

Windows
A wide variety of windows are available for you to observe the
state of Blocks and their effects on the other entities in your
simulations. In general, windows are specialized by the entity
type.

• Model Window - Text View � Full screen
textual model editor.

• Block Input Window - Drag and Drop model
building.

• Journal Window - Record session events.

• Blocks Window - Online view of Block
dynamics.

• Expressions Window - Online view of values of
expressions.

• Facilities Window - Online view of Facility Entity
dynamics.

• Logicswitches Window - Online view of
Logicswitch Entity dynamics.

• Matrix Window - Online view of the dynamics of
a Matrix cross-section.

• Plot Window - Online view of a plot of up to 8
expressions.

• Queues Window - Online view of Queue Entity
dynamics.

• Savevalues Window - Online view of Savevalue
Entity dynamics.

• Storages Window - Online view of Storage
Entity dynamics.

• Table Window - Online view of Table Entity
dynamics.

• Transaction Snapshot - Picture of the state of a
Transaction in the simulation.

• CEC Snapshot - Picture of the state of the
Current Events Chain in the simulation.

• FEC Snapshot - Picture of the state of the
Future Events Chain in the simulation.

• Numeric Groups Snapshot - Picture of the state
of the Numeric Groups in the simulation.

• Userchains Snapshot - Picture of the state of
the User Chains in the simulation.

• Transaction Groups Snapshot - Picture of the
state of the Transaction Groups in the simulation.

 ADOPT
ADOPT Blocks are used to change the
Assembly Set of the Active
Transaction.

ADOPT A

Operand
A - Assembly Set. Required. The operand must be Name,
PosInteger, ParenthesizedExpression, SNA, or
SNA*Parameter.

Example
ADOPT 2000

The numerical Assembly Set value of the Active Transaction is
given the value 2000. In effect, the Active Transaction
becomes a member of Assembly Set 2000.

Action
When a Transaction enters an ADOPT Block, Operand A is
evaluated numerically, and truncated. If the result is less than
or equal to zero, an Error Stop occurs. Otherwise, the result is
assigned to the Assembly Set value of the Active Transaction.

Every Transaction is assigned to an Assembly Set when it is
created. For Transactions created in GENERATE Blocks, the
initial assignment uses the same number for the Assembly Set
as was used for the Transaction Number. For Transactions
created in SPLIT Blocks, the offspring Transactions are placed
in the same Assembly Set as their parent Transaction.

Assembly Sets are used to combine related Transactions in
ASSEMBLE and GATHER Blocks. The ADOPT Block provides
for easy control of Assembly Set assignments.

Special Restriction
• A must be positive.

Refuse Mode
A Transaction is never refused entry to an ADOPT Block.

Related Blocks
• ASSEMBLE - Wait for and destroy Assembly
Set members.

• GATHER - Wait for Assembly Set members.

• MATCH - Wait for Assembly Set member.

• SPLIT - Create Transaction(s) in the same
Assembly Set.

Related SNAs
• A1 - Assembly Set. Return the Assembly Set of
the Active Transaction.

• MBEntnum - Match at Block. MBEntnum returns
a 1 if there is a Transaction at Block Entnum
which is in the same Assembly Set as the Active
Transaction. MBEntnum returns a 0 otherwise.

Related Window
• Transaction Snapshot - Picture of the state of a
Transaction in the simulation.

ADVANCE
An ADVANCE Block delays the
progress of a Transaction for a
specified amount of simulated time.

ADVANCE A,B

Operands
A - The mean time increment. Required. The operand must be
Name, Number, String, ParenthesizedExpression, SNA or
SNA*Parameter.

B - The time half-range or, if a function, the function modifier.
Optional. The operand must be Null, Name, Number, String,
ParenthesizedExpression, SNA, or SNA*Parameter.

Example
ADVANCE 101.6,50.3

This example creates a Block which chooses a random number
between 51.3 and 151.9, inclusively (i.e. 101.6 plus or minus
50.3), and delays the entering Transaction that amount of
simulated time.

Action
An ADVANCE Block calculates a time increment and places
the entering Transaction on the Future Events Chain (FEC) for
that amount of simulated time.

The time increment can be calculated in several ways. If only
the A Operand is specified, it is evaluated and used as the time
increment. If the A and B operands are present, and B does not
specify a function, both A and B are evaluated numerically and
a random number between A-B and A+B, inclusively, is used
as the time increment. You can select which random number
generator number is to be used as the source of the random
number. This is set in the "Random" page of the Model
Settings Notebook.

 CHOOSE View / Settings / Model

then select the Random page. Then fill in the desired random
number stream entity number in the entry box marked
"ADVANCE". The installation default is to use Random Number
Stream number 1.

If B is an FN class SNA, called a Function Modifier, the
evaluating B is multiplied by the result of evaluating the A
Operand; the product is used as the time increment.

If zero is calculated as the time increment (ADVANCE 0), the
entering Transaction is placed on the Current Events Chain in
front of priority peers. Such a Block then behaves as a null

operation. A further discussion of the Current Events Chain can
be found in Chapter 9.

Special Restriction
• If a negative number is calculated as the time
increment, an Error Stop occurs.

Refuse Mode
Normally, Transactions are not refused entry to an ADVANCE
Block. However, since preempted Transactions are not
permitted to exist on the Future Events Chain, a preempted
Transaction will not be permitted to enter an ADVANCE Block if
the time increment is positive (nonzero).

When a Transaction is refused entry, its Delay Indicator is set
and remains so until the Transaction enters a "Simultaneous"
Mode TRANSFER Block. To coordinate the state of multiple
entities, it is better to use a TEST Block and BOOLEAN
VARIABLE instead of a TRANSFER SIM Block.

Related Windows
• Transaction Snapshot - Picture of the state of a
Transaction in the simulation.

• CEC Snapshot - Picture of the state of the
Current Events Chain in the simulation.

• FEC Snapshot - Picture of the state of the
Future Events Chain in the simulation.

ALTER
An ALTER Block changes the priority
or a Parameter of selected members of
a Transaction Group.

ALTER O A,B,C,D,E,F,G

Operands
O - Conditional operator. Relationship of E to F for the
alteration to occur. These choices are explained below.
Optional. The operator must be Null, E, G, GE, L, LE, MAX,

MIN, or NE.

A - Transaction Group. Group whose members will be tested
for alteration. Required. The operand must be Name,
PosInteger, ParenthesizedExpression, SNA, or
SNA*Parameter.

B - Limit. The maximum number of Transactions to be altered.
The default is ALL. Optional. The operand must be Null, Name,
PosInteger, ParenthesizedExpression, SNA, or
SNA*Parameter.

C - Altered attribute. The member Transaction Parameter to be
altered, or PR to alter the member Transaction priority. The
operand must be PR, Name, PosInteger,
ParenthesizedExpression, SNA, or SNA*Parameter.

D - Replacement value. The value which will replace attribute
C. Required. The operand must be Name, Number, String,
ParenthesizedExpression, SNA, or SNA*Parameter.

E - Test value. PR or Parameter number. The member
Transaction Parameter which determines whether each Group
member Transaction should be altered, or PR to use the
Transaction priority for the determination. It is evaluated with
respect to the Transaction Group member. Optional. The
operand must be PR, Null, Name, PosInteger,
ParenthesizedExpression, SNA, or SNA*Parameter.

F - Reference value. The value against which the E Operand is
compared. It is evaluated with respect to the Active
Transaction. Optional. The operand must be Null, Name,
Number, String, ParenthesizedExpression, SNA, or
SNA*Parameter.

G - Alternate Block number. The alternate destination for the
Active Transaction. Optional. The operand must be Null, Name,
PosInteger, ParenthesizedExpression, SNA, or
SNA*Parameter.

Examples
ALTER Inventory,ALL,Price,49.95

In this simple example, all Transactions in the Transaction
Group named Inventory have their Parameter named Price set
equal to 49.95.

ALTER NE Bin7,10,Price,49.95,PartNum,99.95,Out

In this example, when a Transaction enters the ALTER Block,
Transaction Group named Bin7 is scanned for Transactions
which do not have a value of 99.95 in their Parameter named

PartNum. The first 10 Transactions which meet the test have
the value of their Parameter named Price set to 49.95. If 10
Transactions cannot be found which pass the test, the entering
Transaction attempts to enter the Block labeled Out.
Otherwise, it proceeds to the Next Sequential Block.

Action
An ALTER Block selects Transactions from a Transaction
Group and alters one of the attributes of each of these
Transactions. When a Transaction Group member is altered,
its Transaction attribute specified by the C Operand is given
the value specified by the D Operand. Altered Transactions are
not displaced from their context. However, the Transaction
entering the ALTER Block may be redirected according to the
G Operand.

If you do not use a conditional operator, or operands E or F, all
Transactions up to the limit (Operand B) are altered. In this
case, no priority or Parameter test is made to determine
whether or not to alter the attribute of the member Transaction.

If you use operands E, F, or a conditional operator, each Group
member must pass a test before it is altered. Operand E
specifies which attribute of the member Transactions is to be
tested. It may be compared to the minimum or the maximum of
all such Group member attributes by using MIN or MAX as the
conditional operator. All Transactions which are tested and
have the maximum or minimum attribute are altered. In this
case, you must not use Operand F.

You may use a conditional operator to specify the relationship
between the Transaction attribute (Operand E) and the
reference value (Operand F) which will initiate the alteration of
the Transaction. The default for the conditional operator is E for
equality. If you use no conditional operator, but you use
operand E and Operand F, the values must be equal for the
member Transaction attribute to be altered.

You may compare the Group member attribute to Operand F,
with or without a conditional operator. In this case, the
conditional operator must not be MIN or MAX. Operand E
always refers to the Group member under test. However, if any
other operand is a Transaction related SNA, it is evaluated with
respect to the entering Transaction.

The B Operand cuts off the Group scan when it equals the
number of Transactions that have been altered. The default is
ALL. If there is no attribute test, that is, if E is not specified,
Transactions are altered until the alteration count equals B or
until the entire Group has been tested.

The G Operand indicates an alternate destination Block to be
taken by the entering Transaction when a special condition

occurs. The G Operand is used for the next Block under the
following conditions:

• No Transaction is altered.

• The count of altered Transactions specified by
B cannot be reached.

If the G Operand is not used, the entering Transaction always
goes to the Next Sequential Block.

Conditional Operators
The conditional operator may be E, G, GE, L, LE, MAX, MIN, or
NE. If no conditional operator is used, E (equality) is assumed.
When the condition is true, the Transaction being tested is
altered. The conditions are defined as follows:

• E - The member Transaction attribute specified
by Operand E must be equal to the reference
value specified by Operand F for the member
Transaction to be altered.

• G - The member Transaction attribute specified
by Operand E must be greater than the reference
value specified by Operand F for the member
Transaction to be altered.

• GE - The member Transaction attribute
specified by Operand E must be greater than or
equal to the reference value specified by
Operand F for the member Transaction to be
altered.

• L - The member Transaction attribute specified
by Operand E must be less than the reference
value specified by Operand F for the member
Transaction to be altered.

• LE - The member Transaction attribute
specified by Operand E must be less than or
equal to the reference value specified by
Operand F for the member Transaction to be
altered.

• MAX - The member Transaction attribute
specified by Operand E must be equal to the
largest such attribute of all Transactions in the
Group for the member Transaction to be altered.

• MIN - The member Transaction attribute
specified by Operand E must be equal to the
smallest such attribute of all Transactions in the
Group for the member Transaction to be altered.

• NE - The member Transaction attribute

specified by Operand E must be unequal to the
reference value specified by Operand F for the
member Transaction to be altered.

If no conditional operator is used, E is assumed.

Special Restrictions
• If Operand E is used, then you must use
Operand F or else you must use the conditional
operator MIN or MAX.

• If Operand F is used, you must use Operand E,
and not MIN or MAX.

• If MIN or MAX is used for the conditional
operator, Operand E must be used and Operand
F must not be used.

Refuse Mode
A Transaction is never refused entry to an ALTER Block.

Related Blocks
Transactions are added to Transaction Groups, and numbers
are added to Numeric Groups by JOIN Blocks. Transactions in
Groups can be referenced by ALTER, EXAMINE, REMOVE,
and SCAN Blocks. Numbers in Numeric Groups can be
referenced by EXAMINE and REMOVE Blocks.

Related SNA
• GTEntnum - Transaction Group count.
GTEntnum returns the membership count of
Transaction Group Entnum.

Related Windows
• Transaction Snapshot - Picture of the state of a
Transaction in the simulation.

• Transaction Groups Snapshot - Picture of the
state of the Transaction Groups in the simulation.

ASSEMBLE
Wait for and destroy related
Transactions.

ASSEMBLE A

Operand
A - Transaction count. Required. The operand must be Name,
PosInteger, ParenthesizedExpression, SNA, or
SNA*Parameter.

Example
ASSEMBLE 2

This is the simplest way to use the ASSEMBLE Block. The first
Transaction of an Assembly Set (see Section 9.3) is caused to
wait when it enters an ASSEMBLE Block. When another
Transaction in the same Assembly Set enters the Block, it is
destroyed and the waiting Transaction is allowed to continue.

Action
When a Transaction enters an ASSEMBLE Block, the Match
Chain of the Block is searched for a waiting Transaction of the
same Assembly Set. If there are no other members of the
same Assembly Set present, the A Operand is evaluated,
truncated, decremented by one, and saved in a storage
location in the Transaction. If this number is zero, the
Transaction immediately attempts to enter the Next Sequential
Block. Otherwise the Transaction is placed on a queue
attached to the ASSEMBLE Block called the Match Chain to
await the arrival of other members of its Assembly Set.

When a Transaction enters an ASSEMBLE Block, if a waiting
Transaction is found, the entering Transaction is destroyed and
the Transaction count that was saved in the chained
Transaction is reduced by one. When this count becomes 0,
the waiting Transaction is removed from the Match Chain. If
this Transaction has not been preempted at any Facility, it
attempts to enter the Next Sequential Block. When it does so, it
is scheduled behind active Transactions of the same priority.

Preempted Transactions which complete an assembly at an
ASSEMBLE Block are not permitted to leave the Block until all

preemptions have been cleared. More discussion of the
preemption mechanism can be found in Section 9.4.
Preempted Transactions which have been removed from the
Match Chain do not participate in later assemblies even though
they remain in the ASSEMBLE Block.

ASSEMBLE Blocks differ from GATHER Blocks in that
succeeding Transactions are destroyed at an ASSEMBLE.

Special Restriction
• Transactions which are currently preempted are
not permitted to leave ASSEMBLE Blocks.

Refuse Mode
A Transaction is never refused entry to an ASSEMBLE Block.

Related Blocks
• ADOPT - Set the Assembly Set of the Active
Transaction.

• GATHER - Wait for members of an Assembly
Set.

• MATCH - Wait for Assembly Set member.

• SPLIT - Create Transactions in the same
Assembly Set.

Related SNAs
• A1 - Assembly Set. Return the Assembly Set of
the Active Transaction.

• MBEntnum - Match at Block. MBEntnum returns
a 1 if there is a Transaction at Block Entnum
which is in the same Assembly Set as the Active
Transaction. MBEntnum returns a 0 otherwise.

Related Windows
• Blocks Window - Online view of Block
dynamics.

• Transaction Snapshot - Picture of the state of a
Transaction in the simulation.

• CEC Snapshot - Picture of the state of the
Current Events Chain in the simulation.

• FEC Snapshot - Picture of the state of the
Future Events Chain in the simulation.

ASSIGN
ASSIGN Blocks are used to place or
modify a value in a Transaction
Parameter.

ASSIGN A,B,C

Operands
A - Parameter number of the Active Transaction. Required.
The operand must be Name, PosInteger,
ParenthesizedExpression, SNA, or SNA*Parameter, followed
by +, -, or Null.

B - Value. Required. the operand must be Name, Number,
String, ParenthesizedExpression, SNA, or SNA*Parameter.

C - Function number. Optional. The operand must be Null,
Name, PosInteger, ParenthesizedExpression, SNA or
SNA*Parameter.

Examples
ASSIGN 2000,150.6

This is the simplest way to use the ASSIGN Block. The value
150.6 is assigned to Parameter number 2000 of the entering
Transaction. If no such Parameter exists, it is created.

ASSIGN TEXT,"Look on my works, ye Mighty, and
despair."

In this example, a string is assigned to the Parameter of the
Active Transaction named TEXT. If no such Parameter exists,
it is created.

ASSIGN 2000+,-3

In this example, the [+] following Operand A indicates that the
value of Operand B is to be added to the original Parameter
value. This Block adds a -3 to the value contained in
Transaction Parameter 2000. If there is no such Transaction
Parameter, one is created and initialized to 0 before the
addition. In this case, the value of the Transaction Parameter

becomes -3.

ASSIGN 2000-,-3

In this example, the [-] following Operand A indicates that the
value of Operand B is to be subtracted from to the original
Parameter value. This Block subtracts a -3 from the value
contained in Transaction Parameter 2000. If there is no such
Transaction Parameter, one is created and initialized to 0
before the subtraction. Then value of the Transaction
Parameter becomes 3.

Action
When a Transaction enters an ASSIGN Block, the value of the
Transaction Parameter identified in the A Operand is set
according to the B and C operands. A Transaction Parameter
is created if necessary.

You may assign, add to, or subtract from the numeric
equivalent of the Transaction Parameter�s value. If there is no
C Operand, Operand B is evaluated and is used as the new
value, or its numeric equivalent is used as the increment or
decrement. Addition and subtraction are specified by a + or -
suffix immediately following the A Operand. If there is no such
suffix, Operand B is evaluated and the result is given to the
value of the Transaction Parameter.

Optionally, Operand C may be used to determine the number
of a function, here called a "Function Modifier". If specified, the
function is evaluated, multiplied by the numerical equivalent of
the evaluated B Operand, and the result is added, subtracted,
or assigned to the value of the Transaction Parameter
depending on the optional suffix of the A Operand. Notice that
Operand C specifies a Function Entity number or name (do not
precede it with an FN or FN$). If an FN class SNA is used, the
GPSS Function is evaluated and the result is used to specify a
second GPSS Function which is then evaluated.

Special Restriction
• A must be positive, but may be followed by a +
or - suffix.

Refuse Mode
A Transaction is never refused entry to an ASSIGN Block.

Related SNA
• PParameter or *Parameter - Parameter value.
PParameter returns the value of Parameter
Parameter. (note: e.g. P1 or *1 or P$NAME will
yield the value in the Parameter 1 in the first two
cases and the Parameter called NAME in the final
case.)

Related Window
• Transaction Snapshot - Picture of the state of a
Transaction in the simulation.

BUFFER
A BUFFER Block places the Active
Transaction on the Current Events
Chain behind its priority peers.

BUFFER

Operands
None.

Example
BUFFER

This example creates a Block which gives Transactions other
than the Active Transaction a chance to be scheduled.

Action
When a Transaction enters a BUFFER Block, it is placed on
the Current Events Chain behind Transactions of equal priority.

The Transaction scheduler tries to move the Active Transaction
as far as it can in the simulation. In effect, the Transaction
scheduler removes the Active Transaction from the CEC, calls
the routine for the Next Sequential Block (NSB), and unless

something extraordinary occurs, replaces the Transaction on
the CEC IN FRONT of its peers (i.e. same priority) on the CEC.
This replacement is modified by PRIORITY and BUFFER
Blocks. After a Transaction enters a BUFFER Block, it is
replaced BEHIND its peers on the CEC. A more detailed
discussion of Transaction scheduling is in Chapter 9.

BUFFER Blocks are used to allow newly reactivated
Transactions to get ahead of the Active Transaction. It is a
common occurrence that the Active Transaction enters a Block
which triggers an event which must proceed to completion
before the Active Transaction should proceed. It may be
necessary to follow such Blocks by BUFFER Blocks in order to
allow reactivated Transaction(s) to proceed immediately in the
simulation. Alternately, the reactivated Transactions could be
given a higher priority.

Refuse Mode
A Transaction is never refused entry to a BUFFER Block.

Related Windows
• CEC Snapshot - Picture of the state of the
Current Events Chain in the simulation.

• FEC Snapshot - Picture of the state of the
Future Events Chain in the simulation.

CLOSE
A CLOSE Block terminates a Data
Stream and retrieves its error code.

CLOSE A,B,C

Operands
A - Transaction Parameter. Optional. The operand must be
Null, Name, PosInteger, ParenthesizedExpression, SNA or
SNA*Parameter.

B - Data Stream. Optional. The operand must be Null, Name,
PosInteger, ParenthesizedExpression, SNA, or
SNA*Parameter. The default is 1.

C - Alternate Destination. Optional. The operand must be Null,

Name, PosInteger, ParenthesizedExpression, SNA, or
SNA*Parameter.

Example
CLOSE Error_Parm,2

In this example, the CLOSE Block terminates the operation of
Data Stream 2 and frees all the resources associated with it.
The internal error code of Data Stream 2 is placed in
Parameter Error_Parm of the Active Transaction.

Action
A CLOSE Block shuts down a Data Stream and retrieves its
error code.

If Operand A is used, it is evaluated numerically, truncated, and
used as the number of a Parameter of the Active Transaction.
If no such Parameter exits, one is created. The error code of
the Data Stream is placed in this Parameter.

If Operand B is used, it is evaluated numerically, truncated, and
used as the entity number of the Data Stream. The result must
be a positive integer. If Operand B is not used, Data Stream
number 1 is closed.

If Operand C is used, it is evaluated numerically, truncated,
and used as the Block Entity number of an Alternate
Destination Block. When the error code of the Data Stream is
nonzero, the Active Transaction proceeds to the Alternate
Destination Block after it enters the CLOSE Block.

Chapter 4 (4.16) contains a full discussion of Data Streams,
including the error code descriptions, under the Section entitled
Data Streams.

Blocking Condition
The simulation is blocked while CLOSE retrieves the error
code.

Special Restrictions
• A and B, if specified, must be positive.

• C, if specified, must be a valid Block location in
the simulation.

Refuse Mode
A Transaction is never refused entry to a CLOSE Block.

Related Blocks
• OPEN - Create a Data Stream.

• READ - Retrieve a text line from a Data Stream.

• WRITE - Send a text line to a Data Stream.

• SEEK - Set the Current Line Position of a Data
Stream.

COUNT
A COUNT Block places an entity count
into a Parameter of the Active
Transaction.

COUNT O A,B,C,D,E

Operands
O - Conditional operator or logical operator. These choices are
explained below. Required. The operator must be FNV, FV, I,
LS, LR, NI, NU, SE, SF, SNE, SNF, SNV, SV, U, E, G, GE, L,
LE, MIN, MAX, or NE.

A - Parameter number to receive count. Required. The
operand must be Name, PosInteger, ParenthesizedExpression,
SNA, or SNA*Parameter.

B - Number or name of entity at lower end of range. The entity
number of the first entity to be tested. The entity type is
implicitly specified by the logical operator or by Operand E.
Required. The operand must be Name, PosInteger,
ParenthesizedExpression, SNA, or SNA*Parameter.

C - Number or name of entity at upper end of range. The entity
number of the last entity to be tested. Required. The operand
must be Name, PosInteger, ParenthesizedExpression, SNA, or
SNA*Parameter.

D - Reference value for E Operand. Required only when in
Conditional Mode. Optional. The operand must be Null, Name,
Number, String, ParenthesizedExpression, SNA, or
SNA*Parameter.

E - SNA class name. Entity attribute specifier for Conditional
Mode tests. Required only for Conditional Mode. The type of
SNA implies the entity type. You do not specify the entity
number in Operand E. This is done automatically as the entity
number range is searched. You may use any entity SNA class.
The operand must be Null or entitySNAclass.

Examples
COUNT SF FullCount,Warehouse1,Warehouse13

In this example, the number of full Storage Entities whose
entity numbers fall between Warehouse1 and Warehouse13
and will be stored in the Transaction Parameter named
FullCount. Normally, the Storage Entity Labels should be
assigned contiguous integers in a set of EQU Commands.

COUNT E EmptyCount,FirstQueue,LastQueue,0,Q

In this example, the COUNT Block operates in Conditional
Mode. Operand E specifies SNA class Q, which refers to a
Queue Entity. Each Queue Entity with entity number between
that of FirstQueue and LastQueue is tested. Any such queue
entity whose current content is 0 is counted. EmptyCount is the
name of the Parameter of the Active Transaction to receive the
count of "empty" Queue Entities in the specified range.
Normally, the Queue Entity Labels should be assigned
contiguous integers in a set of EQU Commands.

Action
When the COUNT Block is entered, the entity specified by
Operand B is tested. If the entity does not exist and does not
require a separate Command for its definition, a new entity is
created. Thereafter, each entity in the range indicated by
operands B and C is tested. An SNA is built automatically for
each entity. The SNA class used to build the SNA is taken from
Operand E or is specified by the logical operator.

A COUNT Block operates in either Logical Mode or in
Conditional Mode, depending on whether a logical operator or
a conditional operator is used.

When a logical operator is used (defined below), Operands A,
B, and C are used. The condition specified by the logical
operator is tested for the entities whose numbers fall between
B and C. The count of entities in that condition is placed in the
Parameter of the entering Transaction whose number or name
is given by Operand A. If the Parameter does not exist, it is

created. The entity type is implied by the logical operator.

When a conditional operator is used, Operands A, B, C, D, and
E are used. Operands A, B, C, are used to specify the target
Parameter, and the range of entity numbers, as above. But
now the conditional operator specifies the relationship between
operands D and E that must hold for the entity to be counted.

In Conditional Mode, the SNA class is combined with the entity
specifications in order to build an SNA. The entity type implied
by each SNA class is given in Section 3.4. The complete SNA
is built from this class and the number of the entity being
tested. Each such SNA is evaluated for each entity and
compared to the reference value in Operand D. If the condition
set up in the conditional operator is met, the entity is counted.

Logical Operators
Either a conditional operator or a logical operator is required.
The logical operator may be FNV, FV, I, LS, LR, NI, NU, SE,
SF, SNE, SNF, SNV, SV, or U. When the logical operator is
true, the entity being tested is counted. The conditions are
defined as follows:

• FNV - The Facility must be unavailable in order
to be counted.

• FV - The Facility must be available in order to
be counted.

• I - The Facility must be currently interrupted
(preempted) in order to be counted.

• LS - The Logicswitch Entity must be set (in the
"on" state) in order to be counted.

• LR - The Logicswitch Entity must be reset (in
the "off" state) in order to be counted.

• NI - The Facility must NOT be currently
interrupted (preempted) in order to be counted.

• NU - The Facility must not be in use in order to
be counted.

• SE - The Storage must be empty in order to be
counted.

• SF - The Storage must be full in order to be
counted.

• SNE - The Storage must NOT be empty in order
to be counted.

• SNF - The Storage must NOT be full in order to
be counted.

• SNV - The Storage must NOT be available in
order to be counted.

• SV - The Storage must be available in order to
be counted.

• U - The Facility must be in use in order to be
counted.

Conditional Operators
Either a conditional operator or a logical operator is required.
The conditional operator may be E, G, GE, L, LE, MAX, MIN, or
NE. The conditions are defined as follows:

• E - The value of the automatic SNA must be
equal to the reference value specified by
Operand D for the entity to be counted.

• G - The value of the automatic SNA must be
greater than the reference value specified by
Operand D for the entity to be counted.

• GE - The value of the automatic SNA must be
greater than or equal to the reference value
specified by Operand D for the entity to be
counted.

• L - The value of the automatic SNA must be
less than the reference value specified by
Operand D for the entity to be counted.

• LE - The value of the automatic SNA must be
less than or equal to the reference value specified
by Operand D for the entity to be counted.

• MAX - The value of the automatic SNA must be
equal to the greatest of all such SNAs, for the
entity to be counted.

• MIN - The value of the automatic SNA must be
equal to the least of all such SNAs, for the entity
to be counted.

• NE - The value of the automatic SNA must be
unequal to the reference value specified by
Operand E for the entity to be counted.

Special Restrictions
• D and E are required if O is a conditional
operator.

• When evaluated, C must be greater than or
equal to B.

• The number of tested entities must be less than
32768.

Refuse Mode
A Transaction is never refused entry to a COUNT Block.

Related Windows
• Facilities Window - Online view of Facility Entity
dynamics.

• Logicswitches Window - Online view of
Logicswitch Entity dynamics.

• Storages Window - Online view of Storage
Entity dynamics.

DEPART
A DEPART Block registers statistics
which indicate a reduction in the
content of a Queue Entity.

DEPART A,B

Operands
A - Queue Entity name or number. Required. The operand
must be Name, PosInteger, ParenthesizedExpression, SNA or
SNA*Parameter.

B - Number of units by which to decrease content of the Queue
Entity. Default value is 1. Optional. The operand must be Null,
Name, PosInteger, String, ParenthesizedExpression, SNA, or
SNA*Parameter.

Example
DEPART WaitingLine

In this example the content of the Queue Entity named
WaitingLine is reduced by one and the associated statistics
accumulators are updated.

Action
When a Transaction enters a DEPART Block, Operand A is
evaluated, truncated, and used to find the Queue Entity with
that number. The Queue Entity is created if necessary. If a
Queue Entity is created, the attempt to decrement the content
of the Queue Entity will cause an Error Stop. Manual
Simulation can be used to alter the Queue Entity content
interactively.

Operand B specifies the value to be used to decrease the
content of the Queue Entity. If B was specified, Operand B is
evaluated numerically, truncated, and used as the result. If B
was not specified, the value of 1 is used.

Finally, the statistics accumulated on behalf of the Queue
Entity are updated. If Qtable Entities have been defined for this
same Queue Entity, they are also updated.

Special Restrictions
• A and B must be positive, if specified.

• If the content of the Queue Entity is about to
become negative, an Error Stop occurs.

Refuse Mode
A Transaction is never refused entry to a DEPART Block.

Related SNAs
• QEntnum - Current content of queue entity. The
current count value of Queue Entity Entnum.

• QAEntnum - Average queue content. The time
weighted average count for Queue Entity
Entnum.

• QCEntnum - Total queue entries. The sum of all
queue entry counts for Queue Entity Entnum.

• QMEntnum - Maximum queue content. The
maximum count (high water mark) of Queue

Entity Entnum.

• QTEntnum - Average queue residence time.
The time weighted average of the count for
Queue Entity Entnum.

• QXEntnum - Average queue residence time
excluding zero entries. The time weighted
average of the count for Queue Entity Entnum not
counting entries with a zero residence time.

• QZEntnum - Queue zero entry count. The
number of entries of Queue Entity Entnum with a
zero residence time.

Related Window
• Queues Window - Online view of Queue Entity
dynamics.

DISPLACE
A DISPLACE Block moves any
Transaction.

DISPLACE A,B,C,D

Operands
A - Transaction number. Required. The operand must be
Name, PosInteger, ParenthesizedExpression, SNA or
SNA*Parameter.

B - Displaced Transaction destination. Block name or number.
Required. The operand must be Name, PosInteger,
ParenthesizedExpression, SNA, or SNA*Parameter.

C - Parameter number. Parameter of displaced Transaction to
receive residual time if preempted Transaction is removed from
FEC. Optional. The operand must be Null, Name, PosInteger,
ParenthesizedExpression, SNA, or SNA*Parameter.

D - Alternate destination for the Active Transaction. Block
name or number. Optional. The operand must be Null, Name,
PosInteger, ParenthesizedExpression, SNA, or
SNA*Parameter.

Example

DISPLACE X$Culprit,Compensate,Residual,NotCaught

In this example, the DISPLACE Block moves the Transaction
whose number is kept in the Savevalue named Culprit. If the
target Transaction exists, it is sent to the Block labeled
Compensate as its Next Sequential Block. If it was residing on
the Future Events Chain, any time left until its reentry into the
simulation is calculated and stored in the Parameter named
Residual of the displaced Transaction. If the Transaction was
on the FEC and no such Parameter exists, it is created. If the
target Transaction does not exist, the Active Transaction
moves to the alternate destination Block labeled NotCaught,
after entering the DISPLACE Block.

Action
A DISPLACE Block moves any Transaction in the simulation to
any Block. The displaced Transaction is removed from
Transaction chains, as discussed below, and is scheduled to
enter the destination Block.

When a Transaction enters a DISPLACE Block, Operand A is
evaluated numerically, truncated, and used to find the
Transaction to be displaced. If that Transaction does not exist,
processing ceases, and the Active Transaction is sent to the
Alternate Destination specified by Operand D, if any.

If the Transaction exists, it is given the new Block destination
specified by Operand B.

If the displaced Transaction is on the FEC, it is removed from it
and the residual time duration is calculated as the time which
the Transaction is scheduled to come off the FEC minus the
current time. If the C Operand is used, the residual time is
saved in a Transaction Parameter. If no such Parameter exists
and Operand C is used, a new Parameter is created.

When a Transaction is displaced, it is given a new Block
destination and is dequeued from:

• FEC

• PENDING (INTERRUPT-MODE PREEMPT)
CHAINS

• DELAY (MAJOR PRIORITY) CHAINS

• USER CHAINS

• RETRY CHAINS

and not dequeued from:

• CEC

• INTERRUPT (PREEMPTED) CHAINS

• GROUP CHAINS

When a Transaction is displaced, preemptions at Facilities are
not cleared.

Refuse Mode
A Transaction is never refused entry to a DISPLACE Block.

Related SNA
• XN1 - Transaction number of the Active
Transaction.

Related Windows
• Blocks Window - Online view of Block
dynamics.

• Transaction Snapshot - Picture of the state of a
Transaction in the simulation.

• CEC Snapshot - Picture of the state of the
Current Events Chain in the simulation.

• FEC Snapshot - Picture of the state of the
Future Events Chain in the simulation.

Related Library Procedures
• QueryXNExist - determine the existence of a Transaction.

• QueryXNParameter - retrieve the value of a Transaction
Parameter.

• QueryXNAssemblySet - retrieve the Assembly Set of a
Transaction.

• QueryXNPriority - retrieve the priority of a Transaction.

• QueryXNM1 - retrieve the Mark Time of a Transaction.

ENTER
When a Transaction attempts to enter
an ENTER Block, it either takes or
waits for a specified number of storage
units.

ENTER A,B

Operands
A - Storage Entity name or number. Required. The operand
must be Name, PosInteger, ParenthesizedExpression, SNA or
SNA*Parameter.

B - Number of units by which to decrease the available storage
capacity. Default value is 1. Optional. The operand must be
Null, Name, PosInteger, ParenthesizedExpression, SNA, or
SNA*Parameter.

Example
ENTER Toolkit,2

In this example the Active Transaction demands 2 storage
units from the storage units available at the Storage Entity
named Toolkit. If there are not enough storage units remaining
in the Storage Entity, the Transaction comes to rest on the
Delay Chain of the Storage Entity.

Action
When a Transaction enters an ENTER Block, Operand A is
evaluated and used to find the Storage Entity with that number.
If the Storage Entity does not exist, an Error Stop occurs.
Storage entities must be defined by a STORAGE Command.

If the Storage Entity exists, Operand B is used to determine the
storage demand. If B was specified, Operand B is evaluated,
truncated, and used as the result. If B was not specified, the
value of 1 is used.

If the Storage Entity is in the available state, and if there are
enough storage units to satisfy the demand, the Transaction is
allowed to enter the ENTER Block and the demand is granted
by reducing the current storage units by the amount of the
demand. Otherwise, the Transaction comes to rest on the

Delay Chain of the Storage Entity in priority order.

When storage units are freed by a LEAVE Block, a
"first-fit-with-skip" discipline is used to choose the next
Transaction(s) to be allowed entry into the ENTER Block. Any
such entry is permitted before the Active Transaction leaves
the LEAVE Block. This prevents "line-bucking".

When a Transaction enters an ENTER or LEAVE Block, the
statistics accumulated on behalf of the Storage Entity are
updated.

Special Restrictions
• A must be positive.

• B must be nonnegative.

• A request for more storage than exists will result
in an Error Stop. (e.g. a B Operand that is larger
than the defined size of the STORAGE named in
Operand A.)

Refuse Mode
• The Active Transaction is refused entry to the
ENTER Block if its storage demand cannot be
met.

• The Active Transaction is refused entry to the
ENTER Block if the Storage Entity is in the
unavailable state.

When a Transaction is refused entry, its Delay Indicator is set
and remains so until the Transaction enters a "Simultaneous"
Mode TRANSFER Block. Simultaneous Mode TRANSFER
Blocks are rarely used. A BOOLEAN VARIABLE can more
efficiently control the coordination of the state of a number of
resources when used in a TEST Block.

Related Command
A Storage Entity must be defined in a STORAGE Command
before it can be updated by an ENTER Block. The STORAGE
Command must exist in the model, or must be sent to the
Simulation Object interactively, before a Transaction can enter
the ENTER Block. Any attempt to do so before the Storage
Entity is defined, cases an Error Stop.

A Storage Entity can be redefined by an interactive STORAGE
Command.

Related SNAs
• REntnum - Unused storage capacity. The
storage content (or "token" spaces) available for
use by entering Transactions at Storage Entity
Entnum.

• SEntnum - Storage in use. SEntnum returns the
amount of storage content (or "token" spaces)
currently in use by entering Transactions at
Storage Entity Entnum.

• SAEntnum - Average storage in use. SAEntnum
returns the time weighted average of storage
capacity (or "token" spaces) in use at Storage
Entity Entnum.

• SCEntnum - Storage use count. Total number
of storage units that have been entered in (or
"token" spaces that have been used at) Storage
Entity Entnum.

• SEEntnum - Storage empty. SEEntnum returns
1 if Storage Entity Entnum is completely unused,
0 otherwise.

• SFEntnum - Storage full. SFentnum returns 1 if
Storage Entity Entnum is completely used, 0
otherwise.

• SREntnum - Storage utilization. The fraction of
total usage represented by the average storage in
use at Storage Entity Entnum. SREntnum is
expressed in parts-per-thousand and therefore
returns an real value 0-1000, inclusively.

• SMEntnum - Maximum storage in use at
Storage Entity Entnum. The "high water mark".

• STEntnum - Average holding time per unit at
Storage Entity Entnum.

• SVEntnum - Storage in available state.
SVEntnum returns 1 if Storage Entity Entnum is
in the available state, 0 otherwise.

Related Window
• Storages Window - Online view of Storage
Entity dynamics.

EXAMINE
An EXAMINE Block may be used to
test for membership in a Numeric
Group or a Transaction Group.

EXAMINE A,B,C

Operands
A - Group number. Group whose members will be examined.
Required. The operand must be Name, PosInteger,
ParenthesizedExpression, SNA, or SNA*Parameter.

B - Numeric Mode only. The value to be tested for membership
in the Numeric Group. Optional. The operand must be Null,
Name, Number, String, ParenthesizedExpression, SNA, or
SNA*Parameter.

C - Block number. Alternate destination for Active Transaction
if no membership is found. Required. The operand must be
Name, PosInteger, ParenthesizedExpression, SNA, or
SNA*Parameter.

Examples
EXAMINE ValidColors,P$Color,NotCorrectColor

In this simple example, if the Numeric Group named
ValidColors does not include the value contained in the
Transaction Parameter named Color, the Active Transaction
proceeds to the Block location NotCorrectColor. If the value is
a Numeric Group member, the Active Transaction proceeds to
the Next Sequential Block (NSB).

EXAMINE ValidXNs,,NotValidXN

In this example, if the Active Transaction is not a member of
the Transaction Group named ValidXNs, the Active
Transaction proceeds to the Block location NotValidXN. If the
Transaction is a Transaction Group member, it proceeds to the
Next Sequential Block (NSB).

Action
An EXAMINE Block operates in either "Numeric Mode" or
"Transaction Mode". If the B Operand is used, the EXAMINE
Block operates in Numeric Mode. In this case the value of
Operand B is tested for membership in the Numeric Group. If
the B Operand is not used, the EXAMINE operates in
Transaction Mode. Then, It is the Active Transaction which is
tested for membership in a Transaction Group.

When a Transaction enters an EXAMINE Block, Operand A is
evaluated and the appropriate Group entity is found. If there is
no such Group, one is created.

If the B Operand is used, it is evaluated numerically and the
result is tested for membership in the Numeric Group. If
Operand B is not used, the Active Transaction is tested for
membership in the Transaction Group specified by the A
Operand.

There is some loss of efficiency when non-integers are used in
Numeric Groups.

If the membership test fails, Operand C is evaluated, truncated,
and used as the destination Block number for the Active
Transaction. If the membership test is successful, the Active
Transaction proceeds to the Next Sequential Block (NSB).

Special Restrictions
• A and C must be positive.

• C must be a Block location in the simulation.

Refuse Mode
A Transaction is never refused entry to an EXAMINE Block.

Related Blocks
Transactions and numbers are added to Groups by JOIN
Blocks. Transactions in Transaction Groups can be referenced
by ALTER, EXAMINE, REMOVE, and SCAN Blocks. Numbers
in Numeric Groups can be referenced by EXAMINE and
REMOVE Blocks.

Related SNAs
• GNEntnum - Numeric Group Count. GNEntnum
returns the membership count of Numeric Group
Entnum.

• GTEntnum - Transaction Group Count.
GTEntnum returns the membership count of

Transaction Group Entnum.

Related Windows
• Numeric Groups Snapshot - Picture of the state
of the Numeric Groups in the simulation.

• Transaction Groups Snapshot - Picture of the
state of the Transaction Groups in the simulation.

EXECUTE
The EXECUTE Block can cause any
Block routine in the simulation to be
done on behalf of the Active
Transaction.

EXECUTE A

Operand
A - Block number. The name or number of the Block to be
"performed". required. The operand must be Name,
PosInteger, ParenthesizedExpression, SNA, or
SNA*Parameter.

Example
EXECUTE P$ActiveBlock

This EXECUTE Block will cause the Block, whose number is in
the Parameter named ActiveBlock, to be executed with respect
to the Active Transaction.

Action
When a Transaction enters an EXECUTE Block, the A
Operand is evaluated and is used to find the Block with that
number or name. Then the Block routine associated with the
target Block is done on behalf of the Active Transaction.

If the Active Transaction is refused entry to the target Block, it
remains in the EXECUTE Block.

After the target Block routine is performed, the Active
Transaction is normally scheduled for the Block following the
EXECUTE Block. However, if the target Block schedules an
alternate destination for the Active Transaction, that Block, and
not the EXECUTE Block�s next sequential Block, is scheduled.

Special Restrictions
• A must be a Block location in the simulation.

• An EXECUTE Block cannot act on another
EXECUTE Block.

Refuse Mode
An EXECUTE Block never refuses entry to a Transaction.

Related Window
• Blocks Window - Online view of Block
dynamics.

FAVAIL
A FAVAIL Block ensures that a Facility
Entity is in the available state.

FAVAIL A

Operand
A - Facility number. Required. The operand must be Name,
PosInteger, ParenthesizedExpression, SNA, or
SNA*Parameter.

Example
FAVAIL Teller1

This Block, when entered by an Active Transaction, will ensure
that the Facility Entity named Teller1 is in the available state.

Action
A FAVAIL Block ensures that a Facility Entity is in the available
state. If the Facility Entity was previously idle, the FAVAIL
Block tries to give ownership to a waiting Transaction. This is
discussed in more detail in Chapter 9.

If the Facility Entity was previously available, FAVAIL has no
effect.

FAVAIL cancels the affects of FUNAVAIL on the Facility Entity,
but does not affect displaced Transactions.

Refuse Mode
A Transaction is never refused entry to a FAVAIL Block.

Related Block
• FUNAVAIL - Place Facility Entity in the
unavailable state.

Related SNAs
The SNAs associated with Facilities are:

• FEntnum - Facility busy. If Facility Entity
Entnum is currently busy, FEntnum returns 1.
Otherwise FEntnum returns 0.

• FCEntnum - Facility capture count. The number
of times Facility Entity Entnum has become
owned by a Transaction.

• FIEntnum - Facility Entnum interrupted. If
Facility Entity Entnum is currently preempted,
FIEntnum returns 1. Otherwise FIEntnum returns
0.

• FREntnum - Facility utilization. The fraction of
time Facility Entity Entnum has been busy.
FREntnum is expressed in parts-per-thousand
and therefore returns an real value 0-1000,
inclusively.

• FTEntnum - Average Facility holding time. The
average time Facility Entity Entnum is owned by a
capturing Transaction.

• FVEntnum - Facility in available state. FV
Entnum returns 1 if Facility Entity Entnum is in the
available state, 0 otherwise.

Related Window
• Facilities Window - Online view of Facility Entity
dynamics.

FUNAVAIL
FUNAVAIL Blocks are used to make a
Facility Entity unavailable for
ownership by Transactions.

FUNAVAIL A,B,C,D,E,F,G,H

Operands
A - Facility name or number. Required. The operand must be
Name, PosInteger, ParenthesizedExpression, SNA or
SNA*Parameter.

B - REmove or COntinue Mode for owning Transaction.
Optional. The operand must be RE, CO, or Null.

C - Block number. New Block for Transaction owning the
Facility Entity. Optional. The operand must be Null, Name,
PosInteger, ParenthesizedExpression, SNA, or
SNA*Parameter.

D - Parameter number. Parameter to receive residual time if
owning Transaction is removed from FEC. Optional. The
operand must be Null, Name, PosInteger,
ParenthesizedExpression, SNA or SNA*Parameter.

E - REmove or COntinue Mode for preempted Transactions.
Optional. The operand must be RE, CO or Null.

F - Block number. New Block for Transactions preempted at
the Facility Entity. Optional. The operand must be Null, Name,
PosInteger, ParenthesizedExpression, SNA or
SNA*Parameter.

G - REmove or COntinue Mode for Transactions pending or
delayed at the Facility Entity. Optional. The operand must be
RE, CO or Null.

H - Block number. New Block for Transactions pending or
delayed at the Facility Entity. Optional. The operand must be

Null, Name, PosInteger, ParenthesizedExpression, SNA or
SNA*Parameter.

Examples
FUNAVAIL Teller1

This is the simplest way to use the FUNAVAIL Block. The
Facility Entity named Teller1 is "frozen" during the unavailable
period. Several types of Transactions other than the Active
Transaction are affected. If an owning Transaction is in an
ADVANCE Block, it will be rescheduled on the FEC
automatically when the Facility again becomes available. The
time remaining in the ADVANCE Block (i.e. the "residual time")
is calculated and saved automatically when the Transaction is
removed from the FEC. The residual time becomes the time
increment when the Transaction is rescheduled on the FEC.
Other Transactions delayed or pending at TELLER1 will not be
able to move during the unavailable period.

FUNAVAIL TELLER,RE,TLR2,300,RE,MGR,CO

In this example, the Facility Entity TELLER is made
unavailable. This means that newly arriving Transactions will
be delayed. The Transactions at or preempted at the Facility
TELLER are dealt with according to operands B-H. If the
Transaction which owns Facility TELLER is on the FEC, it is
dequeued and the residual time is saved in its Parameter
number 300. The owning Transaction is displaced and sent to
the Block named TLR2. Transactions currently preempted at
Facility TELLER are removed from contention and sent to
Block named MGR. Since Operand G is CO, Transactions
currently delayed at Facility TELLER are allowed to own the
Facility, even though it�s in the unavailable state.

Action
The complexity of the FUNAVAIL Block is due to the three
classes of Transactions which must be dealt with:

1. the owning Transaction (operands B-D),

2. preempted Transactions on the Interrupt Chain (operands
E-F), and

3. delayed Transactions on the Delay Chain or Pending Chain
(operands G-H).

A FUNAVAIL Block allows you to put a Facility "out of action"
and to control the fate of Transactions waiting for, using, or

preempted at the Facility Entity. Transactions arriving during
the unavailable period will be delayed and not be granted
ownership. A FUNAVAIL Block has no effect if the Facility is
already unavailable.

When the REmove option is used, the Transactions are
removed from contention for the Facility If the REmove option
is used for pending and delayed Transactions, i. e. if G is RE,
then H must be used to redirect the Transactions.

When the COntinue option is used, the Transactions on the
specific Facility chain may continue to own the Facility, even
during the unavailable period. In this case, Facility utilization
statistics are adjusted to include this time.

When an alternate destination Block is used, the Transactions
are displaced from their current context and redirected to the
new Block. Delayed and pending Transactions, which are
controlled by operands G and H, cannot be redirected without
also using the REmove option. The owning Transaction,
controlled by operands B through D, and preempted
Transactions, controlled by operands E and F, can remain in
contention for the Facility and yet be displaced to a new
destination. This is done by specifying an alternate destination
without using the corresponding RE option.

When RE is not used in Operand B, any owning Transaction
becomes preempted at this Facility. Such Transactions cannot
leave ASSEMBLE, GATHER, or MATCH Blocks or enter
(nonzero) ADVANCE Blocks until all preemptions are cleared.

When a Transaction is displaced by using the C, F, or H
Operand, it is given a new Block destination and is dequeued
from:

• FEC

• PENDING (waiting to preempt) CHAINS

• DELAY (waiting to seize) CHAINS

• USER CHAINS

• RETRY CHAINS

and not dequeued from:

• CEC

• INTERRUPT (preempted) CHAINS of other
Facilities

• GROUP CHAINS

When a Transaction is displaced from its present context
anywhere in the model, by using an alternate destination, it is
removed from any Blocking conditions but preemptions are not

cleared. Such a displaced Transaction is scheduled to enter
the Block specified in Operand C of the FUNAVAIL Block.
When an owning Transaction RELEASEs or RETURNs a
Facility, the next owner is chosen from the head of the Pending
Chain, the Interrupt Chain, or the Delay Chain, in that order.

TheOwning Transaction
Operands B-D are used to control the owning Transaction.

If B is CO, the owning Transaction is not removed from
ownership. It may, however, be given a new destination with
the C Operand.

If B is RE, the owning Transaction is removed from contention
for the Facility. This means that the Transaction may continue
to circulate in the simulation without restrictions due to a
preemption at this Facility (there may be outstanding
preemptions at other Facilities, however). It also means that
the owning Transaction must not attempt to RETURN or
RELEASE the Facility. The C Operand must be used to
redirect the course of such a Transaction.

If B is Null, the owning Transaction is preempted and placed on
the Interrupt Chain of the Facility. If it was taken from the FEC
and the C Operand is not used, it will be automatically restored
to the FEC using the automatically saved residual time when
the Facility again becomes available.

The C Operand may be used regardless of Operand B. It
causes the owning Transaction to be displaced, and gives it a
new destination Block. If you choose to return the Transaction
to the FEC, having used the C Operand, you must explicitly
route the Transaction to an ADVANCE Block. The D Operand
causes the residual time to be saved in a Parameter of the
owning Transaction. The residual time value is then available
for explicit rescheduling when you use the Parameter value as
Operand A of an ADVANCE Block.

Preempted Transactions
Operands E and F are provided to control the fates of
Transactions currently preempted at this Facility.

If E is CO, preempted Transactions are not removed from
contention for the Facility, and may own the Facility during any
unavailable period. Preempted Transactions may be given a
new destination with the F Operand.

If E is RE, preempted Transactions are removed from
contention for the Facility. This means that the Transaction
may continue to circulate in the simulation without restrictions
due to a preemption at this Facility (there may be outstanding
preemptions at other Facilities, however). It also means that
preempted Transactions must not attempt to RETURN or
RELEASE the Facility. Optionally, the F Operand is available to

redirect the course of such a Transaction.

If E is Null, preempted Transactions are left on the Interrupt
Chain of the Facility, and cannot be granted ownership of the
Facility during the unavailable period.

The F Operand may be used regardless of Operand E. It
causes preempted Transactions to be displaced, and gives
them a new destination Block. Preempted Transactions may
not exist on the FEC, so no residual time options are relevant.
If E is Null, the preemption is not cleared for displaced
Transactions.

Pending Interrupt Mode Transactions
Operands G and H are provided to control the fates of
Transactions on the Pending Chain (i.e. pending Interrupt
Mode PREEMPTs) or the Delay Chain.

If G is CO, delayed Transactions are not removed from
contention for the Facility, and may own the Facility during any
unavailable period.

If G is RE, delayed Transactions are removed from contention
for the Facility and allowed to circulate in the simulation. These
Transactions must not attempt to RETURN or RELEASE the
Facility. The H Operand must be used to redirect the course of
such Transactions.

If G is Null, delayed Transactions are left on the Delay Chain or
the Pending Chain of the Facility, and cannot be granted
ownership of the Facility during the unavailable period. The use
of Operand H is invalid when G is Null.

Special Restrictions
• If B is RE, C must be used.

• If H is used, G must be RE.

• If G is RE, H must be used.

Refuse Mode
A Transaction is never refused entry to a FUNAVAIL Block.

Related Block
• FAVAIL - Place Facility in the available state.

Related SNAs
• FEntnum - Facility busy. If Facility Entnum is
currently busy, FEntnum returns 1. Otherwise
FEntnum returns 0.

• FCEntnum - Facility capture count. The number
of times Facility Entnum has become owned by a
Transaction.

• FIEntnum - Facility Entnum interrupted. If
Facility Entnum is currently preempted, FIEntnum
returns 1. Otherwise FIEntnum returns 0.

• FREntnum - Facility utilization. The fraction of
time Facility Entnum has been busy. FREntnum
is expressed in parts-per-thousand and therefore
returns an real value 0-1000, inclusively.

• FTEntnum - Average Facility holding time. The
average time Facility Entnum is owned by a
capturing Transaction.

• FVEntnum - Facility in available state. FV
Entnum returns 1 if Facility Entnum is in the
available state, 0 otherwise.

Related Windows
• Facilities Window - Online view of Facility Entity
dynamics.

• CEC Snapshot - Picture of the state of the
Current Events Chain in the simulation.

• FEC Snapshot - Picture of the state of the
Future Events Chain in the simulation.

GATE
A GATE Block alters Transaction flow
based on the state of an entity.

GATE O A,B

Operands
O - Conditional operator. Condition required of entity to be
tested for successful test. Required. The operator must be
FNV, FV, I, LS, LR, M, NI, NM, NU, SE, SF, SNE, SNF, SNV,
SV, or U.

A - Entity name or number to be tested. The entity type is
implied by the conditional operator. Required. The operand
must be Name, PosInteger, ParenthesizedExpression, SNA, or
SNA*Parameter.

B - Destination Block number when test is unsuccessful.
Optional. The operand must be Null, Name, PosInteger,
ParenthesizedExpression, SNA, SNA*Parameter.

Examples
GATE SNF MotorPool

In this example of a "Refuse Mode" GATE Block, the Active
Transaction enters the GATE Block if the Storage Entity named
MotorPool is not full (i. e. if at least 1 unit of storage is
available). If the Storage is full, the Active Transaction is
blocked until 1 or more storage units become available.

GATE SNE MotorPool,CupboardIsBare

In this example of an "Alternate Exit Mode" GATE Block, the
Active Transaction always enters the GATE Block. If the
Storage Entity named MotorPool is not empty (i. e. if at least 1
unit of storage is in use) the Transaction proceeds to the NSB.
If the Storage is empty (unsuccessful test), the Active
Transaction is scheduled to enter the Block at the location
named CupboardIsBare.

Action
A GATE Block operates in either "Refuse Mode" or "Alternate
Exit Mode".

If Operand B is not used, the GATE Block operates in Refuse
Mode. When a Transaction attempts to enter a Refuse Mode
GATE Block, and the test is unsuccessful, the Transaction is
blocked until the test is repeated and is successful. If the test is
successful, the Active Transaction enters the GATE Block and
then proceeds to the Next Sequential Block.

Blocked Transactions are placed on the Retry Chain of the
tested entity. When the state of any of the entity changes, the
blocked Transaction is reactivated, the test specified by the
GATE block is retried, and if successful, the Transaction is
permitted to enter the GATE Block. However, the integration of

User Variables does not cause blocked Transactions to be
reactivated. You should use the thresholds in an INTEGRATE
Command if you need to be notified about the level of one or
more continuous variables. This is discussed further in Chapter
1, in the Section entitled Continuous Variables.

If Operand B is used, the GATE Block operates in Alternate
Exit Mode. When a Transaction attempts to enter such a GATE
Block, and the test is unsuccessful, the Transaction enters the
GATE Block, is scheduled for the alternate destination Block
specified by the B Operand, and is placed on the Current
Events Chain in front of its priority peers. If the test is
successful, the Active Transaction enters the GATE Block and
then proceeds to the Next Sequential Block.

Conditional Operators
The conditional operator is required. It may be FNV, FV, I, LS,
LR, M, NI, NM, NU, SE , SF, SNE, SNF, SNV, SV, or U. When
the condition is true, the Transaction enters the GATE Block
and proceeds to the Next Sequential Block. The conditions are
defined as follows:

• FNV - The Facility specified implicitly by
Operand A must be unavailable for a successful
test.

• FV - The Facility specified implicitly by Operand
A must be available for a successful test.

• I - The Facility specified implicitly by Operand A
must be currently interrupted for a successful
test.

• LS - The Logicswitch entity specified implicitly
by Operand A must be in the "set" state for a
successful test.

• LR - The Logicswitch entity specified implicitly
by Operand A must be in the "reset" state for a
successful test.

• M - The Match Block specified implicitly by
Operand A must have a related (to the Active
Transaction) Transaction waiting for a Match
Condition.

• NI - The Facility specified implicitly by Operand
A must be not interrupted for a successful test.

• NM - The Match Block specified implicitly by
Operand A must not have a related (to the Active
Transaction) Transaction waiting for a Match
Condition.

• NU - The Facility specified implicitly by Operand

A must not be in use for a successful test.

• SE - The Storage Entity specified implicitly by
Operand A must be empty for a successful test.
All storage units must not be in use.

• SF - The Storage Entity specified implicitly by
Operand A must be full for a successful test. All
storage units must be being used.

• SNE - The Storage Entity specified implicitly by
Operand A must be not empty for a successful
test. At least one storage unit must be in use.

• SNF - The Storage Entity specified implicitly by
Operand A must be not full for a successful test.
There must be at least one storage unit that can
be used.

• SNV - The Storage Entity specified implicitly by
Operand A must be in the "unavailable" state for
a successful test.

• SV - The Storage Entity specified implicitly by
Operand A must be in the "available" state for a
successful test.

• U - The Facility specified implicitly by Operand
A must be in use for a successful test.

Special Restrictions
• B, if specified, must be the location of a Block in
the simulation.

• GATE Blocks are extremely powerful, but they
can cause a lot of computer time to be used in
unsuccessful tests. You may need to arrange
your simulation to reduce the frequency of
unsuccessful tests. This can be done by placing
Transactions with no chance of a successful test
on a User Chain using LINK and UNLINK Blocks.

• The MB class of SNA should not be used alone
to specify a blocking condition in a GATE Block.
You should use MATCH Blocks instead.

Refuse Mode
A GATE Block operating in Refuse Mode will refuse entry to a
Transaction when the test fails. The refused Transaction will be
blocked until the test is successful.

When a Transaction is refused entry, its delay indicator is set
and remains so until the Transaction enters a "Simultaneous"

Mode TRANSFER Block. However, since the advent of the
Boolean Variable in the GPSS language, it is more efficient to
use a TEST Block and a Boolean Variable when it is necessary
to coordinate the state of multiple entities.

Related Windows
• Blocks Window - Online view of Block
dynamics.

• Facilities Window - Online view of Facility Entity
dynamics.

• Logicswitches Window - Online view of
Logicswitch Entity dynamics.

• Storages Window - Online view of Storage
Entity dynamics.

GATHER
Wait for related Transactions.

GATHER A

Operand
A - Transaction count. Required. The operand must be Name,
PosInteger, ParenthesizedExpression, SNA, or
SNA*Parameter.

Example
GATHER 2

This is the simplest way to use the GATHER Block. The first
Transaction of an Assembly Set (see Section 9.3) is caused to
wait when it enters an GATHER Block. When another
Transaction in the same Assembly Set enters the Block, both
related Transactions are released and put on the Current
Events Chain.

Action
When a Transaction enters a GATHER Block, the Match Chain
of the Block is searched for a waiting Transaction of the same
Assembly Set. If there are no other members of the same
Assembly Set present, the A Operand is evaluated, truncated.
decremented by one, and saved in a storage location in the
Active Transaction. If this number is less than or equal to zero,
the Transaction immediately attempts to enter the Next
Sequential Block. Otherwise, the Transaction is placed on a
special chain in the ASSEMBLY Block, called the Match Chain,
to await the arrival of other members of its Assembly Set.

If the Active Transaction arrives to find other members of its
Assembly Set already on the Match Chain, the Active
Transaction is also placed on the chain and the Transaction
count saved in the first chained Transaction is reduced by one.
When this count becomes 0, all related Transactions are
removed from the Match Chain. All Transactions which have
not been preempted at any Facility are then placed on the CEC
behind their priority peers.

Preempted Transactions which have completed an assembly at
a GATHER Block are not permitted to leave the Block until all
preemptions have been cleared. More discussion of the
preemption mechanism can be found in Section 9.4.
Preempted Transactions which have been removed from the
Match Chain do not participate in later gatherings even though
they remain in the GATHER Block.

GATHER Blocks differ from ASSEMBLE Blocks in that
Transactions after the first are destroyed at an ASSEMBLE
Block.

Special Restrictions
• A must be positive.

• Transactions which are currently preempted are
not permitted to leave GATHER Blocks.

Refuse Mode
A Transaction is never refused entry to a GATHER Block.

Related Blocks
• ADOPT - Set the Assembly Set of the Active
Transaction.

• ASSEMBLE - Wait for and destroy Assembly
Set members.

• MATCH - Wait for Assembly Set member.

• SPLIT - Create Transactions in the same
Assembly Set.

Related SNAs
• A1 - Assembly Set. Return the Assembly Set of
the Active Transaction.

• MBEntnum - Match at Block. MBEntnum returns
a 1 if there is a Transaction at Block Entnum
which is in the same Assembly Set as the Active
Transaction. MBEntnum returns a 0, otherwise.

Related Windows
• Blocks Window - Online view of Block
dynamics.

• Transaction Snapshot - Picture of the state of a
Transaction in the simulation.

• CEC Snapshot - Picture of the state of the
Current Events Chain in the simulation.

• FEC Snapshot - Picture of the state of the
Future Events Chain in the simulation.

GENERATE
A GENERATE Block creates
Transactions for future entry into the
simulation.

GENERATE A,B,C,D,E

Operands
A - Mean inter generation time. Optional. The operand must be
Null, Name, Number, String, ParenthesizedExpression, or
DirectSNA. You may not use Transaction Parameters.

B - Inter generation time half-range or Function Modifier.
Optional. The operand must be Null, Name, Number, String,
ParenthesizedExpression, or DirectSNA. You may not use
Transaction Parameters.

C - Start delay time. Time increment for the first Transaction.

Optional. The operand must be Null, Name, Number, String,
ParenthesizedExpression, or DirectSNA. You may not use
Transaction Parameters.

D - Creation limit. The default is no limit. Optional. The operand
must be Null, Name, PosInteger, String,
ParenthesizedExpression, or DirectSNA. You may not use
Transaction Parameters.

E - Priority level. Optional. Zero is the default. The operand
must be Null, Name, integer, String, ParenthesizedExpression,
or DirectSNA. You may not use Transaction Parameters.

Example
GENERATE 0.1

This is the simplest way to use the GENERATE Block. This
Block causes a priority zero Transaction to enter the simulation
every tenth of a time unit.

Action
When a simulation is begun, or an interactive Command is
performed, any GENERATE Block which has not been
"primed" is called upon to schedule its first Transaction. Such
Transactions are scheduled to enter the GENERATE Block and
placed on the Future Events Chain if they have a positive time
increment. Operand C can be used to specify a positive time
increment for the first Transaction. Otherwise, the first time
increment is calculated from operands A and B.

You cannot use Parameters in GENERATE Block operands.
Newly GENERATEd Transactions do not have Parameters,
and their entry into such a GENERATE Block would cause an
Error Stop.

Before the new Transaction is created, Operand D is evaluated
numerically to see if all the Transactions desired have been
created. If the creation limit has not been exceeded, processing
continues. The GENERATE Block then creates the new
Transaction assigning it the next Transaction number, the
priority from the E Operand, and the Transaction Mark Time is
assigned the value in the absolute system clock. The new
Transaction represents a new Assembly Set with one member.

The inter arrival time for the new Transaction is calculated from
the A, B, and C operands. If only the A Operand is specified, it
is evaluated numerically and used as the time increment. If the
A and B operands are present, and B does not specify a
function, both A and B are evaluated numerically and a random
number between A-B and A+B, inclusively, is used as the time

increment. You can select which random number generator
number is to be used as the source of the random number.
This is set in the "Random" page of the Model Settings
Notebook.

CHOOSE Edit / Settings

then select the Random page. Then fill in the desired random
number stream entity number in the entry box marked
"GENERATE". The installation default is to use random
number stream number 1.

When Operand B is an FN class SNA, it is a special case
called a "function modifier". In this case, the time increment is
calculated by multiplying the result of the function by the
evaluated A Operand.

If the C Operand is specified, it is evaluated numerically and
used as the time increment for the first Transaction. If you wish
to cause the first transaction(s) to arrive at time 0, you must
use a separate GENERATE block with a creation limit in
Operand D and null values for Operands A and B. If Operand A
and / or B is used and C=0, C will be interpreted as null. The
following example will create three transactions at time 0.

GENERATE ,,0,3

If the time increment is strictly positive (nonzero), the
Transaction is placed on the FEC, if it is zero the Transaction
goes to the CEC behind its priority peers, if it is negative an
Error Stop occurs.

Special Restrictions
• Time values must not be negative.

• Either Operand A or Operand D must be used.

• GENERATE is the only Block which cannot be
used in Manual Simulation Mode. Use a SPLIT
Block to create Transactions interactively.

Refuse Mode
A Transaction is never refused entry to a GENERATE Block.

Related Windows
• CEC Snapshot - Picture of the state of the
Current Events Chain in the simulation.

• FEC Snapshot - Picture of the state of the
Future Events Chain in the simulation.

INDEX
An INDEX Block updates a Parameter
of the Active Transaction.

INDEX A,B

Operands
A - Parameter number. Parameter with source value. Required.
The operand must be Name, PosInteger,
ParenthesizedExpression, SNA, or SNA*Parameter.

B - Numeric value. Number to be added to contents of
Parameter. The result goes into Parameter 1. Required. The
operand must be Name, Number, ParenthesizedExpression,
SNA, or SNA*Parameter.

Example
INDEX 2,11.7

In this example, when a Transaction enters the INDEX Block its
Parameter number 1 is given the sum of 11.7 and the value of
Parameter 2 of the Active Transaction.

Action
The INDEX Block adds the numeric equivalent of Operand B to
the numeric equivalent of the value of any Transaction
Parameter and puts the result into Parameter 1.

If the source Parameter does not exist, an Error Stop occurs.
Otherwise, if Parameter number 1 does not exist for the Active
Transaction, it is created.

Special Restriction
• A must be positive.

Refuse Mode
A Transaction is never refused entry to an INDEX Block.

Related SNA
• PParameter or *Parameter - Parameter value.
Returns the value of Parameter Parameter.

Related Window
• Transaction Snapshot - Picture of the state of a
Transaction in the simulation.

INTEGRATION
An INTEGRATION Block disables or
enables the integration of a User
Variable.

INTEGRATION A,B

Operands
A - User Variable. Required. The operand must be Name.

B - Integration state. Must be Null, ON, or OFF.

Examples
INTEGRATION Population

This is the simplest way to use the INTEGRATION Block.
When a Transaction enters this INTEGRATION Block, the
integration of the User Variable, Population, is set to the
enabled state. This causes the User Variable to be integrated
automatically with respect to simulated time. The default of
Operand B is ON.

INTEGRATION Population,OFF

In this example, the entry of the Active Transaction into the
INTEGRATION Block assures that the integration of the User
Variable Population is disabled. The automatic update of

Population will cease until the integration is again enabled.

Action
A INTEGRATION Block sets the state of an integration to either
ON, or OFF, that is, enabled or disabled.

The default of Operand B is ON, and need not be specified
when the integration is to be activated.

Integrations are defined by INTEGRATE Commands, and are
automatically begun in the active state. For integrations that
are never interrupted, there is no need for INTEGRATION
Blocks in the simulation.

Each INTEGRATE Command can also define one or two
threshold expressions. When the value of an integrated
variable crosses from one side of a threshold to the other, a
new Transaction is created and sent to a destination Block
specified in the INTEGRATE Command. In this manner,
Continuously integrated variables can be closely incorporated
into the discrete side of your simulation. You can use them to
perform important duties related to the state of the integrated
variable, or simply to move the thresholds.

User Variables can be assigned new values discretely, as well
as through integration. You can do so using an EQU
Command, or a PLUS Assignment Statement. If you want such
assignments to occur within the running of the simulation, you
must define a PLUS Procedure that makes the assignment. For
example, if you defined a PLUS Procedure as follows:

PROCEDURE Setpop(Pop_Level) BEGIN

Population = Pop_Level ;

END ;
you could reinitialize the Population User Variable by entering a
PLUS Block, such as

PLUS (Setpop(200))

or by using a parenthesized expression that invokes setpop()
in some other Block.

See Chapter 4 for a detailed description of Continuous
Simulation.

Refuse Mode
A Transaction is never refused entry to an INTEGRATION
Block.

Related Command
• INTEGRATE - Define the derivative of a user
variable for integration, and activate the
integration.

Related Windows
• Expressions Window - Online view of values of
expressions.

• Plot Window - Online view of a plot of up to 8
expressions.

JOIN
A JOIN Block adds the Active
Transaction to a Transaction Group, or
adds a number to a Numeric Group.

JOIN A,B

Operands
A - Group entity number. Group to which a member will be
added. Required. The operand must be Name, PosInteger,
ParenthesizedExpression, SNA, or SNA*Parameter.

B - Numeric value. Number to be added to numeric Group.
Optional. The operand must be Null, Name, Number, String,
ParenthesizedExpression, SNA, or SNA*Parameter.

Example
JOIN Solditems

This is the simplest way to use the JOIN Block. The
Transaction entering the JOIN Block becomes a member of the
Transaction Group SoldItems.

Action
JOIN Blocks operate in "Numeric Mode" when a number is
specified by the B Operand, and otherwise in "Transaction
Mode".

In Numeric Mode, operands A and B are evaluated
numerically, and the number specified by B is included in the
Numeric Group specified by A. If this number is already a
member of the Numeric Group, no operation is performed.
There is some loss of efficiency when non-integers are used in
Numeric Groups.

In Transaction Mode, the entering Transaction is included in
the Transaction Group specified by the A Operand. If the
Transaction is already a member of the Transaction Group, no
operation is performed.

Numeric Groups are distinct from Transaction Groups even if
they have the same Group number.

Transactions are in no way restricted because of their
membership in a Transaction Group. After membership is
achieved, the entering Transaction proceeds to the Next
Sequential Block. The only way that a Transaction can be
removed from a Group is to be terminated in a TERMINATE or
ASSEMBLE Block, or to be chosen for removal in a REMOVE
Block.

Special Restriction
• A must be positive.

Refuse Mode
A Transaction is never refused entry to a JOIN Block.

Related Blocks
Transactions in Transaction Groups can be referenced by
ALTER, EXAMINE, REMOVE, and SCAN Blocks. Numbers in
numeric Groups can be referenced by EXAMINE and
REMOVE Blocks.

Related SNAs
• GNEntnum - Numeric Group count. GNEntnum
returns the membership count of Numeric Group
Entnum.

• GTEntnum - Transaction Group count.

GTEntnum returns the membership count of
Transaction Group Entnum.

Related Windows
• Numeric Groups Snapshot - Picture of the state
of the Numeric Groups in the simulation.

• Transaction Groups Snapshot - Picture of the
state of the Transaction Groups in the simulation.

LEAVE
A LEAVE Block increases the
accessible storage units at a Storage
Entity.

LEAVE A,B

Operands
A - Storage Entity name or number. Required. The operand
must be Name, PosInteger, ParenthesizedExpression, SNA, or
SNA*Parameter.

B - Number of storage units. The default is 1. Optional. The
operand must be Null, Name, PosInteger,
ParenthesizedExpression, SNA, or SNA*Parameter.

Example
LEAVE RepairMen,10

In this example, when a Transaction enters the LEAVE Block,
the available storage units at the Storage Entity named
RepairMen is increased by 10.

Action
When a Transaction enters a LEAVE Block, Operand A is
evaluated and truncated, and the corresponding Storage Entity
is found. If no such entity exists, an Error Stop occurs. Storage
entities must be defined in STORAGE Commands.

The number of storage units to be freed is found by evaluating
and truncating Operand B. If B was not used, then it is
assumed to be 1.

Then the available storage at the Storage Entity is increased by
the value of the B Operand. If the result exceeds the original
storage capacity of the Storage Entity, an Error Stop occurs.

If no error occurs, the Transaction is scheduled for the Next
Sequential Block and is placed on the Current Events Chain
ahead of its priority peers.

When storage becomes available, the Delay Chain of the
Storage Entity is examined in decreasing priority for
Transactions whose demands can now be met. A
"first-fit-with-skip" discipline is used. Successful Transactions
are allowed to enter the ENTER Block which refused them and
then are placed on the CEC behind their priority peers. This is
done before the current Active Transaction in the LEAVE Block
proceeds in the simulation. In this way, no other Transaction
can buck the line of Transactions waiting on the Delay Chain of
the Storage Entity. You can see this in the Blocks Window. You
will see the Transaction enter the ENTER Block and come to
rest. The current Active Transaction in the LEAVE Block will
then resume its movement.

Special Restrictions
• A must refer to a previously defined Storage
Entity defined by a STORAGE Statement.

• B must be nonnegative.

• An attempt to free more storage than was
defined will cause an Error Stop.

Refuse Mode
A Transaction is never refused entry to a LEAVE Block.

Related Command
A Storage Entity must be defined in a STORAGE Command
before it can be updated by an LEAVE Block. The STORAGE
Command must exist in the model, or must be sent to the
Simulation Object interactively, before a Transaction can enter
the LEAVE Block. Any attempt to do so before the Storage
Entity is defined, cases an Error Stop.

A Storage Entity can be redefined by an interactive STORAGE
Command.

Related SNAs
• REntnum - Unused storage capacity. The
storage content (or "token" spaces) available for
use by entering Transactions at Storage Entity
Entnum.

• SEntnum - Storage in use. SEntnum returns the
amount of storage content (or "token" spaces)
currently in use by entering Transactions at
Storage Entity Entnum.

• SAEntnum - Average storage in use. SAEntnum
returns the time weighted average of storage
capacity (or "token" spaces) in use at Storage
Entity Entnum.

• SCEntnum - Storage use count. Total number
of storage units that have been entered in (or
"token" spaces that have been used at) Storage
Entity Entnum.

• SEEntnum - Storage empty. SEEntnum returns
1 if Storage Entity Entnum is completely unused,
0 otherwise.

• SFEntnum - Storage full. SFEntnum returns 1 if
Storage Entity Entnum is completely used, 0
otherwise.

• SREntnum - Storage utilization. The fraction of
total usage represented by the average storage in
use at Storage Entity Entnum. SREntnum is
expressed in parts-per-thousand and therefore
returns an real value 0-1000, inclusively.

• SMEntnum - Maximum storage in use at
Storage Entity Entnum. The "high water mark".

• STEntnum - Average holding time per unit at
Storage Entity Entnum.

• SVEntnum - Storage in available state.
SVEntnum returns 1 if Storage Entity Entnum is
in the available state, 0 otherwise.

Related Window
• Storages Window - Online view of Storage
Entity dynamics.

LINK
A LINK Block controls the placement
of the Active Transaction on the User
Chain of a Userchain Entity.

LINK A,B,C

Operands
A - Userchain number. The Userchain Entity which may
receive the entering Transaction. Required. The operand must
be Name, PosInteger, ParenthesizedExpression, SNA, or
SNA*Parameter.

B - Chain ordering. The placement of new Transactions on the
Userchain. Required. The operand must be LIFO, FIFO,
ParenthesizedExpression, SNA, or SNA*Parameter.

C - Next Block location. The destination Block for Transactions
which find the Link Indicator of the Userchain in the off state
(reset). Optional. The operand must be Null, Name,
PosInteger, ParenthesizedExpression, SNA or
SNA*Parameter.

Example
LINK OnHold,FIFO

In this example, the Active Transaction is placed at the end of
the User Chain Entity named OnHold. It is removed from all
chains except Transaction Groups and Interrupt Chains. In
other words, preemptions are not cleared. The Transaction
remains on the User Chain until some other Transaction enters
an UNLINK Block and specifically removes it. In the present
example, the Transaction is placed at the end of the User
Chain named OnHold.

Action
The simplest operation of a LINK Block occurs when the C
Operand is not used. In this case, the entering Transaction is
always placed on the User Chain specified by Operand A. It is
removed from all other chains except transaction groups and
interrupt chains.

The placement of the Transaction in the User Chain is
controlled by Operand B. If FIFO (First-In-First-Out) is used for
Operand B, newly arriving Transactions are placed at the tail of
the User Chain. If LIFO (Last-In-First-Out) is used for Operand
B, newly arriving Transactions are placed at the head of the
User Chain. Any other item used in Operand B is evaluated for
the Active Transaction and again for each Transaction on the
User Chain, beginning at the front, until the value for the Active
Transaction is greater. When a Transaction whose value is less
than that of the Active Transaction is found, the Active
Transaction is placed on the User Chain immediately in front of
it. If the value for the Active Transaction never exceeds the
value for an occupant of the User Chain, the Active Transaction
is placed at the end of the chain. This leads to a descending
order. P class SNAs are an exception. They are queued in
ascending order of Parameter value.

If you do not use LIFO or FIFO in Operand B, you will normally
use a Transaction oriented SNA such as PR, M1 or a class P
SNA. However, indirect addressing may also be useful. If PR is
used, the Transactions are placed in priority order. And finally,
if a Parameter number is specified, the Transaction is inserted
into the chain immediately behind those Transactions whose
Parameter value is less than that of the entering Transaction.

The situation is more complicated when the C Operand is
used.

A flag called a "Link Indicator" is part of each Userchain Entity.
The Link Indicator is useful for using a User Chain to control
the queuing of Transactions on a resource. It is on (set) when
the hypothetical resource is "busy" and off (reset) when the
hypothetical resource is "not busy". When the Link Indicator of
a Userchain Entity is off, if the C Operand is used, the LINK
Block will not place the Transaction on the User Chain. The
Link Indicator is useful for letting the first of several
Transactions avoid the User Chain and for causing following
Transactions to be placed on the User Chain.

If the C Operand is used, the entering Transaction will NOT be
placed on the User Chain if the Link Indicator is off. Instead,
the Transaction will proceed to the Block specified by C, and
then the Link Indicator will be set. Following Transactions
entering the LINK Block will go onto the User Chain.

The Link Indicator is manipulated by both LINK and UNLINK
Blocks. It is turned off (reset) when an UNLINK Block finds the
User Chain empty. It may be useful to think of the Link
Indicator as representing the "busy condition" of a hypothetical
resource. When the Link Indicator is set, the resource is "busy".
When a Transaction finds the resource idle it should not have
to wait (on the User Chain). The Transaction would proceed to
the Block specified by Operand C and the LINK Block then sets
the Link Indicator of the Userchain Entity.

Consider two Transactions arriving at a LINK Block, one after

the other. If, for example, the first Transaction does not enter
an UNLINK Block before the second Transaction arrives, the
second Transaction would find the Link Indicator on (set), and
would be placed on the User Chain. In this example, when the
first Transaction enters an UNLINK Block, the second
Transaction is removed from the User Chain. At this time, the
Link Indicator remains on (set). Then, when the second
Transaction enters an UNLINK Block, and no waiting
Transactions are found on the User Chain, the Link Indicator is
finally turned off (reset).

User Chains allow you manipulate the queuing mechanisms of
Transactions to a much more detailed level than do Facilities or
Storages. It is possible to implement very complicated
scheduling algorithms using LINK and UNLINK Blocks.

User Chains can be used to reduce the amount of computer
time wasted on unsuccessful tests associated with GATE,
TEST, TRANSFER BOTH, and TRANSFER ALL Blocks. You
can create faster simulations by placing blocked Transactions
on User Chains when there is no possibility of a successful
condition test. Then, you must introduce each Transaction back
into its test Block when an event occurs which might unblock
the Transaction.

Special Restrictions
• A, B, and C, if specified, must be positive.

• C, if specified, must be a Block location in the
simulation.

Refuse Mode
A Transaction is never refused entry to a LINK Block.

Related SNAs
• CAEntnum - Average Userchain content. The
time weighted average number of chained
Transactions for Userchain Entnum.

• CCEntnum - Total Userchain entries. The
cumulative count of all Transactions chained to
Userchain Entnum.

• CHEntnum - Current Userchain content. The
current number of Transactions chained to
Userchain Entnum.

• CMEntnum - Maximum Userchain content. The
maximum number of Transactions chained to
Userchain Entnum. The "high water mark".

• CTEntnum - Average Userchain residence time.

The average duration of s Transaction at
Userchain Entnum.

Related Window
• Userchains Snapshot - Picture of the state of
the Userchain Entities in the simulation.

LOGIC
A LOGIC Block changes the state of a
Logicswitch entity.

LOGIC O A

Operands
O - Logic operator. Required. The operator must be S, R, or I.

A - Logicswitch Entity number. Required. The operand must be
Name, PosInteger, ParenthesizedExpression, SNA, or
SNA*Parameter.

Example
LOGIC S PowerSwitch

In this example, the Logicswitch Entity named PowerSwitch is
left in the true or "set" state.

Action
A LOGIC Block is used to set, reset, or invert the state of a
Logicswitch Entity. A Logicswitch Entity has two states, on (set,
or 1) and off (reset, or 0). If the logic operator is S or R, the
Logicswitch Entity specified by the A Operand is left in the set
or reset state, respectively.

If the logic operator is I, the state of the Logicswitch Entity
specified by the A Operand is inverted. This means that if it is
found to be set, it will be reset. If it is found to be reset, it will be
set.

Logical Operators
A logical operator is required. It may be S, R, or I with the
following effect:

• S - The logic switch is left in the "set" or on
state.

• R - The logic switch is left in the "reset" or off
state.

• I - The logic switch is inverted.

Refuse Mode
A Transaction is never refused entry to a LOGIC Block.

Related SNA
• LSEntnum - Logic switch set. LSEntnum returns
1 if Logic Switch Entity Entnum is in the "set"
state, 0 otherwise.

Related Window
• Logicswitches Window - Online view of
Logicswitch Entity dynamics.

LOOP
A LOOP Block modifies a Parameter
and controls the destination of the
Active Transaction based on the result.

LOOP A,B

Operands
A - Parameter containing count. required. The operand must
be Name, PosInteger, ParenthesizedExpression, SNA, or
SNA*Parameter.

B - Block number. Next Block if count nonzero after decrement.
Optional. The operand must be Null, Name, PosInteger,
ParenthesizedExpression, SNA, or SNA*Parameter.

Example
LOOP Customer_Count,Start_Over

Let us assume in this example that the Start_Over Block
precedes the LOOP Block in the simulation. In this example,
when a Transaction enters the LOOP Block its Parameter
named Customer_Count is decremented by 1. If the result is
nonzero, the Transaction proceeds to Block location
Start_Over. This causes the Transaction to continue to loop
until the value of the Parameter named Customer_Count is 0.
The Transaction then proceeds to the Next Sequential Block.

Action
When a Transaction enters a LOOP Block, Operand A is
evaluated, truncated, and used to find the Transaction
Parameter with that number. If there is no such Parameter, an
Error Stop occurs. Otherwise the value of the Parameter is
decreased by 1.

If the new value of the Parameter is greater than zero and the
B Operand is specified, the Transaction is scheduled for the
location specified in the B Operand. Otherwise, the Transaction
proceeds to the Next Sequential Block.

Special Restriction
• A must be positive.

Refuse Mode
A Transaction is never refused entry to a LOOP Block.

Related SNA
PParameter or *Parameter - Parameter value.
PParameter returns the value of Parameter
Parameter.

Related Windows
• Blocks Window - Online view of Block
dynamics.

• Transaction Snapshot - Picture of the state of a
Transaction in the simulation.

MARK
A MARK Block places an absolute
clock time stamp into the Active
Transaction or into its Parameter.

MARK A

Operand
A - Parameter number. Parameter to receive value of system
clock. Optional. The operand must be Null, Name, PosInteger,
ParenthesizedExpression, SNA, or SNA*Parameter.

Examples
MARK Beginning

In this example, when a Transaction enters the MARK Block,
its Transaction named Beginning is given a value equal to the
value of the absolute system clock, AC1.

MARK

In this example, when a Transaction enters the MARK Block,
its Mark Time is set equal to the value of the absolute system
clock.

Action
When a Transaction enters a MARK Block and Operand A was
not specified, its Mark Time is set equal to the absolute system
clock.

If Operand A was specified, it is evaluated numerically, and
truncated. The Parameter of the Active Transaction with that
number is found and given a value equal to the value of the
absolute system clock. If the Parameter does not exist, it is
created.

The Active Transaction then proceeds to the Next Sequential
Block (NSB).

The time stamps set up by a MARK Block can be retrieved by
M1 and MP class SNAs. M1 returns the "transit time", which is
the absolute system clock minus the Transaction�s Mark Time.
SNAs in the class MP return a value equal to the absolute
system clock minus the value of a Transaction Parameter.

Special Restriction
• A, if specified, must be positive.

Related SNAs
• MPEntnum - Transit time, Parameter. Current absolute
system clock value minus value in Parameter Entnum.

• M1 - Transit time. M1 returns the absolute clock minus the
"mark" time of the Transaction.

Refuse Mode
A Transaction is never refused entry to a MARK Block.

Related Windows
• Transaction Snapshot - Picture of the state of a
Transaction in the simulation.

• CEC Snapshot - Picture of the state of the
Current Events Chain in the simulation.

• FEC Snapshot - Picture of the state of the
Future Events Chain in the simulation.

MATCH
A pair of MATCH Blocks cause
Transactions to wait for each other.

MATCH A

Operand
A - Block name or number. Conjugate MATCH Block to be
tested for a matching (same Assembly Set) Transaction.
Required. The operand must be Name, PosInteger,
ParenthesizedExpression, SNA, or SNA*Parameter.

Example
A_Is_Done MATCH B_Is_Done

B_Is_Done MATCH A_Is_Done

This example shows two conjugate MATCH Blocks. They
would normally be placed apart in the simulation, and one
would eventually receive a Transaction in the same Assembly
Set. If each MATCH Block were placed after a set of Blocks
representing some process, the pair of related Transactions
would proceed past the MATCH Blocks only when both
Transactions had completed their respective processes.

Action
When a Transaction enters a MATCH Block, Operand A is
evaluated numerically, truncated, and the conjugate MATCH
Block is found. If there is no such Block, an Error Stop occurs.

If the conjugate MATCH Block contains a Transaction (on its
Match Chain) of the same Assembly Set as the Active
Transaction, the related Transaction is removed from the
Match Chain. If it is not currently preempted at any Facility
Entity, it is placed on the Current Events Chain behind its
priority peers. Similarly, if the Active Transaction is not
currently preempted at any Facility it is placed on the CEC, but
ahead of its peers.

If either matching Transaction is currently preempted at a
Facility, it is not permitted to leave its MATCH Block until all
preemptions have been cleared on its behalf.

If, when the Active Transaction enters the MATCH Block, no
matching Transaction is found, it comes to rest on the Match
Chain of the MATCH Block.

Special Restrictions
• Operand A must be the location of a MATCH
Block in the simulation.

• Transactions which are currently preempted are
not permitted to leave MATCH Blocks.

Refuse Mode
A Transaction is never refused entry to a MATCH Block.

Related Blocks
• ADOPT - Set the Assembly Set of the Active
Transaction.

• ASSEMBLE - Wait for and destroy Assembly
Set members.

• GATHER - Wait for Assembly Set members.

• SPLIT - Create Transactions in the same
Assembly Set.

Related SNAs
• A1 - Assembly Set. Return the Assembly Set of
the Active Transaction.

• MBEntnum - Match at Block. MBEntnum returns
a 1 if there is a Transaction at Block Entnum
which is in the same Assembly Set as the Active
Transaction. MBEntnum returns a 0 otherwise.

Related Windows
• Blocks Window - Online view of Block
dynamics.

• Transaction Snapshot - Picture of the state of a
Transaction in the simulation.

• CEC Snapshot - Picture of the state of the
Current Events Chain in the simulation.

• FEC Snapshot - Picture of the state of the
Future Events Chain in the simulation.

MSAVEVALUE
An MSAVEVALUE Block updates an
element of a Matrix Entity.

MSAVEVALUE A,B,C,D

Operands
A - Matrix Entity name or number, with optional + or -.
Required. the operand must be Name, PosInteger,
ParenthesizedExpression, SNA, or SNA*Parameter, followed
by +, -, or Null.

 B - Row number. Required. The operand must be Name,
PosInteger, ParenthesizedExpression, SNA or
SNA*Parameter.

C - Column number. Required. The operand must be Name,
PosInteger, ParenthesizedExpression, SNA or
SNA*Parameter.

D - Value to be stored, added, or subtracted. Required. The
operand must be Name, Number, String,
ParenthesizedExpression, SNA, or SNA*Parameter.

Examples
MSAVEVALUE Sales+,Part23,Cust77,6.234

When a Transaction enters the MSAVEVALUE Block in this
example, the element, of the Matrix Entity named Sales, with
row equal to the value of Part23 and the column equal to the
value of Cust77 is increased by 6.234. Normally, the row and
column names would have appeared earlier in EQU
Statements.

MSAVEVALUE Parts,Part23,Description,"Zippo lighter"

In this example, a string is assigned to a Matrix element. The
Matrix Entity must be defined elsewhere in the Model, or
interactively, by a MATRIX Command that defines the Parts
Matrix Entity.

Action
When a Transaction enters a MSAVEVALUE Block, Operand A
is evaluated numerically and the Matrix Entity with that number
or name is found. If no such Matrix Entity is found, an Error
Stop occurs. Matrix Entities must be defined in MATRIX
Commands.

Operands B and C are evaluated numerically to find the proper
element in the Matrix Entity. If such an element does not exist,
an Error Stop occurs.

Operand D is evaluated and used in the update operation. If
Operand A has a + suffix, the operation will be addition to the
numerical equivalent of Operand D; if -, it will be subtraction. If
Operand A has no suffix, the matrix entity element will be
assigned a new value equal to D.

A matrix is defined in a MATRIX Command. It can have up to 6
dimensions. However, only the first two dimensions can be
accessed in an MSAVEVALUE Block. In this case, all missing
coordinates are presumed to be equal to 1.

PLUS Procedures can access all elements of any matrix. If you
need to use matrices of more than 2 dimensions, you will have
to create one or more PLUS Procedures to access them.
Matrices defined in a MATRIX Command have global scope
and are known to all PLUS Procedures. In addition, temporary
matrices with local scope can be created for the duration of a
PLUS Procedure invocation. This is discussed further in
Chapter 8.

Refuse Mode
A Transaction is never refused entry to an MSAVEVALUE
Block.

Special Restriction
• MSAVEVALUE Blocks can only access the first
cross section of a higher dimensional matrix.
Indices of the third and higher dimensions are
given the value 1. PLUS assignment statements
can be used to access and modify all elements.

Related SNA
• MXEntnum(m,n) - Matrix element value. The
value in row m, column n of matrix Entnum is
returned. The row and column values can only be
Name, PosInteger, or P class SNA

Related Windows
• Expressions Window - Online view of values of
expressions.

• Matrix Window - Online view of the dynamics of
a Matrix cross-section.

• Plot Window - Online view of a plot of up to 8
expressions.

OPEN
An OPEN Block initializes a Data
Stream.

OPEN A,B,C

Operands
A - Data Stream descriptor. Required. The operand must be
Name, PosInteger, String, ParenthesizedExpression, SNA or
SNA*Parameter.

B - Data Stream number. Optional. The operand must be Null,
Name, PosInteger, ParenthesizedExpression, SNA or
SNA*Parameter. Default is 1.

C - Alternate Destination Block name or number. Optional. The
operand must be Null, Name, PosInteger,
ParenthesizedExpression, SNA, or SNA*Parameter.

Example
OPEN ("MYFILE.TXT"),2,Error_Block

In this example, the OPEN Block creates type of Data Stream
known as an I/O Stream, and gives it number 2 for
identification. If an error occurs during the OPEN, an error code
is stored internally and the Active Transaction proceeds to the
Block labeled Error_Block.

Action
An OPEN Block causes a Data Stream to be created, and sets
the Current Line Position to 1.

A Data Stream is a sequence of text lines used by a GPSS
World simulation. Each Data Stream is identified by a unique
number. There are 3 types of Data Stream:

1. Input/Output (I/O) Streams,

2. In-Memory Streams, and

3. Pipe Streams.

Operand A is evaluated as a string. If it is a null string, an
In-Memory Stream is created. If it is a pipe name, such as
"\pipe\mypipe", a Pipe Stream is created. Otherwise an I/O
Stream is created, and Operand A is presumed to be a file
specification. If a path is not included in the file specification, it
is assumed that the Project�s Report directory is to be used.
Projects are discussed in Chapter 1 of this manual.

If Operand B is used, it is evaluated numerically and used as
the Data Stream number, for later reference by READ, WRITE,
and CLOSE Blocks. The default is 1.

If Operand C is used, any error occurring during the OPEN
causes the Active Transaction to proceed to the Block with that
number.

In any case, if an error is detected, the error code is stored
internally. A CLOSE Block can be used to retrieve the Error
Code.

Chapter 4 (4.16) contains a full discussion of Data Streams,
including the Error Code descriptions..

Blocking Condition
The simulation is blocked while the Data Stream is initialized.

Refuse Mode
A Transaction is never refused entry to a CLOSE Block.

Related Blocks
• CLOSE - Shut down a Data Stream.

• READ - Retrieve a text line from a Data Stream.

• WRITE - Send a text line to a Data Stream.

• SEEK - Set the Current Line Position of a Data

Stream.

PLUS
A PLUS Block evaluates an expression
and, optionally, places the result into a
Parameter.

PLUS A,B

Operands
A - Expression. Required. The operand must be Name,
Number, String, ParenthesizedExpression, SNA or
SNA*Parameter.

B - Parameter number. Parameter to receive result. Optional.
The operand must be Null, Name, PosInteger,
ParenthesizedExpression, SNA, or SNA*Parameter.

Example
PLUS (normal(2,100,2)+100.26),Result_Parm

Action
When a Transaction enters a PLUS Block, Operand A is
evaluated normally.

If Operand B is specified, it is evaluated numerically, truncated,
and used to identify a Parameter of the Active Transaction. If
no such Parameter exists, it is created. Then, the result from
the evaluation of Operand A is placed into it.

PLUS Procedures without an explicit return value return integer
0.

Refuse Mode
A Transaction is never refused entry to a PLUS Block.

Related Windows
• Expressions Window - Online view of values of
expressions.

• Plot Window - Online view of a plot of up to 8
expressions.

PREEMPT
A PREEMPT Block displaces a
Transaction from ownership of a
Facility Entity.

PREEMPT A,B,C,D,E

Operands
A - Facility name or number. Required. The operand must be
Name, PosInteger, ParenthesizedExpression, SNA or
SNA*Parameter.

B - Priority Mode. PR, for Priority Mode, or Interrupt Mode, if
omitted. Optional. The operand must be PR or Null.

C - Block name or number. New destination for Transaction
presently owning the Facility. Optional. The operand must be
Null, Name, PosInteger, ParenthesizedExpression, SNA, or
SNA*Parameter.

D - Parameter number. Parameter of preempted Transaction to
receive residual time if preempted Transaction is removed from
FEC. Optional. The operand must be Null, Name, PosInteger,
ParenthesizedExpression, SNA, or SNA*Parameter.

E - REmove Mode. Removes preempted Transaction from
contention for the Facility. Optional. The operand must be RE,
or Null. If RE, you must specify a destination in Operand C.

Examples
PREEMPT Teller1

This is the simplest way to use the PREEMPT Block. When a
Transaction enters this PREEMPT Block, it is given ownership

of the Facility Entity unless it (the Facility) is currently
preempted. If a Transaction must be displaced from ownership
of the Facility, it is not permitted to reside on the FEC and its
movement in the simulation is restricted.

PREEMPT Teller1,,Teller2,101,RE

In this example, the PREEMPT Block operates in Interrupt
Mode because the B Operand is omitted. This means that a
Transaction can enter the Block and own the Facility if the
Facility is not already owned by a preempting Transaction.
Transaction priorities are ignored. When a Transaction is
preempted, any remaining time in an ADVANCE Block is
recorded in Parameter 101 of the preempted Transaction. The
preempted Transaction is removed from contention for the
Facility and sent to the Block labeled Teller2. An error will
result if such a Transaction later tries to RELEASE or RETURN
the Facility named Teller1, without owning it again.

PREEMPT Teller1,PR,Teller2

In this example, the PREEMPT operates in Priority Mode. This
means that a Transaction can enter the Block and own the
Facility Entity if the Facility is not already owned by a
Transaction of equal or higher priority. Any preempted
Transaction is not removed from contention for the Facility.
This means that such a Transaction can no longer exist on the
FEC or leave ASSEMBLE, GATHER, or MATCH Blocks. Under
these restrictions, preempted Transactions may continue to
circulate in the simulation, and in this case are sent to the
Block location Teller2. Such Transactions remain in contention
for the Facility named Teller1, and normally will regain
ownership of it. A preempted Transaction may RETURN or
RELEASE a Facility even if it does not own it. This removes the
Transaction from contention for the Facility by removing it from
the Interrupt Chain of the Facility.

Action
A PREEMPT Block behaves like a SEIZE Block when the
Facility is idle. Otherwise, the PREEMPT Block operates in
either Priority Mode or Interrupt Mode. This is determined by
Operand B.

In Priority Mode, only a higher priority Transaction can displace
the Transaction which owns the Facility. If a would-be
preemptor is of insufficient priority, it is placed on the Delay
Chain of the Facility in priority order.

In Interrupt Mode, if the Facility is already preempted, the
Active Transaction is placed on the Pending Chain.

Transactions on the Pending Chain are given ownership of the
Facility in preference to preempted Transactions or to
Transactions on the Delay Chain.

Operands C to E are concerned with what to do with the
current owner of the Facility which is about to become
preempted. Preempted Transactions are not permitted to exist
on the FEC. Preempted Transactions which have unfinished
time in an ADVANCE Block may be replaced on the FEC
automatically by omitting the C and E operands. Alternately, if
you choose to replace the Transaction on the FEC yourself, to
resume the unfinished time, you must use Operand D and
eventually send the preempted Transaction to an ADVANCE
Block.

A preempted Transaction may be removed from contention for
the Facility (i.e. removed from all chains of the Facility) by
using the RE option in the E Operand. The RE option removes
the restrictions placed on preempted Transactions due to
preemption at this Facility, and makes any subsequent attempt
to RELEASE or RETURN the Facility an Error Stop condition.

A preempted Transaction cannot exist on the FEC. A more
detailed discussion of preemption is in Section 9.4. Any newly
preempted Transaction in an ADVANCE Block which is on the
FEC is removed from the FEC and the residual time duration is
saved. If the D Operand is used, the residual time is also saved
in a Transaction Parameter. If no such Parameter exists, one is
created. The residual time is used to reschedule the
Transaction on the FEC when it regains ownership of all
Facilities for which it contends. Alternately, you may give a
preempted Transaction a new Block to attempt to enter by
using the C Operand.

A preempted Transaction remains in contention for a Facility
even if it was displaced by the C Operand, unless RE is used in
Operand E. If a preempted Transaction, which is still in
contention for a Facility, attempts to enter a TERMINATE Block
an Error Stop occurs. Such Transactions must enter a
RELEASE or RETURN Block before they are permitted to
TERMINATE. Alternately, if you intend to TERMINATE the
preempted Transaction you could use the RE option to make
sure it doesn�t inadvertently regain ownership before
termination. such a Transaction could not RELEASE or
RETURN the Facility.

When a Transaction is displaced by using the C Operand, it is
given a new Block destination and is dequeued from:

• FEC

• PENDING (INTERRUPT-MODE PREEMPT)
CHAINS

• DELAY (MAJOR PRIORITY) CHAINS

• USER CHAINS

• RETRY CHAINS

and not dequeued from:

• CEC

• INTERRUPT (PREEMPTED) CHAINS

• GROUP CHAINS

When a Transaction is displaced from its present context, by
using an alternate destination, it is removed from blocking
conditions, but preemptions at other Facilities are not cleared.

When the C Operand is not used, a preempted Transaction
taken off the FEC will be returned to it automatically.
Preempted Transactions which have not been displaced using
the C Operand are expected eventually to enter a RETURN or
RELEASE Block in order to give up ownership of the Facility. If
such a Transaction arrives at the RETURN or RELEASE
before regaining ownership of the Facility, the Transaction is
removed from contention for the Facility. No error condition
occurs.

A Transaction can be preempted from any number of Facilities
and continue to circulate in the simulation. However, it is
subject to two restrictions:

• It will be refused entry to ADVANCE Blocks with
positive time arguments.

• It will not be allowed to leave an ASSEMBLE,
GATHER, or MATCH Block until all its
preemptions have been cleared.

A Facility can be preempted any number of times. However,
once a Transaction has been preempted, it cannot attempt to
seize the Facility from which it has been preempted. A
Transaction can be preempted from any number of Facilities.

Special Restrictions
• If E is RE, C must be used.

• A Transaction may not preempt itself.

Refuse Mode
A Transaction is refused entry to a PREEMPT Block if, in
Interrupt Mode, the Facility is currently preempted. Such
Transactions are placed at the end of the Facility�s Pending
Chain.

A Transaction is refused entry to a PREEMPT Block if, in
Priority Mode, the Facility is currently owned by a Transaction

of priority equal to or greater than that of the Active
Transaction. The Active Transaction is placed in priority order
on the Facility�s Delay Chain.

A Transaction is refused entry to a PREEMPT Block if the
Facility is in the unavailable state. Such Transactions are
placed on the Facility�s Delay Chain, in priority order, FIFO
within priority.

Related Blocks
• DISPLACE - Move any Transaction.

• FAVAIL - Place Facility in the available state.

• FUNAVAIL - Place Facility in the unavailable
state.

• RELEASE - Give up ownership and remove
contention for a Facility.

• RETURN - Give up ownership and remove
contention for a Facility.

• SEIZE - Acquire or wait for ownership of a
Facility.

Related SNAs
• FEntnum - Facility busy. If Facility Entnum is
currently busy, FEntnum returns 1. Otherwise
FEntnum returns 0.

• FCEntnum - Facility capture count. The number
of times Facility Entnum has become owned by a
Transaction.

• FIEntnum - Facility Entnum interrupted. If
Facility Entnum is currently preempted, FIEntnum
returns 1. Otherwise FIEntnum returns 0.

• FREntnum - Facility utilization. The fraction of
time Facility Entnum has been busy. FREntnum
is expressed in parts-per-thousand and therefore
returns an real value 0-1000, inclusively.

• FTEntnum - Average Facility holding time. The
average time Facility Entnum is owned by a
capturing Transaction.

• FVEntnum - Facility in available state. FV
Entnum returns 1 if Facility Entnum is in the
available state, 0 otherwise.

Related Windows
• Facilities Window - Online view of Facility Entity
dynamics.

• Transaction Snapshot - Picture of the state of a
Transaction in the simulation.

• CEC Snapshot - Picture of the state of the
Current Events Chain in the simulation.

• FEC Snapshot - Picture of the state of the
Future Events Chain in the simulation.

PRIORITY
A PRIORITY Block sets the priority of
the Active Transaction.

PRIORITY A,B

Operands
A - New priority value. Required. The operand must be Name,
integer, String, ParenthesizedExpression, SNA, or
SNA*Parameter.

B - Buffer option. Places Active Transaction behind priority
peers on CEC. Optional. The operand must be BU or Null.

Example
PRIORITY 10

In this example any entering Transaction is made to have a
priority of 10.

Action
When a Transaction enters a PRIORITY Block, Operand A is
evaluated numerically, truncated, and assigned to the priority of
the Active Transaction.

The Transaction is scheduled for the Next Sequential Block

and is placed on the CEC according to its new priority. If the
BU option was used in Operand B, the Transaction is placed
behind its priority peers on the CEC. Otherwise, it is placed in
front of its priority peers.

Transaction priorities are integers. When a Transaction is
created without an explicit priority, it is given a priority of 0, by
default. GPSS World is most efficient when priorities used in
the simulation are contiguous. For example, use 0, 1, 2,
instead of -200, 0, 23.

Refuse Mode
A Transaction is never refused entry to a PRIORITY Block.

Related SNA
• PR - Transaction priority. The value of the
priority of the Active Transaction.

Related Windows
• Transaction Snapshot - Picture of the state of a
Transaction in the simulation.

• CEC Snapshot - Picture of the state of the
Current Events Chain in the simulation.

• FEC Snapshot - Picture of the state of the
Future Events Chain in the simulation.

QUEUE
A QUEUE Block updates Queue Entity
statistics to reflect an increase in
content.

QUEUE A,B

Operands
A - Queue Entity name or number. Required. The operand
must be Name, PosInteger, ParenthesizedExpression, SNA, or
SNA*Parameter.

B - Number of units by which to increase the content of the

Queue Entity. Default value is 1. Optional. The operand must
be Null, Name, PosInteger, ParenthesizedExpression, SNA, or
SNA*Parameter.

Example
QUEUE WaitingLine

In this example the content of the Queue Entity named
WaitingLine is increased by one and the associated statistics
accumulators are updated.

Action
When a Transaction enters a QUEUE Block, Operand A is
evaluated, truncated, and used to find the Queue Entity with
that number. The Queue Entity is created if necessary.

Operand B specifies the value to be used to increase the
content of the Queue Entity. If B was specified, Operand B is
evaluated, truncated, and used as the increment. If B was not
specified, the value of 1 is used.

Finally, the statistics accumulated on behalf of the Queue
Entity are updated.

Special Restriction
• B, if specified, must be positive.

Refuse Mode
A Transaction is never refused entry to a QUEUE Block.

Related SNAs
• QEntnum - Current queue content. The current
count value of Queue Entity Entnum.

• QAEntnum - Average queue content. The time
weighted average count for Queue Entity
Entnum.

• QCEntnum - Total queue entries. The sum of all
queue entry counts for Queue Entity Entnum.

• QMEntnum - Maximum queue content. The
maximum count (high water mark) of Queue
Entity Entnum.

• QTEntnum - Average queue residence time.
The time weighted average of the count for
Queue Entity Entnum.

• QXEntnum - Average queue residence time
excluding zero entries. The time weighted
average of the count for Queue Entity Entnum not
counting entries with a zero residence time.

• QZEntnum - Queue zero entry count. The
number of entries of Queue Entity Entnum with a
zero residence time.

Related Window
• Queues Window - Online view of Queue Entity
dynamics.

READ
A READ Block retrieves a text line from
a Data Stream.

READ A,B,C

Operands
A - Transaction Parameter. Required. The operand must be
Name, PosInteger, ParenthesizedExpression, SNA or
SNA*Parameter.

B - Data Stream number. Optional. The operand must be Null,
Name, PosInteger, ParenthesizedExpression, SNA or
SNA*Parameter. Default is 1.

C - Alternate Destination Block name or number. Optional. The
operand must be Null, Name, PosInteger,
ParenthesizedExpression, SNA, or SNA*Parameter.

Example
READ Text_Parm,1,Done

In this example, the READ Block retrieves a text line from Data
Stream number 1 and places a copy in the Transaction
Parameter Text_Parm. If no such Parameter exists, it is

created. If an error occurs the Active Transaction proceeds to
the Block labeled Done, otherwise it proceeds to the Next
Sequential Block.

Action
When a Transaction enters a READ Block, Operand A is
evaluated numerically, truncated, and used to identify the
Transaction Parameter which will receive the text line. If a text
line is received successfully and no Parameter exists for the
Active Transaction, one is created.

If Operand B is used, it is evaluated numerically, truncated, and
used as the Data Stream Entity number. This must be a
positive integer. If Operand B is not used, Data Stream number
1 is assumed.

If Operand C is used, any error occurring during the READ
causes the Active Transaction to proceed to the Block with that
number.

In any case, if an error is detected, the error code is stored
internally. A CLOSE Block can be used to retrieve the Error.
Chapter 4 (4.16) contains a full discussion of Data Streams,
including the Error Code descriptions.

If the Data Stream is a Pipe Stream, the text line is read from
the named pipe and returned to the Transaction Parameter.
The simulation is blocked while this occurs.

If the Data Stream is not a Pipe Stream, the text line is
determined by the Current Line Position, a 1-relative line index
associated with the Data Stream. In this case, the line indicated
by the Current Line Position, even if the line is a null string, is
returned to the Transaction Parameter as a result of the READ.
Then, the Current Line Position is incremented, i.e. move to the
next line number. If there is no line to be read, no data is
returned and the Active Transaction is sent to the Alternate
Destination Block without any error code being stored.

Reads can be computationally expensive. You can speed
processing by using a large amount of data on a small number
of text lines.

Further Discussion
Chapter 4 (4.16) contains a full discussion of
Data Streams under the Section entitled, Data
Streams.

Refuse Mode
A Transaction is never refused entry to a READ Block.

Blocking Condition
The simulation is blocked while READ retrieves the text line.

Related Blocks
• OPEN - Create a Data Stream.

• CLOSE - Shut down a Data Stream.

• WRITE - Send a text line to a Data Stream.

• SEEK - Set the Current Line Position of a Data
Stream.

RELEASE
A RELEASE Block releases ownership
of a Facility, or removes a preempted
Transaction from contention for a
Facility.

RELEASE A

Operand
A - Facility number. Required. The operand must be Name,
PosInteger, ParenthesizedExpression, SNA, or
SNA*Parameter.

Example
RELEASE Teller1

In this example, when a Transaction which owns the Facility
Entity named Teller1 enters the RELEASE Block, it gives up
ownership to the Facility.

Action
When a Transaction enters a RELEASE Block it removes itself
from contention for the Facility. This can happen in two ways.

If the Active Transaction owns the Facility, it gives up
ownership and proceeds to the Next Sequential Block.

If the Active Transaction has been preempted from ownership
of the Facility, it is removed from the Interrupt Chain of the
Facility. Ownership is not affected, because some other
Transaction is the owner. If the Active Transaction is presently
clear of all preemptions, it may now move normally in the
simulation.

In any case, the Active Transaction is removed from ownership
of or contention for the Facility and attempts to enter the Next
Sequential Block. If it neither owns, nor is preempted at the
Facility, an Error Stop occurs.

If the Active Transaction gives up ownership of the Facility, the
next owner is taken from the Pending Chain, the Interrupt
Chain, and finally the Delay Chain. If there are now Interrupt
Mode PREEMPTs pending at this Facility, the first is given
ownership of the Facility. Otherwise, ownership is returned to
the most recently preempted Transaction. If both the Pending
Chain (waiting Interrupt Mode PREEMPTs) and the Interrupt
Chain (preempted Transactions) are empty, the highest priority
Transaction on the normal Delay Chain is given ownership. If
there are no Transactions waiting, the Facility becomes idle.

When a new owner is chosen from the Delay Chain or the
Pending Chain, it enters the SEIZE or PREEMPT Block
immediately, and then is scheduled by placing it on the CEC
behind its priority peers. After this entry, the current Active
Transaction in the RELEASE Block continues its movement.

Special Restriction
• An entering Transaction must own, or currently
be preempted at, the Facility. Otherwise an Error
Stop occurs.

Refuse Mode
A RELEASE Block never refuses entry to a Transaction.

Related SNAs
• FEntnum - Facility busy. If Facility Entnum is
currently busy, FEntnum returns 1. Otherwise
FEntnum returns 0.

• FCEntnum - Facility capture count. The number
of times Facility Entnum has become owned by a

Transaction.

• FIEntnum - Facility Entnum interrupted. If
Facility Entnum is currently preempted, FIEntnum
returns 1. Otherwise FIEntnum returns 0.

• FREntnum - Facility utilization. The fraction of
time Facility Entnum has been busy. FREntnum
is expressed in parts-per-thousand and therefore
returns an real value 0-1000, inclusively.

• FTEntnum - Average Facility holding time. The
average time Facility Entnum is owned by a
capturing Transaction.

• FVEntnum - Facility in available state. FV
Entnum returns 1 if Facility Entnum is in the
available state, 0 otherwise.

Related Window
• Facilities Window - Online view of Facility Entity
dynamics.

REMOVE
A REMOVE Block removes members
from a Numeric Group or a Transaction
Group.

REMOVE O A,B,C,D,E,F

Operands
O - Conditional operator. Relationship of D to E for removal to
occur. These choices are explained below. Optional. The
operator must be Null, E, G, GE, L, LE, MAX, MIN, or NE.

A - Group number. Group from which a member or members
will be removed. Required. The operand must be Name,
PosInteger, ParenthesizedExpression, SNA, or
SNA*Parameter.

B - Removal limit. The maximum number of Transactions to be
removed. Optional. The operand must be ALL, Null, Name,
PosInteger, ParenthesizedExpression, SNA or
SNA*Parameter.

C - Numeric value. Numeric value to be removed from a
Numeric Group. Optional. The operand must be Null, Name,
Number, String, ParenthesizedExpression, SNA or
SNA*Parameter.

D - Test value. PR or Parameter number. The member attribute
which determines whether each Group member Transaction
should be removed, or PR to use the Transaction priority for
the determination. It is evaluated with respect to the
Transaction Group member. Optional. The operand must be
PR or Null, Name, PosInteger, ParenthesizedExpression, SNA,
or SNA*Parameter.

E - Reference value. The value against which the D Operand is
compared. The reference value is evaluated with respect to the
Active Transaction. Optional. The operand must be Null, Name,
Number, String, ParenthesizedExpression, SNA or
SNA*Parameter.

F - Block number. The alternate destination for the entering
Transaction. Optional. The operand must be Null, Name,
PosInteger, ParenthesizedExpression, SNA or
SNA*Parameter.

Example
REMOVE Inventory

This is the simplest way to use the REMOVE Block. The
Transaction entering the REMOVE Block is tested for
membership in the Transaction Group named Inventory. If the
Transaction is a member it is removed from the Group.

REMOVE G 3,10,,300,11.6,Jump_Block

In this example, Transaction Group 3 is scanned for
Transactions which have a value in their Parameter 300 which
is greater than 11.6. The first 10 Transactions which meet the
test are removed from the Transaction Group. If 10
Transactions cannot be found which pass the test, the entering
Transaction attempts to enter the Block labeled Jump_Block.
Otherwise, it proceeds to the Next Sequential Block.

Action
A REMOVE Block excludes numeric values from membership
in a Numeric Group, or Transactions from membership in a
Transaction Group. Transactions are not displaced from their
context. However, there is one exception. The Transaction
entering the REMOVE Block may be redirected according to
the F Operand.

A REMOVE Block operates in Numeric Mode if Operand C is
used. In Numeric Mode, operands A and C are evaluated
numerically and the number specified by C is tested for
membership in the numeric Group specified by A, which is
truncated. If the result from Operand C is a member of the
Numeric Group, it is removed from the Group. If the numeric
value was not a member of the numeric Group and the F
Operand is used, the entering Transaction proceeds to the
Block specified by F. Otherwise, the entering Transaction
proceeds to the next sequential Block. Only operands A, C,
and F can be used in Numeric Mode. There is some loss of
efficiency when non-integers are used in Numeric Groups.

A REMOVE Block operates in Transaction Mode if Operand C
is not used. In Transaction Mode, there are several options
available to select the Transaction(s) to be removed from the
Transaction Group. If you do not specify operands B, D, or E,
then only the Transaction entering the REMOVE Block is
removed. This mode of operation is called self removal.
Otherwise, a "group scan" is performed.

In a group scan, you may test each Transaction for removal by
using the conditional operator and/or operands D and E. Also
you may limit the number of Transactions to be removed by the
B Operand.

Operand D always refers to the Transaction Group member
under test. Notice that any SNA may be used in Operand D.
Any SNA which requires a Transaction for its evaluation uses
the current Transaction Group member under test. The result
returned by any SNA other than PR is used as a Parameter
number whose value is returned as the final result.

In a group scan you may use a conditional operator to specify
the relationship between the Transaction attribute (Operand D)
and the reference value (Operand E) which will initiate a
removal of the Transaction. Both are evaluated numerically.
The default for the conditional operator is E for equality. If you
use no conditional operator, but you use Operand D and
Operand E, the values must be equal for the Transaction to be
removed from the Transaction Group. If MIN or MAX is used as
the conditional operator, all Transactions with the greatest or
least attribute (Operand D) are removed, up to the limit count
(Operand B).

The B Operand cuts off the group scan when it equals the
number of Transactions that have been removed. The default
is ALL. If there is no attribute test, that is, if D is not specified,
Transactions are removed until the removal count equals B or
until the Group is empty.

The F Operand is used in both Numeric Mode and Transaction
Mode. It indicates an alternate destination to be taken by the
entering Transaction when an exception condition occurs. The
F Operand is used for the destination Block under the following
conditions:

• In Numeric Mode, if the numeric value (C
Operand) was not a member of the Group.

• In Self Removal Mode, if the Transaction
entering the REMOVE Block was not a member
of the Transaction Group.

• In Group Scan Mode, if no Transaction is
removed.

• In Group Scan Mode, if the removal count
specified by B cannot be reached.

If the F Operand is not used, the entering Transaction always
goes to the Next Sequential Block.

Conditional Operators
The conditional operator may be E, G, GE, L, LE, MAX, MIN, or
NE. If no conditional operator is used, E (equality) is assumed.
When the condition is true, the Transaction being tested is
removed from the Group. The conditions are defined as
follows:

• E - The Transaction attribute specified by
Operand D must be equal to the reference value
specified by Operand E for the Transaction to be
removed from the Group.

• G - The Transaction attribute specified by
Operand D must be greater than the reference
value specified by Operand E for the Transaction
to be removed from the Group.

• GE - The Transaction attribute specified by
Operand D must be greater than or equal to the
reference value specified by Operand E for the
Transaction to be removed from the Group.

• L - The Transaction attribute specified by
Operand D must be less than the reference value
specified by Operand E for the Transaction to be
removed from the Group.

• LE - The Transaction attribute specified by
Operand D must be less than or equal to the
reference value specified by Operand E for the
Transaction to be removed from the Group.

• MAX - The Transaction attribute specified by
Operand D must be equal to the largest such
attribute of all Transactions in the Group for the
Transaction to be removed from the Group.

• MIN - The Transaction attribute specified by
Operand D must be equal to the smallest such

attribute of all Transactions in the Group for the
Transaction to be removed from the Group.

• NE - The Transaction attribute specified by
Operand D must be unequal to the reference
value specified by Operand E for the Transaction
to be removed from the Group.

If no conditional operator is used in Group Scan Mode, E is
assumed.

Special Restrictions
• If a Numeric Group is referenced, you must not
use a conditional operator.

• If a Numeric Group is referenced, you must not
use Operand B, D, or E.

• If Operand D is used, then you must use
Operand E or else you must use the conditional
operator MIN or MAX.

• If Operand E is used, you must use Operand D.

• If MIN or MAX is used for the conditional
operator, Operand D must be used and Operand
E must not be used.

Refuse Mode
A Transaction is never refused entry to a REMOVE Block.

Related Blocks
Transactions and numbers are added to Groups by JOIN
Blocks. Transactions in Groups can be referenced by ALTER,
EXAMINE, REMOVE, and SCAN Blocks. Numbers in Numeric
Groups can be referenced by EXAMINE Blocks.

Related SNAs
• GNEntnum - Numeric Group count. GNEntnum returns the
membership count of Numeric Group Entnum.

• GTEntnum - Transaction Group count. GTEntnum returns the
membership count of Transaction Group Entnum.

Related Windows
• Numeric Groups Snapshot - Picture of the state
of the Numeric Groups in the simulation.

• Transaction Groups Snapshot - Picture of the

state of the Transaction Groups in the simulation.

RETURN
A RETURN Block releases ownership
of a Facility, or removes a preempted
Transaction from contention for a
Facility.

RETURN A

Operand
A - Facility number. Required. The operand must be Name,
PosInteger, ParenthesizedExpression, SNA, or
SNA*Parameter.

Example
RETURN Teller1

In this example, when a Transaction which owns the Facility
named Teller1 enters the RETURN Block, it gives up
ownership of the Facility.

Action
When a Transaction enters a RETURN Block it removes itself
from contention for the Facility. This can happen in two ways.

If the Active Transaction owns the Facility Entity, it gives up
ownership and proceeds to the Next Sequential Block.

If the Active Transaction has been preempted from ownership
of the Facility, it is removed from the Interrupt Chain of the
Facility. Ownership is not affected, because some other
Transaction is the owner. If the Active Transaction is presently
clear of all preemptions, it may now move normally in the
simulation.

In any case, the Active Transaction is removed from ownership
of or contention for the Facility and attempts to enter the Next
Sequential Block. If it neither owns, nor is preempted at the
Facility, an Error Stop occurs.

If the Active Transaction gives up ownership of the Facility, the
next owner is taken from the Pending Chain, the Interrupt
Chain, and finally the Delay Chain. If there are now Interrupt
Mode PREEMPTs pending at this Facility, the first is given
ownership of the Facility. Otherwise, ownership is returned to
the most recently preempted Transaction. If both the Pending
Chain (waiting Interrupt Mode PREEMPTs) and the Interrupt
Chain (preempted Transactions) are empty, the highest priority
Transaction on the normal Delay Chain is given ownership. If
there are no Transactions waiting, the Facility becomes idle.

When a new owner is chosen from the Delay Chain or the
Pending Chain, it enters the SEIZE or PREEMPT Block
immediately, and then is scheduled by placing it on the CEC
behind its priority peers. After this entry, the current Active
Transaction in the RETURN Block continues its movement.

Special Restriction
• An entering Transaction must own, or currently
be preempted at, the Facility. Otherwise an Error
Stop occurs.

Refuse Mode
A RETURN Block never refuses entry to a Transaction.

Related SNAs
• FEntnum - Facility busy. If Facility Entnum is
currently busy, FEntnum returns 1. Otherwise
FEntnum returns 0.

• FCEntnum - Facility capture count. The number
of times Facility Entnum has become owned by a
Transaction.

• FIEntnum - Facility Entnum interrupted. If
Facility Entnum is currently preempted, FIEntnum
returns 1. Otherwise FIEntnum returns 0.

• FREntnum - Facility utilization. The fraction of
time Facility Entnum has been busy. FREntnum
is expressed in parts-per-thousand and therefore
returns an real value 0-1000, inclusively.

• FTEntnum - Average Facility holding time. The
average time Facility Entnum is owned by a
capturing Transaction.

• FVEntnum - Facility in available state. FV
Entnum returns 1 if Facility Entnum is in the
available state, 0 otherwise.

Related Window
• Facilities Window - Online view of Facility Entity
dynamics.

SAVAIL
A SAVAIL Block ensures that a
Storage Entity is in the available state.

SAVAIL A

Operand
A - Storage name or number. Required. The operand must be
Name, PosInteger, ParenthesizedExpression, SNA, or
SNA*Parameter.

Example
SAVAIL MotorPool

In this example, when a Transaction enters the SAVAIL Block,
the Storage Entity MotorPool is assured to be in the available
state.

Action
An SAVAIL Block ensures that a Storage Entity is in the
available state. If any Transactions are waiting on the Delay
Chain of the Storage, they are given a chance to have their
storage requests satisfied by the Storage Entity according to
the first-fit-with-skip discipline. Those Transactions whose
storage requests cannot be satisfied remain on the Delay
Chain of the Storage Entity.

If the Storage Entity is already in the available state, the
SAVAIL Block has no effect.

Refuse Mode
A Transaction is never refused entry to a SAVAIL Block.

Related Command
A Storage Entity must be defined in a STORAGE Command
before it can be updated by an SAVAIL Block. The STORAGE
Command must exist in the model, or must be sent to the
Simulation Object interactively, before a Transaction can enter
the SAVAIL Block. Any attempt to do so before the Storage
Entity is defined, cases an Error Stop.

A Storage Entity can be redefined by an interactive STORAGE
Command.

Related SNAs
• REntnum - Unused storage capacity. The
storage content (or "token" spaces) available for
use by entering Transactions at Storage Entity
Entnum.

• SEntnum - Storage in use. SEntnum returns the
amount of storage content (or "token" spaces)
currently in use by entering Transactions at
Storage Entity Entnum.

• SAEntnum - Average storage in use. SAEntnum
returns the time weighted average of storage
capacity (or "token" spaces) in use at Storage
Entity Entnum.

• SCEntnum - Storage use count. Total number
of storage units that have been entered in (or
"token" spaces that have been used at) Storage
Entity Entnum.

• SEEntnum - Storage empty. SEEntnum returns
1 if Storage Entity Entnum is completely unused,
0 otherwise.

• SFEntnum - Storage full. SFEntnum returns 1 if
Storage Entity Entnum is completely used, 0
otherwise.

• SREntnum - Storage utilization. The fraction of
total usage represented by the average storage in
use at Storage Entity Entnum. SREntnum is
expressed in parts-per-thousand and therefore
returns an real value 0-1000, inclusively.

• SMEntnum - Maximum storage in use at
Storage Entity Entnum. The "high water mark".

• STEntnum - Average holding time per unit at
Storage Entity Entnum.

• SVEntnum - Storage in available state.
SVEntnum returns 1 if Storage Entity Entnum is
in the available state, 0 otherwise.

Related Window
• Storages Window - Online view of Storage
Entity dynamics.

SAVEVALUE
A SAVEVALUE Block changes the
value of a Savevalue Entity.

SAVEVALUE A,B

Operands
A - Savevalue Entity number. Required. May be followed by +
or - to indicate addition or subtraction to existing value.
Required. The operand must be Name, PosInteger,
ParenthesizedExpression, SNA, or SNA*Parameter, followed
by +, -, or Null.

B - The value to be stored, added, or subtracted. Required.
The operand must be Name, Number, String,
ParenthesizedExpression, SNA, or SNA*Parameter.

Examples
SAVEVALUE Account,99.95

In this example, the Savevalue Entity named Account takes on
the value 99.95.

SAVEVALUE The_Bard,"A rose by any other name ..."

In this example, the Savevalue Entity named The_Bard is
assigned a string. If the Savevalue Entity does not exist, it is
created.

Action
An SAVEVALUE Block is used to assign, increment, or
decrement the value of a Savevalue Entity.

The A Operand is evaluated numerically, truncated, and used
as the Savevalue Entity number.

Operand B is evaluated and used to determine the new value
for the Savevalue Entity. If Operand A is followed by +, then
the numeric equivalent of Operand B is added to the numeric
equivalent of the old value. If Operand A is followed by -, then
the numeric equivalent of Operand B is subtracted from the
numeric equivalent of the old value. If Operand A is not
followed by a sign, the old value of the SAVEVALUE is
replaced by Operand B.

Refuse Mode
A Transaction is never refused entry to a SAVEVALUE Block.

Related SNA
• XEntnum - Savevalue. The value of Savevalue
Entnum is returned.

Related Windows
• Expressions Window - Online view of values of
expressions.

• Plot Window - Online view of a plot of up to 8
expressions.

• Savevalues Window - Online view of Savevalue
Entity dynamics.

SCAN
A SCAN Block passes information
from a Transaction Group member to
the Active Transaction.

SCAN O A,B,C,D,E,F

Operands
O - Conditional operator. Relationship of B to C for the
Transaction Group member to be chosen. These choices are
explained below. Optional. The operator must be Null, E, G,
GE, L, LE, MAX, MIN, or NE.

A - Transaction Group number. Group whose members will be
scanned. Required. The operand must be Name, PosInteger,
ParenthesizedExpression, SNA, or SNA*Parameter.

B - Test value. PR or Parameter number. The member attribute
which determines whether the Group member Transaction
should be selected. It is evaluated with respect to the
Transaction Group member. Optional. The operand must be
PR or Null, Name, PosInteger, ParenthesizedExpression, SNA,
or SNA*Parameter.

C - Reference value. The value against which the B Operand is
compared. The default is 0. Optional. The operand must be
Null, Name, Number, String, ParenthesizedExpression, SNA,
or SNA*Parameter.

D - Retrieved value. PR or Parameter number. The member
attribute which is to be assigned to a Parameter of the Active
Transaction. It is evaluated with respect to the Transaction
Group member. Required. The operand must be PR, Name,
PosInteger, ParenthesizedExpression, SNA, or
SNA*Parameter.

E - Receiving Parameter number. The Parameter number of
the entering Transaction which will receive the value retrieved
from Operand D. Required. The operand must be Name,
PosInteger, ParenthesizedExpression, SNA, or
SNA*Parameter.

F - Alternate Block number. The alternate destination for the
entering Transaction. Optional. The operand must be Null,
Name, PosInteger, ParenthesizedExpression, SNA, or
SNA*Parameter.

Examples
SCAN MAX Inventory,P$Price,,P$PartNumber,100

In this example, all Transactions in the Transaction Group
Inventory are examined in order to find the Parameter named
Price with the greatest value. The first Transaction with a
maximal Price Parameter value is then selected for evaluation
of the D Operand. The value of the PartNumber Parameter of
the selected Transaction Group member is assigned to

Parameter number 100 of the Active Transaction. If the
Transaction Group is empty, no action occurs.

SCAN E Lot11,PartNum,127,Price,Price,Phone

In this example, when a Transaction enters the SCAN Block,
the Transaction Group named Lot11 is scanned for the first
Transaction which has a value of 127 in its Parameter named
PartNum If such a Transaction is found, the value in its
Parameter named Price is transferred to the corresponding
Parameter of the Transaction entering the SCAN Block. The
entering Transaction then proceeds to the Next Sequential
Block. If no such Transaction Group member is found, the
entering Transaction proceeds to the Block labeled Phone.
Operands D and E need not specify the same Transaction
Parameter.

Action
A SCAN Block finds the first Transaction in a Group which
passes all tests, and stores one of its attributes in a Parameter
of the Active Transaction. If no such Parameter exists for the
Active Transaction, one is created. If an appropriate
Transaction Group member cannot be found, no value is
stored.

The Transaction Group member may be chosen on the basis of
a test of one of its attributes. This is done by using operands B,
C, and/or a conditional operator. If no such test is used, the first
Transaction in the Group, if any, is selected.

When a Transaction Group member is found to satisfy a test,
its attribute, which is specified by Operand D, is copied into the
Parameter of the Active Transaction, specified by the E
Operand. In this case, the Active Transaction always proceeds
to the Next Sequential Block.

If no Transaction is found to satisfy the requirements, the
Active Transaction may optionally be directed to the Block
specified by the F Operand. Otherwise, it proceeds to the Next
Sequential Block.

If you use operands B, C, or a conditional operator, the first
Transaction Group member to pass the test is selected.
Operand B specifies which attribute of the member
Transactions is to be tested. It may be compared to the
minimum or the maximum of all such Group member attributes
by using MIN or MAX as the conditional operator. The first
Transaction in the Transaction Group which has the maximum
or minimum attribute is selected. If you use MIN or MAX, you
must not use Operand C.

You may compare the Group member attribute to Operand C,

with or without a conditional operator. In this case, the
conditional operator must not be MIN or MAX. The default for
Operand C is 0.

Operands B and D always refer to the Transaction Group
member under test. Notice that any SNA may be used. Any
SNA which requires a Transaction for its evaluation uses the
current Transaction Group member under test. The result
returned by any SNA, other than PR, is used as a Parameter
number, whose value is returned as the final result.

The default for the conditional operator is E for equality. If you
use no conditional operator, but you use Operand B and
Operand C, the values must be equal for the member
Transaction attribute to be selected.

The F Operand indicates an alternate destination Block to be
taken by the entering Transaction when no Transaction is
found which satisfies the conditions specified. If F is not used,
the entering Transaction always proceeds to the Next
Sequential Block.

Conditional Operators
The conditional operator may be E, G, GE, L, LE, MAX, MIN, or
NE. If no conditional operator is used, E (equality) is assumed.
When the condition is true, the Transaction being tested is
selected. The conditions are defined as follows:

• E - The member Transaction attribute specified
by Operand B must be equal to the reference
value specified by Operand C for the member
Transaction to be selected.

• G - The member Transaction attribute specified
by Operand B must be greater than the reference
value specified by Operand C for the member
Transaction to be selected.

• GE - The member Transaction attribute
specified by Operand B must be greater than or
equal to the reference value specified by
Operand C for the member Transaction to be
selected.

• L - The member Transaction attribute specified
by Operand B must be less than the reference
value specified by Operand C for the member
Transaction to be selected.

• LE - The member Transaction attribute
specified by Operand B must be less than or
equal to the reference value specified by
Operand C for the member Transaction to be
selected.

• MAX - The member Transaction attribute
specified by Operand B must be equal to the
greatest such attribute of all Transactions in the
Group for the member Transaction to be
selected.

• MIN - The member Transaction attribute
specified by Operand B must be equal to the
smallest such attribute of all Transactions in the
Group for the member Transaction to be
selected.

• NE - The member Transaction attribute
specified by Operand B must be unequal to the
reference value specified by Operand C for the
member Transaction to be selected.

Special Restrictions
• If Operand C is used, you must use Operand B.

• If MIN or MAX is used for the conditional
operator, Operand C must not be used.

Refuse Mode
A Transaction is never refused entry to a SCAN Block.

Related Blocks
Transactions and numbers are added to Groups by JOIN
Blocks. Transactions in Groups can be referenced by ALTER,
EXAMINE, REMOVE, and SCAN Blocks.

Related SNA
• GTEntnum - Transaction Group count.
GTEntnum returns the membership count of
Transaction Group Entnum.

Related Windows
• Transaction Snapshot - Picture of the state of a
Transaction in the simulation.

• Transaction Groups Snapshot - Picture of the
state of the Transaction Groups in the simulation.

SEEK
A SEEK Block sets the Current Line
Position of a Data Stream.

SEEK A,B

Operands
A - New Current Line Position. Required. The operand must be
Name, PosInteger, ParenthesizedExpression, SNA or
SNA*Parameter.

B - Data Stream Entity. Optional. The operand must be Null,
Name, PosInteger, ParenthesizedExpression, SNA or
SNA*Parameter.

Example
SEEK 20,Data_Base

In this example, the SEEK Block changes the Current Line
Pointer of the Data Stream Data_Base to 20.

Action
A Data Stream is a sequence of text lines used by a GPSS
World simulation. Each Data Stream is identified by a unique
number. Chapter 4 (4.16) contains a full discussion of Data
Streams, including the error code descriptions under the
Section entitled Data Streams.

Each Data Stream has a Current Line Position. This is a
1-relative index to the next line position to be read or written.
When a Transaction enters a SEEK Block, Operand A is
evaluated numerically and used as next Current Line Position.

If Operand B is used, it is evaluated numerically and used as
the Data Stream Entity number. It must be a positive integer. If
Operand B is not specified, the SEEK is applied to Data
Stream number 1.

If an error is detected, the error code is stored internally. A
CLOSE Block can be used later to retrieve the Error Code.

Refuse Mode
A Transaction is never refused entry to a SEEK Block.

Related Blocks
• OPEN - Create a Data Stream.

• CLOSE - Shut down a Data Stream.

• READ - Retrieve a text line from a Data Stream.

• WRITE - Send a text line to a Data Stream.

SEIZE
When the Active Transaction attempts
to enter a SEIZE Block, it waits for or
acquires ownership of a Facility Entity.

SEIZE A

Operand
A - Facility name or number. Required. The operand must be
Name, PosInteger, ParenthesizedExpression, SNA, or
SNA*Parameter.

Example
SEIZE Teller1

In this example, when a Transaction attempts to enter the
SEIZE Block, the state of the Facility named Teller1 is tested. If
it is idle, ownership is given to the Active Transaction, which is
allowed to enter the SEIZE Block and proceed to the Next
Sequential Block (NSB). If the Facility is busy (owned), the
Active Transaction comes to rest on the Delay Chain of the
Facility.

Action
A SEIZE Block enables a Transaction to acquire ownership of
a Facility. If the Facility is idle (not owned), the Transaction
immediately acquires ownership of it, enters the SEIZE Block,
and attempts to enter the next Block. If the Facility is already
owned, the Transaction comes to rest, last within its priority, on
the Delay Chain of the Facility and does not enter the SEIZE
Block.

Refuse Mode
A Transaction is refused entry to a SEIZE Block if it cannot
immediately receive ownership of the Facility Entity.

The Active Transaction is refused entry to the SEIZE Block if
the Facility entity is in the unavailable state.

When a Transaction is refused entry, its Delay Indicator is set
and remains so until the Transaction enters a "Simultaneous"
Mode TRANSFER Block. Simultaneous Mode TRANSFER
Blocks are rarely used because a BOOLEAN VARIABLE can
more efficiently control the coordination of the state of a
number of resources when used in a TEST Block.

Related SNAs
• FEntnum - Facility busy. If Facility Entnum is
currently busy, FEntnum returns 1. Otherwise
FEntnum returns 0.

• FCEntnum - Facility capture count. The number
of times Facility Entnum has become owned by a
Transaction.

• FIEntnum - Facility Entnum interrupted. If
Facility Entnum is currently preempted, FIEntnum
returns 1. Otherwise FIEntnum returns 0.

• FREntnum - Facility utilization. The fraction of
time Facility Entnum has been busy. FREntnum
is expressed in parts-per-thousand and therefore
returns an real value 0-1000, inclusively.

• FTEntnum - Average Facility holding time. The
average time Facility Entnum is owned by a
capturing Transaction.

• FVEntnum - Facility in available state. FV
Entnum returns 1 if Facility Entnum is in the
available state, 0 otherwise.

Related Window
• Facilities Window - Online view of Facility Entity
dynamics.

SELECT
A SELECT Block chooses an entity
and places its entity number in a
Parameter of the Active Transaction.

SELECT O A,B,C,D,E,F

Operands
O - Conditional operator or logical operator. These choices are
explained below. Required. The operator must be FNV, FV, I,
LS, LR, NI, NU, SE, SF, SNE, SNF, SNV, SV, U, E, G, GE, L,
LE, MIN, MAX, or NE.

A - Parameter name or number to receive the number of the
selected entity. Required. The operand must be Name,
PosInteger, ParenthesizedExpression, SNA, or
SNA*Parameter.

B - Lower entity number. Required. The operand must be
Name, PosInteger, ParenthesizedExpression, SNA, or
SNA*Parameter.

C - Upper entity number. Required. The operand must be
Name, PosInteger, ParenthesizedExpression, SNA, or
SNA*Parameter.

D - Reference value for E Operand when in Conditional Mode.
Optional. The operand must be Name, Number, String,
ParenthesizedExpression, SNA, or SNA*Parameter. Not used
with MAX or MIN.

E - SNA class name. Entity attribute specifier for Conditional
Mode tests. Required only for Conditional Mode. The type of
SNA implies the entity type. You do not specify the entity
number in Operand E. This is done automatically as the entity
number range is searched. You may use any entity SNA class.
Optional. The operand must be Null or entitySNAclass.

F - Alternate Block number. The destination Block if no entity is
selected. Optional. The operand must be Null, Name,
PosInteger, ParenthesizedExpression, SNA, or

SNA*Parameter.

Examples
SELECT SNF Not_Full,Bin1,Bin3

In this example, the entity number of the first Storage Entity
that has room whose entity numbers fall between Bin1 and
Bin3 will be stored in the Transaction Parameter named
Not_Full. If the Parameter does not exist, it will be created. It is
always wise to test prior to entry into a SELECT Block that a
successful selection is possible. If it is not possible, a 0 would
be put in the Parameter and in this case, entry into an ENTER
Block would cause an Error Stop since no entity can have an
entity number of 0. You can also use an alternate exit if no
entity is found to meet the desired criteria.

If the range of entities to be searched have been defined with
alphanumeric names as above, you must first use EQU
Statements to assign contiguous numbers to the range of
names. The EQU Statements must occur prior to the original
entity definitions.

 10 Bin1 EQU 1

 20 Bin2 EQU 2

 30 Bin3 EQU 3

 40 Bin1 STORAGE 11

 50 Bin2 STORAGE 1000

 60 Bin3 STORAGE 150

.

.

100 SELECT SNF,3,Bin1,Bin3,,,No_Room

Here, we have taken the example above and given an alternate
destination to Transactions that find all Storage Entities to be
full. If you do not test first for a successful selection using a
TEST Block and a BOOLEAN VARIABLE, you should have an
alternate destination should the selection be unsuccessful.

SELECT E Empty1,Queue1,Queue9,0,Q

In this example, the SELECT Block operates in Conditional

Mode. Each Queue Entity with entity number between those of
Queue1 and Queue9, inclusively, is tested. The first Queue
Entity whose current content is 0 is selected. EMPTY1 is the
name of the Parameter of the entering Transaction to receive
the entity number of the first "empty" Queue Entity in the
specified range.

Action
When the SELECT Block is entered, the entity specified by
Operand B is tested. If the entity does not exist and does not
require a separate Command for its definition, a new entity is
created. Thereafter, each entity in the range indicated by
operands B and C is tested. An SNA is built automatically for
each entity. The SNA class used to build the SNA is taken from
Operand E or is specified by the logical operator.

A SELECT Block operates in either Logical Mode or in
Conditional Mode, depending on whether a logical operator or
a conditional operator is used.

When a logical operator is used (defined below), operands A,
B, and C are used. The condition specified by the logical
operator is tested for the entities whose numbers fall between
B and C. The entity number of the first entity found in that
condition is placed in the Parameter of the entering Transaction
whose number is given by Operand A. The entity type is
implied by the logical operator. If no entity is found, 0 is placed
in the Parameter of the Active Transaction. If the Parameter
does not exist, it is created.

When a conditional operator is used, operands A, B, C, E, and
usually D are used. Operands A, B, C, are used to specify the
target Parameter, and the range of entity numbers, as above.
But now the conditional operator specifies the relationship
between operands D and E that must hold for the entity to be
selected. Both are evaluated numerically.

In Conditional Mode, the SNA class is combined with the entity
specifier in order to build an SNA. The entity type implied by
each SNA class is given in Section 3.4. The complete SNA is
built from this class and the number of the entity being tested.
Each such SNA is evaluated for each entity and compared to
the reference value in Operand D. Operand D is evaluated with
respect to the entering Transaction and is the reference value
for comparison to Operand E, which specifies the class of SNA
(and therefore the entity type) to be evaluated. The conditional
operator specifies the relation that Operand E, evaluated at
each entity, must bear to Operand D, evaluated on behalf of
the entering Transaction, in order for the entity to be selected.
If MIN or MAX is used as the conditional operator, Operand D
is ignored.

In either mode, the F Operand may be used to direct the

entering Transaction to a new Block in the event that no entity
can be selected. If F is not used, the entering Transaction will
always proceed to the next sequential Block. If F is used, and
no entity is selected, the Active Transaction proceeds to the
Block specified by F, with its Parameter, specified by Operand
A, unchanged.

Logical Operators
Either a conditional operator or a logical operator is required.
The logical operator may be FNV, FV, I, LS, LR, NI, NU, SE,
SF, SNE, SNF, SNV, SV, or U. When the logical operator is
true, the entity being tested is selected. The conditions are
defined as follows:

• FNV - The Facility Entity must be unavailable in
order to be selected.

• FV - The Facility Entity must be available in
order to be selected.

• I - The Facility Entity must be currently
interrupted (preempted) in order to be selected.

• LS - The Logicswitch Entity must be set in order
to be selected.

• LR - The Logicswitch Entity must be reset in
order to be selected.

• NI - The Facility Entity must NOT be currently
interrupted (preempted) in order to be selected.

• NU - The Facility Entity must not be in use in
order to be selected.

• SE - The Storage Entity must be empty in order
to be selected.

• SF - The Storage Entity must be full in order to
be selected.

• SNE - The Storage Entity must NOT be empty
in order to be selected.

• SNF - The Storage Entity must NOT be full in
order to be selected.

• SNV - The Storage Entity must NOT be
available in order to be selected.

• SV - The Storage Entity must be available in
order to be selected.

• U - The Facility Entity must be in use in order to
be selected.

Conditional Operators
Either a conditional operator or a logical operator is required.
The conditional operator may be E, G, GE, L, LE, MAX, MIN, or
NE. The conditions are defined as follows:

• E - The value of the automatic SNA must be
equal to the reference value specified by
Operand D for the entity to be selected.

• G - The value of the automatic SNA must be
greater than the reference value specified by
Operand D for the entity to be selected.

• GE - The value of the automatic SNA must be
greater than or equal to the reference value
specified by Operand D for the entity to be
selected.

• L - The value of the automatic SNA must be
less than the reference value specified by
Operand D for the entity to be selected.

• LE - The value of the automatic SNA must be
less than or equal to the reference value specified
by Operand D for the entity to be selected.

• MAX - The value of the automatic SNA must be
equal to the greatest of all such SNAs, for the
entity to be selected.

• MIN - The value of the automatic SNA must be
equal to the least of all such SNAs, for the entity
to be selected.

• NE - The value of the automatic SNA must be
unequal to the reference value specified by
Operand E for the entity to be selected.

Special Restrictions
• Either a conditional operator or a logical
operator is required.

• Evaluated entity numbers must be positive
integers.

• D and E are required if O is a conditional
operator. Other than MIN or MAX.

• When evaluated, C must be greater than or
equal to B.

Refuse Mode
A Transaction is never refused entry to a SELECT Block.

Related Windows
• Facilities Window - Online view of Facility Entity
dynamics.

• Logicswitches Window - Online view of
Logicswitch Entity dynamics.

• Storages Window - Online view of Storage
Entity dynamics.

• Transaction Snapshot - Picture of the state of a
Transaction in the simulation.

SPLIT
A SPLIT Block creates Transactions in
the same Assembly Set as the Active
Transaction.

SPLIT A,B,C

Operands
A - Count. Number of related Transactions to be created.
Required. The operand must be Name, PosInteger,
ParenthesizedExpression, SNA, or SNA*Parameter.

B - Block number. Destination for new Transactions. Optional.
The operand must be Null, Name, PosInteger,
ParenthesizedExpression, SNA, or SNA*Parameter.

C - Parameter number. Parameter to receive serial number.
Optional. The operand must be Null, Name, PosInteger,
ParenthesizedExpression, SNA, or SNA*Parameter.

Examples
SPLIT 1

This is the simplest way to use the SPLIT Block. A new copy of
the parent Transaction is created which will follow the parent
Transaction to the next Block. The new Transaction has the
same priority, Parameter values, and Mark Time as the parent.

SPLIT 3,P20,20

In this example, each time the SPLIT Block is entered, 3 new
Transactions are created. Each Transaction has the same
priority, Mark Time, and Parameter values as the parent
Transaction, with the exception of Parameter number 20.

Each offspring Transaction will have a serial number in its
Parameter number 20 based on the value in Parameter
number 20 of the parent Transaction. The parent�s Parameter
value 20 is first incremented by 1 (in case it is 0), and then the
serial number of each offspring is calculated following that
value sequentially.

The destination Block found in Operand B is evaluated with
respect to each newly created Transaction. If Parameter 20 of
the parent Transaction contains a Block number, say, n, then
the first offspring will go to Block n+2, the second to n+3 and
the third to n+4.

The parent Transaction will proceed to the Next Sequential
Block following the SPLIT Block.

The above example is unique because Parameter 20 is used in
both the B and C operands. Therefore, the serial number is
used to determine the destination Block location.

The B and C operands can be used for separate purposes, B
containing a single destination of the offspring Transactions
and C, a serial number which might be used to direct the
individual Transactions at some location further on in the
simulation.

SPLIT 3,Pro,17

In this example, each time the split Block is entered, 3 new
Transactions are created. The parent Transaction goes to the
Next Sequential Block, the offspring to a Block labeled Pro.
Parameter 17 will receive the serialization. If the parent
Transaction�s Parameter is not predefined, it will be created
and initialized to 0. In this example, the parent Transaction with
a value of 0 in the Parameter 17, (the Parameter to be used for
serialization) will, after passing through the SPLIT Block, have
a 1 in Parameter 17 and the offspring will have 2, 3, and 4 in
Parameter 17.

Action
A SPLIT Block creates new Transactions which share the
attributes of their parent. Each offspring Transaction has the
same priority and Mark Time of the parent, and is in the same
Assembly Set. If the Trace Indicator is set in the parent
Transaction, it is turned on in the offspring Transaction.

The new Transactions may be sent to an alternate destination,
by using a Block number for Operand B. The new Block
number is evaluated for each new Transaction.

The optional C Operand specifies the Parameter number of the
newly created Transactions to receive a serial number. The
numbering starts at the value of the corresponding Parameter
in the parent Transaction, plus 1. For example, if 3 copies are
to be created with a serial number in Parameter 120, and the
entering Transaction has 15 in its Parameter 120, then the new
Transactions will have 16, 17, and 18, respectively, in their
Parameters numbered 120. If the parent Transaction has no
such Parameter, it is created and the numbering starts at 1.

By using both B and C operands it is possible to send each
new Transaction to a different destination as shown in the
second example above.

The parent Transaction and all the offspring Transactions all
belong to the same set of Transactions called an Assembly
Set. All Transactions belong to exactly one Assembly Set,
which can be changed by entry into an ADOPT Block.
Members of the same Assembly Set are said to be "related".
The relationships of Transactions may be tested and used in
ASSEMBLE, GATHER, MATCH, and GATE Blocks for
synchronization and other purposes.

Special Restriction
• A, B, and C, if specified, must be positive.

Refuse Mode
A Transaction is never refused entry to a SPLIT Block.

Related Blocks
• ADOPT - Set the Assembly Set of the Active
Transaction.

• ASSEMBLE - Wait for and destroy Assembly
Set members.

• GATHER - Wait for Assembly Set members.

• MATCH - Wait for Assembly Set member.

Related SNAs
• A1 - Assembly Set. Return the Assembly Set of
the Active Transaction.

• MBEntnum - Match at Block. MBEntnum returns
a 1 if there is a Transaction at Block Entnum
which is in the same Assembly Set as the Active
Transaction. MBEntnum returns a 0 otherwise.

Related Windows
• Blocks Window - Online view of Block
dynamics.

• Transaction Snapshot - Picture of the state of a
Transaction in the simulation.

• CEC Snapshot - Picture of the state of the
Current Events Chain in the simulation.

• FEC Snapshot - Picture of the state of the
Future Events Chain in the simulation.

SUNAVAIL
A SUNAVAIL Block ensures that a
Storage Entity is in the unavailable
state.

SUNAVAIL A

Operand
A - Storage name or number. Required. The operand must be
Name, PosInteger, ParenthesizedExpression, SNA,
SNA*Parameter.

Example
SUNAVAIL MotorPool

In this simple example, the Storage Entity named MotorPool is
made unavailable when a Transaction enters this Block.

Action
An SUNAVAIL Block ensures that a Storage Entity is
unavailable. This means that all Transactions requesting
storage will be placed on the Delay Chain of the Storage Entity.
No Transaction is permitted to enter any ENTER Block if the
Storage Entity is in the unavailable state.

If the Storage Entity is already in the unavailable state, the
SUNAVAIL Block has no effect.

Special Restriction
• Operand A must be the name or number of a
predefined Storage Entity.

Refuse Mode
A Transaction is never refused entry to a SUNAVAIL Block.

Related Command
A Storage Entity must be defined in a STORAGE Command
before it can be updated by an SUNAVAIL Block. The
STORAGE Command must exist in the model, or must be sent
to the Simulation Object interactively, before a Transaction can
enter the SUNAVAIL Block. Any attempt to do so before the
Storage Entity is defined, cases an Error Stop.

A Storage Entity can be redefined by an interactive STORAGE
Command.

Related SNAs
• REntnum - Unused storage capacity. The
storage content (or "token" spaces) available for
use by entering Transactions at Storage Entity
Entnum.

• SEntnum - Storage in use. SEntnum returns the
amount of storage content (or "token" spaces)
currently in use by entering Transactions at
Storage Entity Entnum.

• SAEntnum - Average storage in use. SAEntnum
returns the time weighted average of storage
capacity (or "token" spaces) in use at Storage
Entity Entnum.

• SCEntnum - Storage use count. Total number
of storage units that have been entered in (or
"token" spaces that have been used at) Storage
Entity Entnum.

• SEEntnum - Storage empty. SEEntnum returns
1 if Storage Entity Entnum is completely unused,
0 otherwise.

• SFentnum - Storage full. SFentnum returns 1 if
Storage Entity Entnum is completely used, 0
otherwise.

• SREntnum - Storage utilization. The fraction of
total usage represented by the average storage in
use at Storage Entity Entnum. SREntnum is
expressed in parts-per-thousand and therefore
returns an real value 0-1000, inclusively.

• SMEntnum - Maximum storage in use at
Storage Entity Entnum. The "high water mark".

• STEntnum - Average holding time per unit at
Storage Entity Entnum.

• SVEntnum - Storage in available state.
SVEntnum returns 1 if Storage Entity Entnum is
in the available state, 0 otherwise.

Related Window
• Storages Window - Online view of Storage
Entity dynamics.

TABULATE
A TABULATE Block triggers the
collection of a data item in a Table
Entity.

TABULATE A,B

Operands
A - Table Entity name or number. Required. The operand must
be Name, PosInteger, ParenthesizedExpression, SNA, or
SNA*Parameter.

B - Weighting factor. Optional. The operand must be Null,
Name, Number, ParenthesizedExpression, SNA, or
SNA*Parameter.

Example
TABULATE Sales

When a Transaction enters this TABULATE Block, the Table
Entity named Sales is found. Sales must have been defined in
a TABLE Command. Then the statistics associated with the
table are updated with no weighting.

Action
When a Transaction enters a TABULATE Block, Operand A is
evaluated and used to find a Table Entity. If there is no such
entity an Error Stop occurs.

The Table Entity is then updated according to the operands in
the TABLE Statement. If the B Operand is used, it is evaluated
and used as a weighting factor. Otherwise the factor is taken to
be 1.

A further discussion of the statistics gathered by table entities
may be found in Section 4.10 and Chapter12.

Special Restrictions
• A must be positive.

• B, if specified, must be positive.

• A must be the name or number of a predefined
TABLE entity.

Refuse Mode
A Transaction is never refused entry to a TABULATE Block.

Related Command
A Table Entity must be defined in a TABLE Command before it
can be updated by a TABULATE Block. The TABLE Command
must exist in the model, or must be sent to the Simulation
Object interactively, before a Transaction can enter the
TABULATE Block. Any attempt to do so before the Table Entity
is defined, cases an Error Stop.

A Table Entity can be redefined by an interactive TABLE
Command.

Related SNAs
• TBEntnum - Non weighted average of entries in
Table Entity Entnum.

• TCEntnum - Count of non weighted table
entries in Table Entity Entnum.

• TDEntnum - Standard deviation of non weighted
table entries in Table Entity Entnum.

Related Window
• Table Window - Online view of Table Entity
dynamics.

TERMINATE
A TERMINATE Block removes the
Active Transaction from the simulation
and optionally reduces the Termination
Count.

TERMINATE A

Operand
A - Termination Count decrement. Default is 0. Optional. The
operand must be Null, Name, PosInteger,
ParenthesizedExpression, SNA, or SNA*Parameter.

Example
TERMINATE 1

In this example, when a Transaction enters the TERMINATE
Block it is removed from the simulation. Also, the Termination
Count of the simulation, which is set by a START Command is
decremented by 1.

Action
When a Transaction enters a TERMINATE Block, Operand A is
evaluated, truncated, and used to decrement the Termination
Count of the simulation. If Operand A was not specified, the
Termination Count is not changed.

The Active Transaction is then removed from the simulation,
and a new Active Transaction is chosen.

The Termination Count of the simulation is set by a prior
START Command. When the termination count reaches 0, the
simulation ends, and unless suppressed by Operand B of the
START Command, the optional standard report is written.

Special Restriction
• A, if specified, must be positive.

Refuse Mode
A Transaction is never refused entry to a TERMINATE Block.

Related SNA
• TG1 - Termination Count of the simulation. This
value is initialized by a START Command and
indicates completion of the simulation when it
becomes less than or equal to 0.

TEST
A TEST Block compares values,
normally SNAs, and controls the
destination of the Active Transaction
based on the result of the comparison.

TEST O A,B,C

Operands
O - Relational operator. Relationship of Operand A to Operand
B for a successful test. Required. The operator must be E, G,
GE, L, LE, or NE.

A - Test value. Required. The operand must be Name,
Number, String, ParenthesizedExpression, SNA, or
SNA*Parameter.

B - Reference value. Required. The operand must be Name,
Number, String, ParenthesizedExpression, SNA, or
SNA*Parameter.

C - Destination Block number. Optional. The operand must be
Null, Name, PosInteger, ParenthesizedExpression, SNA, or
SNA*Parameter.

Action
A TEST Block operates in either "Refuse Mode" or "Alternate
Exit Mode". In either case, operands A and B are evaluated
numerically, and compared.

If Operand C is not used, the TEST Block operates in Refuse
Mode. When a Transaction attempts to enter a Refuse Mode
TEST Block, and the test is unsuccessful, the Transaction is
blocked, i.e. not allowed to enter the TEST Block, until the test
is repeated and is successful. When the test is successful, the
Active Transaction enters the TEST Block and then proceeds
to the Next Sequential Block.

Blocked Transactions are placed on the Retry Chains of all
entities involved in the comparison. When the state of any of
these entities changes, the blocked Transaction is reactivated,
the test specified by the TEST block is retried, and if
successful, the Transaction is permitted to enter the TEST
Block. However, the integration of User Variables does not
cause blocked Transactions to be reactivated. You should use
the thresholds in an INTEGRATE Command if you need to be
notified about the level of one or more continuous variables.
This is discussed further in Chapter 1, in the Section entitled
Continuous Variables.

If Operand C is used, the TEST Block operates in Alternate
Exit Mode. When a Transaction attempts to enter such a TEST
Block, and the test is unsuccessful, the Transaction enters the
TEST Block, is scheduled for the alternate destination Block
specified by the C Operand, and is placed on the Current
Events Chain in front of its priority peers. If the test is
successful, the Active Transaction enters the TEST Block and
then proceeds to the Next Sequential Block.

Example
TEST G C1,70000

In this example of a "Refuse Mode" TEST Block, the Active
Transaction enters the TEST Block if the relative system clock

value is greater than 70000. Otherwise, the Transaction is
blocked until the test is true.

TEST G Q$Teller1_Line,Q$Teller2_Line,Teller1

In this example of an "Alternate Exit Mode" TEST Block, the
Active Transaction always enters the TEST Block. If the
content of the queue entity named Teller1_Line is greater than
the content of the queue entity named Teller2_Line the
Transaction proceeds to the NSB. Otherwise, the Active
Transaction is scheduled to enter the Block at the location
named TELLER1.

Relational Operator
The relational operator is required. It may be E, G, GE, L, LE,
or NE.

The successful tests are defined as follows:

• E - The value of Operand A must be equal to
the value of Operand B.

• G - The value of Operand A must be greater
than the value of Operand B.

• GE - The value of Operand A must be greater
than or equal to the value of Operand B.

• L - The value of Operand A must be less than
the value of Operand B.

• LE - The value of Operand A must be less than
or equal to the value of Operand B.

• NE - The value of Operand A must be unequal
to the value of Operand B.

Special Restrictions
• C must be the location of a Block in the
simulation.

• TEST Blocks are extremely powerful, however,
unsuccessful testing can cause large amounts of
computer time to be used. You may need to
arrange your simulation to reduce the frequency
of unsuccessful tests. This can be done by
placing Transactions with no chance of a
successful test on a User Chain using LINK and
UNLINK Blocks.

Refuse Mode
A TEST Block operating in Refuse Mode will refuse entry to a
Transaction when the test fails. The refused Transaction will be
blocked until the test is successful.

When a Transaction is refused entry, its Delay Indicator is set
and remains so until the Transaction enters a "Simultaneous"
Mode TRANSFER Block. Simultaneous Mode TRANSFER
Blocks are rarely used because a BOOLEAN VARIABLE can
more efficiently control the coordination of the state of a
number of resources when used in a TEST Block.

Related Windows
• Blocks Window - Online view of Block
dynamics.

• Transaction Snapshot - Picture of the state of a
Transaction in the simulation.

• CEC Snapshot - Picture of the state of the
Current Events Chain in the simulation.

• FEC Snapshot - Picture of the state of the
Future Events Chain in the simulation.

TRACE
A TRACE Block turns on the Trace
Indicator of the Active Transaction.

TRACE

Operands
None.

Example
TRACE

In this example, the Trace Indicator of the Active Transaction
will be set and stay on until an UNTRACE Block is entered.

Action
When a Transaction enters a TRACE Block, its Trace Indicator
is turned on. This causes a trace message to be sent to all
Journal Windows every time the Transaction enters a new
Block.

Refuse Mode
A Transaction is never refused entry to a TRACE Block.

Related Windows
• Journal Window - Record session events.

• Blocks Window - Online view of Block
dynamics.

• Transaction Snapshot - Picture of the state of a
Transaction in the simulation.

• CEC Snapshot - Picture of the state of the
Current Events Chain in the simulation.

• FEC Snapshot - Picture of the state of the
Future Events Chain in the simulation.

TRANSFER
A TRANSFER Block causes the Active
Transaction to jump to a new Block
location.

TRANSFER A,B,C,D

Operands
A - Transfer Block mode. Described below. Optional. The
operand must be BOTH, ALL, PICK, FN, P, SBR, SIM, fraction,
Name, PosInteger, ParenthesizedExpression, SNA,
SNA*Parameter, or Null.

B - Block number or location. Parameter name or number
when in P Mode. Optional. The operand must be Null, Name,
PosInteger, ParenthesizedExpression, SNA, or
SNA*Parameter.

C - Block number or location. Increment value in FN or P
Mode. Optional. The operand must be Null, Name, PosInteger,
ParenthesizedExpression, SNA, or SNA*Parameter.

D - Block number increment for ALL Mode. Default is 1.
Optional. The operand must be Null, Name, PosInteger,
ParenthesizedExpression, SNA, or SNA*Parameter.

Action
A TRANSFER Block may operate in one of 9 "modes", each
with different properties. When a Transaction enters a
TRANSFER Block, Operand A is used to determine the mode
of operation of the Block. The meaning of operands B and C
depend on the mode. When you do not specify an operand
which corresponds to a Block location, the next sequential
Block after the TRANSFER Block is used.

Unconditional Mode
When the A Operand is omitted, the TRANSFER Block
operates in "Unconditional Mode". In Unconditional Mode, the
Active Transaction always jumps to the location specified by
the B Operand.

TRANSFER ,New_Place

When a Transaction enters this TRANSFER Block, it is
immediately scheduled for the Block at location New_Place.

Fractional Mode
When the A Operand is not a keyword, the TRANSFER Block
operates in "Fractional Mode". In Fractional Mode, the Active
Transaction jumps to the location specified by the C Operand
with a probability given by Operand A. If Operand A is a
nonnegative integer, it is interpreted as parts-per-thousand and
converted to a fractional probability. The alternate destination is
specified in Operand B, or the NSB if Operand B is omitted.

TRANSFER .75,,New_Place

When a Transaction enters this TRANSFER Block, it is
proceeds to the location named NEW_PLACE with a
probability of .75. The remaining times it proceeds to the Next
Sequential Block. You can select which random number
generator number is to be used as the source of the random
number. This is set in the "Random" page of the Model
Settings Notebook.

CHOOSE Edit / Settings

then select the Random page. Then fill in the desired random
number stream entity number in the entry box marked
"TRANSFER". The installation default is to use random number
stream number 1.

Both Mode
When the A Operand is BOTH, the TRANSFER Block operates
in "Both Mode". In Both Mode, the Block specified by Operand
B is tested. If it refuses to admit the Active Transaction, the
Block specified in Operand C is tested. The first Block to admit
the Transaction will be the new destination. If neither Block
admits the Transaction, it stays in the TRANSFER Block until it
can enter one or the other.

TRANSFER BOTH,First_Place,Second_Place

When a Transaction enters this TRANSFER Block, the Block at
location First_Place is tested. If the Transaction can enter, it
does so. If not, the Block at location Second_Place is tested.
The Transaction enters if it can. Otherwise, it remains in the
TRANSFER Block until it can leave.

All Mode
When the A Operand is ALL, the TRANSFER Block operates in
"All Mode". In "All" Mode, the Block specified by Operand B is
tested. If this Block refuses to admit the Active Transaction,
Blocks are tested in succession until the Block specified by
Operand C is passed, unless one of the Blocks tested admits
the Transaction prior to reaching the Block specified in
Operand C. The location of each succeeding test Block is
calculated by adding Operand D to the previous test Block
location. If Operand D is not used, every Block between those
specified by B and C, inclusive, are tested. If Operand C is not
used, only one Block is tested. No Block with a location higher
than Operand C is tested. The first Block to admit the
Transaction will be the new destination. If no Block admits the
Transaction, it stays in the TRANSFER Block until it can enter
one.

TRANSFER ALL,First_Place,Last_Place,2

When a Transaction enters this TRANSFER Block, the Block at
location First_Place is tested. If the Transaction can enter, it
does so. If not, the Blocks at every second higher location are
tested. The Transaction enters if it can. If all tested Blocks
refuse, the testing ends with the Block at location Last_Place,
or with the Block just before it, depending on the separation of
First_Place and Last_Place. If no Block accepts, the
Transaction remains in the TRANSFER Block until it can leave.

Pick Mode
When the A Operand is PICK, the TRANSFER Block operates
in "Pick" Mode. In Pick Mode, a destination is chosen
randomly.

TRANSFER PICK,First_Place,Last_Place

When a Transaction enters this TRANSFER Block, a location is
chosen randomly which is numerically between First_Place and
Last_Place, inclusively. The chosen location is the next
destination for the Active Transaction. You can select which
random number generator number is to be used as the source
of the random number. This is set in the "Random" page of the
Model Settings Notebook.

CHOOSE Edit / Settings

Then select the Random page. Then fill in the desired
random number stream entity number in the entry box marked
"TRANSFER". The installation default is to use random number
stream number 1.

Function Mode
When the A Operand is FN, the TRANSFER Block operates in
"Function Mode". In Function Mode, the destination is chosen
by evaluating a function entity, specified in B, and adding an
optional increment specified in C.

TRANSFER FN,Func1,5

When a Transaction enters this TRANSFER Block, the function
entity named FUNC1 is evaluated, and added to 5, to
determine the location of the destination.

Parameter Mode
When the A Operand is P, the TRANSFER Block operates in
"Parameter Mode". In Parameter Mode, the Active Transaction
jumps to a location calculated from the sum of a Parameter
value and Operand C. If C is not specified, the Parameter value
is the location of the new destination.

TRANSFER P,Placemarker,1

When a Transaction enters this TRANSFER Block, it is
immediately scheduled for the Block immediately after the
location specified in the Transaction Parameter named
Placemarker.

Subroutine Mode
When the A Operand is SBR, the TRANSFER Block operates
in "Subroutine Mode". In Subroutine Mode, the Active
Transaction always jumps to the location specified by the B
Operand. The location of the transfer Block is placed in the
Parameter specified in Operand C.

TRANSFER SBR,New_Place,Placemarker

When a Transaction enters this TRANSFER Block, it is
immediately scheduled for the Block at location New_Place.
The location of the TRANSFER Block is placed in the
Parameter named Placemarker. If there is no such Parameter,
it is created.

To return from the subroutine, use a TRANSFER Block in
Parameter Mode as shown above.

Simultaneous Mode
When the A Operand is SIM, the TRANSFER Block operates in
"Simultaneous Mode". In Simultaneous Mode, the Active
Transaction jumps to one of two locations depending on the
Delay Indicator of the Transaction. If the Delay Indicator is set,
the Transaction jumps to the location specified by the C
Operand and the Delay Indicator is reset (turned off). If the
Delay Indicator is reset (off), the Transaction jumps to the
location specified by the B Operand.

The Delay Indicator of a Transaction is set when the
Transaction is refused by a Block. The Delay Indicator remains
set until the Transaction enters a Simultaneous Mode
TRANSFER Block.

TRANSFER SIM,Nodelay_Place,Delay_Place

When a Transaction enters this TRANSFER Block, it is
immediately scheduled for the Block at location
DELAY_PLACE if its Delay Indicator is set, or
NODELAY_PLACE if it is reset. After the transfer, the Delay
Indicator is always reset.

TRANSFER SIM is rarely used. It is much more efficient to us a
BOOLEAN VARIABLE in a Refuse Mode TEST Block when
you wish to coordinate the state of a number of entities.
TRANSFER SIM was originally developed before BOOLEAN
VARIABLES had been added to the GPSS language.

Special Restrictions
• In All Mode, Operand C must be greater than
Operand B., and if D is used (C-B) must be an
even multiple of D.

• All calculated Transaction destinations must be
valid Block locations.

• In Both Mode or All Mode it is possible to waste
a lot of computer time on unsuccessful testing.
You may want to place Transactions on a User
Chain until the test is likely to be successful. This
can be done by using LINK and UNLINK Blocks.

Refuse Mode
A Transaction is never refused entry by a TRANSFER Block. If
a Transaction becomes blocked by refusal of destination
Blocks, it remains in the TRANSFER Block.

Related Windows
• Blocks Window - Online view of Block
dynamics.

• Transaction Snapshot - Picture of the state of a
Transaction in the simulation.

• CEC Snapshot - Picture of the state of the
Current Events Chain in the simulation.

• FEC Snapshot - Picture of the state of the
Future Events Chain in the simulation.

UNLINK
An UNLINK Block removes
Transactions from the User Chain of a
Userchain Entity.

UNLINK O A,B,C,D,E,F

Operands
O - Relational operator. Relationship of D to E for removal to
occur. These choices are explained below. Optional. The
operator must be Null, E, G, GE, L, LE or NE.

A - User Chain number. User Chain from which one or more
Transactions will be removed. Required. The operand must be
Name, PosInteger, ParenthesizedExpression, SNA, or
SNA*Parameter.

B - Block number. The destination Block for removed
Transactions. Required. The operand must be Name,
PosInteger, ParenthesizedExpression, SNA, or
SNA*Parameter.

C - Removal limit. The maximum number of Transactions to be
removed. If not specified, ALL is used. Optional. The operand
must be ALL, Null, Name, PosInteger,
ParenthesizedExpression, SNA, or SNA*Parameter.

D - Test value. The member Transaction Parameter name or
number to be tested, a Boolean variable to be tested, or BACK
to remove from the tail of the chain. Optional. The operand
must be Null, Name, PosInteger, ParenthesizedExpression,
SNA, SNA*Parameter or BACK.

E - Reference value. The value against which the D Operand is
compared. Optional. The operand must be Null, Name,
Number, String, ParenthesizedExpression, SNA, or
SNA*Parameter. Operand E is not used if Operand D is a
Boolean Variable.

F - Block number. The alternate destination for the entering
Transaction. Optional. The operand must be Null, Name,
PosInteger, ParenthesizedExpression, SNA, or
SNA*Parameter.

Example
UNLINK OnHold,Reentry,1

This is the simplest way to use the UNLINK Block. The first
Transaction at the head of the Userchain Entity named
OnHold, if any, is taken off the chain and is directed to the
Block labeled Reentry. It is put on the CEC behind
Transactions of the same priority. The Transaction entering the
UNLINK Block proceeds to the Next Sequential Block.

Action
An UNLINK Block removes Transactions from a User Chain
and directs them to a new Block. Transactions can be selected
for removal, and a limit can be imposed on the number of
Transactions removed. If there are no Transactions on the
chain when the UNLINK Block is entered, the Link Indicator of
the User Chain is reset. Also, the Transaction entering the
UNLINK Block may be redirected according to the optional F
Operand.

You may limit the number of Transactions to be removed from
the User Chain by specifying the C Operand. If Operand C is
omitted, ALL is assumed.

You may test each Transaction for removal by using the
relational operator and/or operands D and E, both of which are
evaluated numerically.

Operands D and E and the conditional operator are optional.
When they are omitted, all Transactions are removed from the
front of the chain, until the chain is exhausted or the limit count
(Operand C) is reached.

You can use one of 3 options for Operand D. Operand D can
be a Boolean variable, a Parameter number, or the word
BACK. If Operand D is a Boolean variable, it is evaluated with
respect to the chained Transaction, and if the result is nonzero,
the chained Transaction is removed. If Operand D is BACK,
Transactions are removed from the rear of the User Chain until
the limit count is reached. Otherwise, the operand is evaluated
with respect to the User Chain member Transaction and used
as a Parameter number, whose value is returned from the User
Chain member as the final result. This final value is compared
to the result of evaluating Operand E.

If D specifies a Parameter and E is not used, a Parameter of
the User Chain Transaction is compared to the same
Parameter of the Active Transaction. If they are equal, the
chained Transaction is removed from the chain.

Operand E is used if and only if the relational operator is used.
In this case, Operand D is required as well. The User Chain is
scanned from the front. Each Transaction, up to the limit count
(Operand C), is removed if Operand D bears the same
relationship to Operand E as is specified by the relational
operator. If Operand E is a Transaction related SNA, it is
evaluated with respect to the Active Transaction.

You may use the relational operator to specify the relationship
between the Transaction attribute (Operand D) and the
reference value (Operand E) which will initiate a removal of the
Transaction. The default for the relational operator is E for
equality. If you use no relational operator, but you use Operand
D and Operand E, the values must be equal for the Transaction
to be removed from the chain.

The F Operand is used to specify an alternate destination to be
taken by the entering Transaction when the limit count
(Operand C) cannot be reached, or when no Transactions can
be removed from the User Chain. If the F Operand is not used,
the entering Transaction always goes to the Next Sequential
Block.

Userchain Entities have a self-contained gate called a Link
Indicator. When it is off (reset), LINK Blocks which have a C
Operand will not place an entering Transaction on the User
Chain. The "gate" to the User Chain is "closed" when the Link
Indicator is off (reset).

The Link Indicator is manipulated by both LINK and UNLINK
Blocks. It is turned off when an UNLINK Block finds the User
Chain empty. This condition may represent a case where the
next Transaction to arrive should not wait (on the User Chain).

The Link Indicator represents the busy condition of a
hypothetical resource. You can use LINK and UNLINK Blocks
to handle the queuing on such a resource. A further discussion
of the Link Indicator may be found in the description of LINK
Blocks in this chapter.

Relational Operators
The relational operator may be E, G, GE, L, LE, or NE. If no
relational operator is used, E (equality) is assumed. When the
relationship is true and the limit condition has not been
reached, the Transaction being tested is removed from the
User Chain. The relationships are defined as follows:

• E - The Transaction attribute specified by Operand D must be
equal to the reference value specified by Operand E for the
Transaction to be removed from the chain.

• G - The Transaction attribute specified by Operand D must be
greater than the reference value specified by Operand E for the
Transaction to be removed from the chain.

• GE - The Transaction attribute specified by Operand D must
be greater than or equal to the reference value specified by
Operand E for the Transaction to be removed from the chain.

• L - The Transaction attribute specified by Operand D must be
less than the reference value specified by Operand E for the
Transaction to be removed from the chain.

• LE - The Transaction attribute specified by Operand D must
be less than or equal to the reference value specified by
Operand E for the Transaction to be removed from the chain.

• NE - The Transaction attribute specified by Operand D must
be unequal to the reference value specified by Operand E for
the Transaction to be removed from the chain.

Special Restrictions
• A, B, C, and F, if specified, must be positive.

• B and F, if specified, must be Block locations in
the simulation.

• If Operand D is used but is neither a BV class
SNA or BACK, then you must use Operand E.

• If Operand D is BACK or a Boolean variable,
then you must use neither Operand E or a
relational operator.

• If you use a relational operator, you must use
operands D and E. D must be used, but must not
be a Boolean variable.

• If you use Operand E you must use Operand D.

• Operand D cannot be the literal constant 0.

Refuse Mode
A Transaction is never refused entry to an UNLINK Block.

Related SNAs
• CAEntnum - Average Userchain content. The
time weighted average number of chained
Transactions for Userchain Entnum.

• CCEntnum - Total Userchain entries. The count
of all Transactions chained to Userchain Entnum.

• CHEntnum - Current Userchain content. The
current number of Transactions chained to
Userchain Entnum.

• CMEntnum - Maximum Userchain content. The
maximum number of Transactions chained to
Userchain Entnum. The "high water mark".

• CTEntnum - Average Userchain residence time.
The average duration of Transactions at
Userchain Entnum.

Related Window
• Userchains Snapshot - Picture of the state of
the Userchains in the simulation.

UNTRACE
An UNTRACE Block turns off the Trace
Indicator of the Active Transaction.

UNTRACE

Operands
None

Example
UNTRACE

In this example, all Transactions passing through an
UNTRACE Block will have their Trace Indicators unset. These
Transactions will no longer produce trace messages as they
move from Block to Block.

Action
When a Transaction enters a UNTRACE Block its Trace
Indicator is turned off. Thereafter, no Block entry traces will be
recorded on behalf of the Transaction unless it enters a
TRACE Block.

Trace messages are sent to all open Journal Windows.

Refuse Mode
A Transaction is never refused entry to an UNTRACE Block.

Related Windows
• Journal Window - Record session events.

• Transaction Snapshot - Picture of the state of a
Transaction in the simulation.

• CEC Snapshot - Picture of the state of the
Current Events Chain in the simulation.

• FEC Snapshot - Picture of the state of the
Future Events Chain in the simulation.

WRITE
A WRITE Block passes a text line to a
Data Stream.

WRITE A,B,C,D

Operands
A - Text Line. Required. Evaluated as a string. The operand
must be Name, Number, String, ParenthesizedExpression,
SNA or SNA*Parameter.

B - Data Stream number. Optional. The operand must be Null,
Name, PosInteger, ParenthesizedExpression, SNA or
SNA*Parameter. Default is 1.

C - Alternate Destination Block name or number. Optional. The
operand must be Null, Name, PosInteger,
ParenthesizedExpression, SNA, or SNA*Parameter.

D - Insert Mode. Optional. The operand must be Null, ON or
OFF. The default is ON.

Example
WRITE "New Line 20",1,Done

In this example, the WRITE Block send a text line to Data
Stream number 1. If an error occurs, the Active Transaction
proceeds to the Block labeled Done. Otherwise it moves to the
Next Sequential Block. In this case, if the Data Stream is an I/O
Stream or an In-Memory Stream, the WRITE is processed in
Insert Mode.

Action
When a Transaction enters a WRITE Block, Operand A is
evaluated as a string. Numeric values are converted to an
ASCII string equivalent. Then the identity of the Data Stream is
determined from Operand B.

If Operand B is used, it is evaluated numerically, truncated, and

used as the Data Stream Entity number. This must be a
positive integer. If Operand B is not used, Data Stream number
1 is assumed.

If Operand C is used, any error occurring during the WRITE
causes the Active Transaction to proceed to the Block with that
number.

Operand D sets the write mode, as discussed below.

In any case, if an error is detected, the error code is stored
internally. A CLOSE Block can be used to retrieve the error.
Chapter 4 (4.16) contains a full discussion of Data Streams,
including the error code descriptions.

Write Modes
A WRITE to a Data Stream is operated in either Insert Mode or
Replace Mode. The Current Line Position is used slightly
differently in these two modes. The write mode is set by
Operand D. If it is not used, or is ON, the WRITE is processed
in Insert Mode. If it is OFF, the WRITE is processed in Replace
Mode.

Insert Mode
This is the default mode for WRITE Blocks.

Action:

1. Move all text lines at, or after, the Current Line Position
down one position.

2. If the Current Line Position is after the last text line, set it to
just after the last text line in the Data Stream.

3. Place a copy of the new text line at the Current Line
Position.

4. Increment the Current Line Position.

Replace Mode

Action:

1. If the Current Line Position is after the last text line, fill any
intervening line positions with null text lines.

2. Delete any text line at the Current Line Position.

3. Place a copy of the new text line at the Current Line
Position.

4. Increment the Current Line Position.

Further Discussion

Chapter 4 (4.16) contains a full discussion of
Data Streams under the Section entitled, Data
Streams.

Refuse Mode
A Transaction is never refused entry to a WRITE Block.

Related Blocks
• OPEN - Create a Data Stream.

• CLOSE - Shut down a Data Stream.

• READ - Retrieve a text line from a Data Stream.

• SEEK - Set the Current Line Position of a Data
Stream.

Chapter 8 - PLUS: The
Programming Language Under
Simulation
A GPSS World model is a sequence of Model Statements. A Model Statement may be
either a GPSS Statement or a PLUS Procedure definition.

PLUS Expressions can exist as operands in GPSS Statements as well as within PLUS
Procedures. Expressions can contain Procedure Calls which invoke either built-in or user
defined PLUS Procedures.

This chapter contains reference information on the PLUS language, and on the built-in
Procedure Libraries you can access through it. You cannot use PLUS to access
external files. (Use Data Streams for this purpose.)

How this Chapter Describes Syntax
The valid form of individual PLUS Statements and Procedure invocations is indicated in a
syntax line at the beginning of the statement description. Completing a PLUS Statement
is similar to filling in the blanks of a form. The syntax line describes the constant and
variable parts of the statement. It is up to you to "instantiate" the variable part of the
statement in order to make it do what you want it to.

The items in the syntax line tell you how to code the statement. The following rules are
observed:

1. Keywords are shown in the syntax line as all caps bold. These words, and unitalicized
parentheses, must be entered as given. However, when you code the statement,
capitalization of keywords is optional. For example,

ReturnString = LEFT(SourceString, MaxCount)
contains the Procedure Name "Left" in all caps. Although you can change the case of the
letters any way you like, you must still include the word "Left" and the parentheses when
you invoke the Procedure. When used as a PLUS Assignment Statement, a semicolon
terminator must be added.

2. The data type of the result of a Procedure invocation is given in the syntax line to the
left of an equal (=) sign. Procedures can be invoked from a PLUS Procedure Call
Statement, in which case the unassigned result is discarded. In a PLUS Assignment
Statement, an "lvalue" (named value or matrix element) is required to the left of the equal
sign. It receives the result of the Procedure invocation.

3. Arguments are given in the syntax line as capitalized bold italic semantic variables.
They indicate that you must make a selection from a class of possibilities. The definition
of each argument follows the grammar line. That�s where the arguments are defined, and
the possible choices for instantiation by you are given in one or more non-bold italic
syntactic variables, such as in �Must be ParenthesizedExpression". That means that you
are to use a valid PLUS Expression enclosed in parentheses when you code the
statement. Syntactic variables are defined formally in the Appendix.

The valid forms you are to use in the instantiation of syntactic variables is described in
the next few sections. The statement and Procedure descriptions follow that.

 8.1. Defining PLUS Procedures
Procedures are commonly used in two different ways. They can be used for their effects
on global variables and named values or to return a value to an expression.

If you simply wish to update a global variable or change a named value, no Return

Statement is needed. In all cases where the result of a PLUS Procedure will be used
where the Procedure was called (e.g.. in an operand or another PLUS expression), a
Return Statement is necessary.

It�s easy to define a PLUS Procedure. All you have to do is to place a valid
PROCEDURE Statement in a Model File and Translate it with the model, or send a
PROCEDURE Statement to an existing simulation. Thereafter, you can invoke your
Procedure in an Expression evaluation or a PLUS Assignment Statement just like any
other Library Procedure.

As a simple example, consider the following PROCEDURE Statement: PROCEDURE
SetPop(Pop_Level) Foxes = Pop_Level ;
Although most Procedures are more complex, this is all that is needed to define one. It
doesn�t even declare a return value, so a value of 0 would be used by default. The sole
purpose of this Procedure is to use the value, Pop_Level, that is passed to the
Procedure and set the named value, Foxes, equal to that value. This, or any other
PROCEDURE Statement, could even be sent to an existing simulation to define or
redefine a Procedure named "SetPop". Then, any PLUS Expression in the simulation
could include a Procedure call such as

SetPop(Rabbits/10);

to assign a value to the user variable Foxes. Of course, here we assume that the User
Variable RABBITS has already been given a value.

You can define temporary Matrix Entities and temporary User Variables that exist only
throughout an invocation of a Procedure. This is done using the TEMPORARY
Statement in the Procedure Definition.

When a PLUS Procedure is invoked by a Procedure Call, one statement in the invoked
Procedure is "performed" or "executed" after another. Most Procedures are defined as
an outer Compound Statement containing a Statement List. Normal execution of a
Statement List is to perform each Statement in succession. Compound Statements, IF
Statements, IF-ELSE Statements, WHILE Statements and GOTO Statements may alter
the normal sequence of execution. If a RETURN Statement is executed, the Procedure
invocation is terminated and any memory used by it is released.

You do not really need a RETURN Statement in a PLUS Procedure. If, during an
invocation of your Procedure, processing ever reaches the end of the Procedure�s
Statement List, the invocation of the Procedure is terminated and a value of 0 is
returned. Something is always used as a return value, in case one is needed in an
Expression evaluation. If you do not specify an Expression in your RETURN Statement,
or if your last statement in the Statement List is completed, a zero result is used.

If you have PLUS Procedures you use in more than one model, you can keep them in a
source file, called a User Procedure Library. You can then use the INCLUDE Command
to bring in your Library into each model that needs it.

The remainder of this chapter discusses all the features of the PLUS language, and all
the built-in Procedures available for your use within a simulation.

 8.2. The Language
You can incorporate either PLUS Expressions or PLUS Procedures and Experiments,
built using the PLUS Language, into your GPSS World models. To do so, you must be
familiar with both the building blocks of the language, and how to put them together.
These are the topics of the remainder of this chapter.

 8.2.1. The Character Set

The GPSS World character set consists of naming characters and special characters.
Naming characters include the uppercase letters A-Z, the Lower case letters a-z, the
digits 0-9, and the underscore character, _.

The special characters are used to denote operators and punctuation. They are: # * &
+ - / \ , ;
The [^] is also considered as an operator.

We recommend that you use a consistent style when you use upper or lower case
letters. Your model will be much more readable if you do. For example, you could make
your User Variables stand out as all caps, or you could make keywords stand out. On the
other hand, capitalized words (first letter upper case, the rest lower) tend to be easiest to
read.

 8.2.2. Names

Names are character sequences created by you to identify entities, variables, and
program locations. The naming characters are letters, digits, and underscore.

There are a few rules you must follow when you create a name. You must use from 1 to
250 naming characters, and you must start the name with a letter. In addition, your name
must not be the same as a GPSS World keyword, System Numeric Attribute, or SNA
Class. The keywords are listed in the Appendix.

GPSS World is case insensitive. The upper/lower case distinction does not matter. Only
the characters in string constants and comments retain lower case. All other lower case
letters are converted to upper case internally. This removes the danger of spelling two
variables the same but having them refer to distinct values.

Your primary job when creating a name is to avoid keywords. You can refer to the list of
keywords in the Appendix, if you like, but there�s an easier way. All you have to do is to
include an underscore somewhere in each name, after the first character, which must be
a letter. That will guarantee that you will not clash with GPSS World keywords.

Named Values are names that you have placed in a Label field or PLUS Assignment
Statement. You can use them to identify an entity or to hold a value. If you use them to
label a GPSS Statement defining an entity, they are called Entity Labels. If you create
them by assigning a value, as in an EQU Command or PLUS Assignment Statement,
they are called User Variables.

Named Values normally have global scope. You can refer to them anywhere in the
model. There are two kinds of Named Values, Entity Labels and User Variables.

GPSS Entity Labels
Entity Labels are names you use in an entity creation command. Unlike User Variables,
Entity Labels are automatically given a system assigned number, normally a unique
integer greater than 9,999. When you refer to a labeled entity, GPSS World first retrieves
the Entity Number stored as the value of the Entity Label. The Entity Number is a strictly
positive integer, that is used by the Simulation Object to find or create any GPSS entity.

Except for Block Labels, you can assign your own value to an Entity Label. Generally,
you should do that only BEFORE you use the name to define any entity. Why? Because
the Entity Number is set at the time of creation of the entity. If you then change the value
of the label to something else, you will not be able to address that entity. In other words,
if you want to use an EQU Command to assign your own entity number, put it early in the
model, before the entity definition statement.

User Variables
A User Variable is a Named Value not used as an Entity Label. You can give it a numeric
or string value, and you can integrate it as a continuous variable.

User Variables can be global, usable throughout the model, or local, usable only within a
single PLUS Procedure. The latter are declared in a Temporary Declaration in the PLUS
Procedure in which it is defined. All other User Variables are global.

You can assign a value to a User Variable through EQU Commands, through PLUS
Assignment Statements, or through numerical integration, setup by an INTEGRATE
Command.

User Variables must be initialized before they can be used. You must assign values to
them before you can use them in Expressions or integrations.

You can observe the values of User Variables in online Plot Windows and Expressions
Windows, which have been opened onto your simulation.

You can use names to identify specific statements in a PLUS Procedure. To do so,
simply begin the statement with a name followed by a colon. Such statements can then
be targets of GOTO Statements. Both Labeled Statements and GOTO Statements are
discussed below, in the section on PLUS Statements.

Statement labels have local scope. They do not clash with names defined outside the
Procedure definition. This means that they neither refer to global objects, nor can they be
referenced from outside the Procedure.

You must name a PLUS Procedure or Experiment when you define it. Thereafter, you
can invoke the same Procedure by a Procedure Call using the same name.

Procedure names are global in scope. Any Procedure can be invoked from any
statement in the model. If you define a Procedure with a given name, any existing user
defined PLUS Procedure with that name is redefined.

Experiments are special kinds of Procedures. They are identical to Procedures in syntax
except that the keyword EXPERIMENT replaces PROCEDURE. Experiments can only
be invoked by a CONDUCT Command.

Similar to User Variables, Matrix Entities can have local or global scope. A Matrix defined
in a Temporary Matrix PLUS Declaration is local, known only with the Procedure in which
it is declared. Such a Matrix is created when a Procedure invocation begins, and
destroyed when it ends.

Global Matrix Entities are declared in a GPSS MATRIX Command. The Label you use
becomes the Matrix Entity Label. Global Matrix Entities are permanent and may be
referenced anywhere in the model.

All Matrices are created with uninitialized elements. You must assign values to them
before you can use them in Expressions.

You can use a Matrix Window to view the dynamics of any cross section of a Matrix. In
addition, you can observe the values of Matrix elements in online Plot Windows and
Expressions Windows, which have been opened onto your simulation.

 8.2.3. Expressions

A PLUS Expression is a combination of one or more elements, called factors.
Expressions are built by using operators and Procedure calls to combine factors. The
rules for building Expressions are described in the next few sections.

Expressions can be used in PLUS Procedures and in the operands of GPSS Statements.
Usually, when an Expression is used in a Block operand, it must be enclosed in
parentheses. The list of acceptable syntactic variables will then include
ParenthesizedExpression as one or the operand�s alternative forms. For compatibility
some Commands do not need to use the outer parentheses, but if you always
parenthesize Expressions used in GPSS Statements, you will be safe.

Any User Variable, Matrix element, Savevalue, or Transaction Parameter can have a
value on any of several forms called Data Types. Further, each has an uninitialized form
which prevents its use before it has been assigned its first value.

The three major Data Types are Integer, Real, and String. The first two may be referred
to as numeric Data Types.

Integers are 32 bit twos complement numbers. If, during arithmetic operations, an integer
overflows, it is converted to a real number.

Real data items are double precision floating point numbers. They have a precision of 15
decimal digits and a range of exponents of -306 to 306.

Strings are sequences of ASCII characters. They can be any size, up to the maximum
memory request declared in the "Simulate" page of the Settings Notebook. A whole class
of String Procedures resides in the Procedure Library for creating and manipulating
strings.

Data types are converted from one to the other explicitly by Procedure calls, or implicitly
during the evaluation of Expressions. This is discussed further below.

Factors are the basic building blocks of Expressions. You combine them in Expressions
which, in turn, can be used in GPSS Statement operands and PLUS Procedures. The
detailed grammar is in the Appendix, but the following definitions should be suggestive.

The GPSS World Expression factors are:

1. String Constants, such as "A stitch in time ...".

2. Real constants, such as 201.6.

3. Integer Constants, such as 17.

4. Names, such as Water_Level.
5. PLUS Matrix elements, such as
Array1[P$Part, X$Order_Index+20]. Matrix elements must be
Name [ExpressionList] . The expression List can contain from 1 to 6
expressions, corresponding to the dimensions of the matrix. Each can vary
in complexity from a simple integer to a highly complex PLUS expression.

6. Procedure Calls, such as Word(X$Quote,2) or
Myproc(X$Arg1,X$Arg2). Procedure calls must be
Name(ExpressionList).

7. System Numeric Attributes, such as AC1, F$My_Facility,
MX$Mat1(2,1), and SR*My_Parm.

You use operators and Procedure calls to combine factors into Expressions, using the
rules associated with each operator or Procedure. These are discussed below.

Factors are defined formally in the Appendix.

Operators
The arithmetic operators of GPSS World Expressions are listed here in decreasing order
of precedence. Note that the multiplication operator is #, not * (which is the indirect
addressing operator within System Numeric Attributes). All arithmetic operators coerce
string operands to numeric values.

TO DO

The arity of an operator indicates the number of operands it requires. Unary operators
always appear to the left of the operand.

Operators are either left or right associative. This is given in column 5, above. An
operand surrounded by left associative operators of equal precedence is taken by the
operator to its left.

Expressions are combinations of one or more factors, connected by operators, and
evaluated according to a well-defined set of rules.

Evaluation
When an Expression is evaluated, values are determined and combined in order to
calculate a final result. The following actions occur:

1. String and numeric constants evaluate to a copy of
themselves.

2. Named Values evaluate to the associated value.

3. SNAs evaluate to a simulation or entity state value.

4. Procedure calls evaluate each argument, then return the
result of the Procedure invocation. Built-in Procedures coerce
the arguments.

5. Operators evaluate one or two operands, coerce the
intermediate results to numeric values, and calculate the
resulting value of the operation.

The Operators in GPSS World have a precedence order that affects how the
Expressions you create are evaluated. For example, the exponentiation operator ^ has
higher priority than the multiplication operator #. This means that the Expression

4 # 3 ^ 2
is evaluated to a result of 36, not 144, because the first intermediate result is formed by
evaluating the operator with the higher precedence. If you want a different order of
evaluation than that implied by the operator precedence hierarchy, you should use
parentheses to control the evaluation. Continuing the last example,

(4 # 3) ^ 2
evaluates to 144.

GPSS World operators are "overloaded" in the sense that their operands are coerced to
the proper data type just before the operation is applied. Therefore, you do not need to
worry about data types when creating PLUS Expressions.

Truncations are not done automatically during Expression evaluation. To do so, you must
either invoke Procedures which truncate, or you must run in GPSS/PC Compatibility
Mode. In Compatibility Mode, the old GPSS rules are used to truncate SNAs and the
intermediate results of VARIABLE and BVARIABLE evaluations. Compatibility Mode is
discussed in Chapter 1.

Evaluation of Expressions
Expressions are combinations of mathematical operators, library functions, SNAs, and
constants which obey the rules of elementary algebra. An Expression is evaluated
according to the hierarchy of operators listed above, and otherwise left to right. The order
of evaluation may be controlled by inserting paired parentheses.

Expressions may be evaluated, evaluated numerically, or evaluated as a string. The last
two modes reflect an additional step applied after the normal evaluation.

When an Expression is evaluated numerically, a string result is converted to its numerical
equivalent based on the numeric characters that begin the string. A string beginning with
non numeric characters is converted to numeric zero.

Similarly, when an Expression is evaluated as a string, any numeric result is converted to
a string equivalent. In reports and Data Streams, the representation of large numbers
can be controlled by suppressing scientific notation, as is done in the Model Settings
Notebook: This is set in the "Reports" page of the Model Settings Notebook.

 CHOOSE Edit / Settings
then select the Report page. Then set the checkbox marked "Scientific Notation" as
desired. Scientific notation uses a base value followed by a power of ten. For example,
eleven hundred would be represented as 1.1e3 in scientific notation.

Special rules apply when a simulation is run in GPSS/PC Compatibility Mode. This are

discussed more fully in Chapter 1. In Compatibility Mode, SNAs are truncated, and when
Bvariable Entities and Variable Entities are evaluated, intermediate results are truncated.

Data Conversion
In general, you do not need to worry about data types and conversions. All the work is
done behind the scenes.

Data types are converted, as needed, when operated upon, or when processed as
arguments to Procedures. For example, strings combined by an arithmetic + operator are
converted to numeric values and the results are added together yielding a numeric result.
Similarly, String Procedures which take a string as an argument, will convert a numeric
value to its string equivalent, if necessary.

Data items are not changed by evaluation unless operated upon, or used as an
argument to a Procedure. Arithmetic operators change arguments to numeric values
before performing the operation, and all Procedures coerce each argument to the
suitable form. This is done automatically.

Coercion only occurs to operand or an operator, or to arguments of a built-in Procedure
during evaluation. The arguments of user defined PLUS Procedures are not coerced
prior to invocation of the Procedure. However, the coercion of operand and arguments
may occur within the body of the User Procedure, if required by the other PLUS
Statements.

When an operand or argument is coerced to a string, any numeric value must be
converted to its ASCII equivalent. Normally, extremely large or small numbers are
presented in scientific notation in mantissa-exponent format. Scientific notation can be
suppressed by a setting in the "Report" page of the Model Settings Notebook.

When a string is coerced to a numeric value, only the first characters that can be
interpreted as numeric are used. If there are none, the string is converted to numeric 0.
When a real value is coerced to integer, it is truncated toward 0. For example, 2.1
truncates to 2, and -2.1 truncates to -2.

 8.2.4. PLUS Statements

Although GPSS Statements are restricted to a single line of text of up to 250 characters,
PLUS Statements can span many text lines. PLUS PROCEDURE Statements may
appear anywhere in the model except in another PROCEDURE Statement. The other
PLUS Statements can only appear inside a PLUS Procedure.

Only a small number of statement types are needed by PLUS to provide a powerful
programming language. They are:

• PROCEDURE - Define a PLUS Procedure.

• EXPERIMENT - Define a PLUS Experiment.

• TEMPORARY - Define and restrict the scope of a User Variable.

• TEMPORARY MATRIX - Define and restrict the scope of a Matrix Entity.

• BEGIN / END- Compound Statement. Create a block of PLUS Statements.

• Assignment - Set the value of a Named Value or Matrix element.

• Procedure Call - Invoke a Library Procedure.

• IF / THEN - Test an Expression and act on a "TRUE" result.

• IF / THEN / ELSE - Test an Expression and act on the result.

• WHILE / DO- Perform action repetitively.

• GOTO - Jump to a new location within the Procedure.

• RETURN - Finish the processing and, optionally, give a result to the

caller.

For full examples of GPSS World Models using PLUS Routines, see the PLUS
PRIMER in Chapter 17 of the GPSS World Tutorial Manual.

1. Assignment Statement
 Syntax

LValue = Expression;
LValue - A Named Value or Matrix element.

Expression - A well-formed PLUS Expression, defined
above.

Intended Use
Assignment Statements are used to set the value of variables. You can assign any data
type to a Named Value or a Matrix element. These may be restricted in scope by a
TEMPORARY or TEMPORARY MATRIX Statement in the same PLUS Procedure.

Example

Alert = "TRUE";

In this example, the Named Value, Alert, is given the value of the string constant
"TRUE".

Action
An Assignment Statement evaluates the Expression on the right side and sets the value
of the Named Value or Matrix element equal to a copy of the result.

If the Name used for the LValue is declared in a Temporary Declaration in the current
Procedure, the assignment goes to a temporary User Variable or Matrix with local scope.
Otherwise, the Name is assumed to be a global reference to a permanent Matrix or User
Variable known throughout the simulation.

2. Compound Statement
 Syntax

BEGIN StatementList END;
StatementList - A list of well-formed PLUS Statements. Instantiated by a sequence,
possibly null, of PLUS Statements. Each PLUS Statement contains an internal semicolon
terminator. Must be StatementSequence.

Intended Use
Compound Statements are used primarily in Procedure definitions, and to control the
flow of action within a Procedure.

In a Procedure definition, a PLUS Procedure Statement requires a single statement in
order to define a Procedure. A Compound Statement is generally used here, so that an
arbitrarily complex PLUS Procedure may be defined.

Compound Statements are also used to group several PLUS Statements into a single
block of statements. This is useful in IF Statements and WHILE Statements so that only
a specific group of statements gets performed when a certain decision is made.

Example

PROCEDURE Decision(Indicator)
BEGIN

TEMPORARY Return_Value;

Return_Value = Old_Indicator;

IF (Indicator > 0) then begin

ALERT = "TRUE";

Old_Indicator=Indicator;

END;

ELSE Alert = "FALSE";

RETURN Return_Value;

END;
In this example, Compound Statements are used in both ways. The PROCEDURE
Statement includes a Compound Statement for holding the body of the PLUS Procedure.
Internally, the "True" branch of the IF Statement uses a Compound Statement to cause
more than one statement to be performed when the Expression in the IF Statement tests
TRUE.

Action
A Compound Statement groups other PLUS Statements so they can be treated as a unit.
A Compound Statement can be used anywhere a PLUS Statement is required.

3. PROCEDURE Statement
 Syntax

PROCEDURE Name (ArgumentList) Statement
Name - A user-defined Procedure Name. Must be Name.

ArgumentList - A sequence of user-defined names,
separated by commas, used a s formal argument list.
Instantiated by a list of Name items, possibly null, separated
by commas.

Statement - Procedure body. A PLUS statement. Must be
Statement.

Intended Use
PROCEDURE Statements are used to define User Procedures. Normally, the statement
used as the Procedure body is a Compound Statement.

Example

PROCEDURE Decision(Indicator)
BEGIN

TEMPORARY Return_Value;

Return_Value = Old_Indicator;

IF (Indicator > 0) THEN BEGIN

Alert = "TRUE";

Old_Indicator=Indicator;

END;

ELSE Alert = "FALSE";

RETURN Return_Value;

END;

In this example, a PROCEDURE Statement is used to define a User Procedure. When
Translated, the Procedure is integrated into the Procedure Library of the simulation.
Thereafter, it can be invoked by an appropriate Procedure Call, such as:

Result = Decision(200+My_Constant);

Action
A PROCEDURE Statement creates a User Defined Procedure. When it is Translated,
the Procedure is added to the simulation�s Procedure Library, and is available for
invocation.

The Formal Argument list is used to create temporary User Variables, addressed by the
given names. Each receives a copy of the value resulting from evaluating the actual
argument asserted in the Procedure invocation. Later references to the formal argument
name refer to the variable created in this manner.

Procedures have global scope. They may be invoked from anywhere within the
simulation.

4. EXPERIMENT Statement
 Syntax

EXPERIMENT Name (ArgumentList) Statement
Name - A user-defined Procedure Name. Must be Name.

ArgumentList - A sequence of user-defined names,
separated by commas, used a s formal argument list.
Instantiated by a list of Name items, possibly null, separated
by commas.

Statement - Procedure body. A PLUS statement. Must be
Statement.

Intended Use
An Experiment is a special kind of PLUS Procedure. EXPERIMENT Statements are used
to define special User Procedures used to control multiple runs of a Simulation.
Normally, the statement used as the Experiment body is a Compound Statement.

Experiments are generally used in connection with the DoCommand() Library Procedure,
to control the Simulations, and the ANOVA Library Procedure to automatically analyze
results. Normally, the Experiment fills a Global Matrix Entity with results and passes it to
the ANOVA procedure.

Example
The following example of an Experiment is discussed in more detail in Lesson 19 of the
GPSS World Tutorial Manual.

In this example, an EXPERIMENT Statement is used to define a User Procedure. When
Translated, the Experiment is integrated into the Procedure Library of the simulation.
Thereafter, it can be invoked by an appropriate CONDUCT Command.

EXPERIMENT BestLines(LeastLinesToRun, MostLinesToRun, Increment) BEGIN

/* Each Result Matrix has the following dimensions:

1. Each of up to 5 Factors requires a dimension, where

each dimension indicates the number of levels used

for that factor.

(The ONEWAY DoCommand used here supports only 1 factor)

2. The last dimension indicates the maximum number of

replicates within each cell.

There may be up to a total of 6 dimensions. */

/* Put a Header into the Journal */

DoCommand("SHOW """" ");

DoCommand("SHOW (""**** Balanced Telephone-System Experiment with One-way ANOVA ****"")");

DoCommand("SHOW """" ");

/* Optionally, save data to a Result file

for later processing. */

DoCommand("OPEN (""RESULT.TXT""),2"); /* Open Stream 2 For Statistical data */

DoCommand("SEEK 10000,2"); /* Append the Results */

DoCommand("WRITE ""**** EXPERIMENT BestLines() ****"",2"); /* Header for this Experiment */

LevelOfFactor1 = 1; /* Levels are 1-4, incl.*/

CurrentLines = LeastLinesToRun; /* Set the number of telephone lines to use */

WHILE ((CurrentLines <= MostLinesToRun) �AND� (LevelOfFactor1<=4)) DO BEGIN

Replicate = 1;

WHILE (Replicate <= 3) DO BEGIN

/* Run the Simulation by calling

a PROCEDURE (defined below) */

DoTheRun(CurrentLines,Replicate);

/* Store the first (and only) result of this run.

This will be used by the ONEWAY DoCommand, below.

Multiple results would require additional

Results Matrices. */

MainResult[LevelOfFactor1,Replicate] = TB$Transit;

/* Log Result in the Journal, too. This is optional. */

RunDescription = Polycatenate(

PolyCatenate("Main Result: ",LevelOfFactor1," ",Replicate),"

TB$Transit=",TB$Transit,"");

DoCommand("SHOW (RunDescription)");

DoCommand("SHOW """" "); /* Space after Result */

/* Optional Example of writing to a Results

File for 3rd party Statistics */

DoCommand("WRITE (RunDescription),2");

/* Set up the next Replication */

Replicate = Replicate + 1;

END;

/* Move to the next cell of the experiment. */

LevelOfFactor1 = LevelOfFactor1 + 1;

CurrentLines = CurrentLines + Increment;

END;

/* Put the Statistical Analysis into the Journal */

DoCommand("SHOW """" ");/* Space down a line */

ANOVA(MainResult); /* Perform the One-Way ANOVA */

DoCommand("SHOW """" ");/* Space down a line */

DoCommand("CLOSE ,2"); /* Close the Optional Results File */

/* All outcomes can now be viewed in the MATRIX Window, or

the RESULTS.TXT Text Object. The ANOVA is in the Joural. */

END;

PROCEDURE DoTheRun(NumberOfLines, ReplicateNumber) BEGIN

/* A PROCEDURE can issue DoCommand()

only if it is called by an EXPERIMENT */

TEMPORARY RandomSeed1;

/* Use a seed distinct from those of other replicates */

RandomSeed1 = 11 # ReplicateNumber;

DoCommand("CLEAR OFF"); /* Must use OFF. */

/* Here we only use one RN stream */

DoCommand(Catenate("RMULT ",RandomSeed1));

DoCommand(Catenate("Sets STORAGE ",NumberOfLines));

DoCommand("START 100,NP"); /* Startup Period */

DoCommand("RESET"); /* Begin the Measurement Period */

DoCommand("START 1000,NP"); /* Run the Simulation */

END;

Action
An EXPERIMENT Statement creates a User Defined Procedure. When it is Translated,
the Procedure is added to the simulation�s Procedure Library, and is available for
invocation by a CONDUCT Command. If your Simulation has only a single
EXPERIMENT with no arguments, a simple CONDUCT without reference to the
Experiment name is sufficient to start the Experiment.

The optional Formal Argument list passed to the Experiment by the CONDUCT
Command is used to create temporary User Variables, addressed by the given names.
Each receives a copy of the value resulting from evaluating the actual argument asserted
in the Experiment invocation. Later references to the formal argument name refer to the
variable created in this manner. The arguments are often used to specify which part of a
response surface is to be explored by this invocation of the Experiment. With proper
planning, Experiments can be HALTed, Saved, and restarted later.

While running, an Experiment takes control of the Simulation Object. Having begun an
Experiment with a CONDUCT Command, your ability to interact with the simulation is
limited. You can always display the running Simulation System Clock (View / Clock),
but generally you will have to HALT the Experiment in order to examine the Simulation.
Then, unless you have planned ahead, you may have to restart the Experiment from the
beginning.

5. GOTO Statement
 Syntax

GOTO Label ;
Label - A PLUS Statement Label. A unique name appearing
on a Labeled Statement, defined below.

Intended Use
GOTO Statements are used to cause the processing sequence of a Procedure to jump
abruptly to a specific statement, tagged with a PLUS Statement Label.

Example

GOTO Sanctuary;

In this example, when the PLUS Procedure comes upon the GOTO Statement, it
immediately finds the statement with the label, SANCTUARY, and begins there.

6. IF Statement
 Syntax

IF (Expression) THEN Statement
Expression - A well-formed PLUS Expression, defined
above. Must be Expression.

Statement - Conditional statement. A PLUS Statement.

Intended Use
IF Statements are used primarily to conditionally perform a block of statements

Example

IF (Indicator > 0) THEN BEGIN

Alert = "TRUE";

Old_Indicator=Indicator;

END;
In this example, the Expression is evaluated numerically. True logical relations yield an
integer 1 result. If the result of the evaluation is nonzero, the block of Assignment
Statements is performed.

Action
An IF Statement evaluates an Expression numerically, and determines of the result is
nonzero. If so, the Conditional Statement, which may be compound, is performed.

7. IF-ELSE Statement
 Syntax

IF (Expression) THEN Statement1 ELSE Statement2
Expression - Test Expression. A well-formed PLUS
Expression, defined above. Must be Expression.

Statement1 - True branch statement. A PLUS Statement.
Must be Statement.

Statement2 - False branch statement. A PLUS Statement.
Must be Statement.

Intended Use
IF-ELSE Statements are used primarily to choose between two statement blocks, only
one of which is to be performed.

Example

IF (Indicator > 0) THEN BEGIN

Alert = "TRUE";

Old_Indicator=Indicator;

END;

ELSE Alert = "FALSE";
In this example, the Expression is evaluated numerically. True logical relations yield an
integer 1 result. If the result of the evaluation is nonzero, the true branch statement is
performed. In this case, the block of Assignment Statements is performed. If the result of
numerically evaluating the test Expression is zero, the very last Assignment Statement is
performed, instead.

Action
An IF-ELSE Statement evaluates an Expression numerically, and determines of the
result is nonzero. If so, the true branch statement, which may be compound, is
performed. Otherwise, the false branch statement, which may also be compound, is
performed.

ELSE clauses pair with the most recent IF clause. If several IF Statements appear in
succession just before an ELSE clause, the latest unpaired IF clause is paired with the
ELSE clause to form an IF-ELSE Statement. You can avoid ambiguity by using
Compound Statements within IF and IF-ELSE Statements.

8. Labeled Statement
 Syntax

Label : Statement

Label - A PLUS Statement Label. A unique user-defined
name. Must be Name.

Statement - A PLUS Statement. Must be Statement.

Intended Use
Labeled Statements are used as the targets of GOTO Statements.

Example

GOTO Sanctuary;

...

Sanctuary:

RETURN 100;

In this example, when the PLUS Procedure comes upon the GOTO Statement, it
immediately finds the statement with the label, SANCTUARY, and begins there. In this

case, the Procedure terminates returning a numerical value of 100.

9. PROCEDURE Statement
 Syntax

PROCEDURE Name (ArgumentList) Statement
Name - A user-defined Procedure Name. Must be Name.

ArgumentList - A sequence of user-defined names,
separated by commas, used a s formal argument list.
Instantiated by a list of Name items, possibly null, separated
by commas.

Statement - Procedure body. A PLUS statement. Must be
Statement.

Intended Use
PROCEDURE Statements are used to define User Procedures. Normally, the statement
used as the Procedure body is a Compound Statement.

Example

PROCEDURE Decision(Indicator)
BEGIN

TEMPORARY Return_Value;

Return_Value = Old_Indicator;

IF (Indicator > 0) THEN BEGIN

Alert = "TRUE";

Old_Indicator=Indicator;

END;

ELSE Alert = "FALSE";

RETURN Return_Value;

END;

In this example, a PROCEDURE Statement is used to define a User Procedure. When
Translated, the Procedure is integrated into the Procedure Library of the simulation.
Thereafter, it can be invoked by an appropriate Procedure Call, such as:

Result = Decision(200+My_Constant);

Action
A PROCEDURE Statement creates a User Defined Procedure. When it is Translated,

the Procedure is added to the simulation�s Procedure Library, and is available for
invocation.

The Formal Argument list is used to create temporary User Variables, addressed by the
given names. Each receives a copy of the value resulting from evaluating the actual
argument asserted in the Procedure invocation. Later references to the formal argument
name refer to the variable created in this manner.

Procedures have global scope. They may be invoked from anywhere within the
simulation.

10. Procedure Call Statement
 Syntax

ProcedureName (ExpressionList) ;
ProcedureName - An name used to define a Procedure in
the Procedure Library. May be a Math Procedure, a String
Procedure, a Probability Distribution, or a User Defined PLUS
Procedure. Must be Name.

ExpressionList - The argument list of the Procedure One or
more well-formed PLUS Expressions, separated by commas.
Must be ExpressionList.

Intended Use
Procedure Call Statements are used to invoke Procedures in the Library.

Example

Real_Value=Beta(1,100,200,2,2);
In this example, a sample is drawn from the Beta probability distribution. Pre defined
Procedures are available for math and string functions, and probability distributions. They
are discussed later in this Chapter.

Action
A Procedure Call Statement invokes a Procedure in the Library. Pre-defined and User
Defined Procedures may be called.

Expressions may be used as arguments to Procedures. They are evaluated at the very
beginning of the invocation. The arguments of built-in Procedures are coerced to a
specific data type. This is discussed in the documentation of the specify Procedure. The
arguments to User Defined Procedures are evaluated normally.

11. RETURN Statement
 Syntax

RETURN Expression ;
Expression - Optional. A well-formed PLUS Expression.
Must be Expression or Null.

Intended Use
RETURN Statements are used to terminate the processing of a PLUS Procedure, and to
establish the result value to be used as the result of the Procedure invocation.

Example

RETURN "Success";

In this example, a RETURN Statement is used to complete the Procedure and to
establish a string constant as the result of the Procedure invocation.

Action
When a RETURN Statement is performed, the Expression in the RETURN Statement, if
any, is evaluated normally. The Procedure is terminated, and all temporary Named
Variables and temporary Matrices are deleted. If an Expression was asserted in the
RETURN Statement, its result is used as the result of the Procedure. If there is no
Expression, integer 0 is used.

12. TEMPORARY Statement
 Syntax for TEMPORARY Declaration

TEMPORARY NameList ;
NameList - Name List. A list of user defined names to
become local User Variables. Namelist is instantiated by a
list of Name items separated by commas.

Syntax for TEMPORARY MATRIX Declaration

TEMPORARY MATRIX Name[IntegerList] ;
Name - A user defined local Matrix name. Must be Name.

IntegerList - A sequence of 1 to 6 strictly positive integers,
separated by commas. The number of elements in each
dimension of the Matrix. IntegerList is instantiated by a list of
up to 6 PosInteger items, separated by commas.

Intended Use
TEMPORARY Statements are used to create Named Values and Matrices which exist
only during the invocation of a PLUS Procedure.

Example

TEMPORARY
Return_Value,Accumulator;

TEMPORARY MATRIX
DataArray[2,3,4];

In this example, two TEMPORARY Statements are used in a Procedure. The first
creates two Named Values for use within a single Procedure invocation. The second
creates a 3 dimensional local Matrix named DataArray.

Temporary data are not automatically initialized. You must assign data to temporary
Named Values and Matrix Elements before you can refer to them in Expressions.

Action
A TEMPORARY declaration creates one or more uninitialized Named Values for used
during a single Procedure invocation.

A TEMPORARY MATRIX declaration creates a single uninitialized Matrix, of up to 6
dimensions, for use during a single Procedure invocation.

TEMPORARY Named Values and TEMPORARY MATRICIES have local scope. They
can be accessed only within their containing Procedure, and not by Procedures invoked
from the containing Procedure. Named Variables and Matrices not declared in temporary
declarations have global scope, are known throughout the model, and exist for the life of
the simulation. A global matrix must be defined in a GPSS MATRIX Statement.

When a Procedure terminates, all of its temporary Named Values and temporary
Matrices are freed.

13. WHILE Statement
 Syntax

WHILE (Expression) DO Statement
Expression - Test Expression. Required. A well-formed
PLUS Expression, defined above. Must be Expression.

Statement - Target statement. Required. A PLUS Statement.

Intended Use
WHILE Statements are used primarily to perform repetitive actions.

Example

Accumulator=1;

Counter=1;

WHILE (Counter<=X_Integer) DO BEGIN

Accumulator=Accumulator#Counter;

Counter=Counter+1;

END;

In this example, a Compound Statement is performed repetitively in a while loop. If
X_Integer is a positive integer, the while loop will continue to accumulate the factorial of
X_Integer in the Named Value, Accumulator.

Each time the target statement is performed, the Named Value Counter is incremented.
When Counter becomes larger than X_Integer, the target statement is not performed,
and processing continues with the statement after the WHILE Statement.

Action
When a WHILE Statement is encountered, the test Expression is evaluated numerically.
If the result is nonzero, the target statement is performed, and the "Test-Perform"
process is repeated. If the test Expression is zero, the target statement is not performed,

and instead, processing continues with the statement following the While Statement.

To avoid a nonterminating loop, you must ensure that the evaluation of the test
Expression becomes zero, at some time. Normally, this is done somewhere in the target
statement by an Assignment Statement or Procedure call.

 8.3. The Procedure Library
A Procedure must be in a Procedure Library for you to invoke it during a simulation.
There are two kinds of libraries. The User Library and the GPSS World Library. The User
Library is the collection of PLUS Procedures you have included in the model. The GPSS
World Library contains a set of ready made mathematical and string Procedures that you
can invoke in any PLUS Expression.

The Procedure library is a set of PLUS Procedures that you can call in Expression. Some
Procedures are supplied for you, but you can define and add your own Procedures as
well.

The built-in part of the Procedure Library includes Utility Procedures, Math Procedures,
Probability Distributions, String Procedures, and Query Procedures.

 8.3.1. Utility Procedures

The GPSS World Procedure Library includes an important Utility Procedure needed for
the control of Experiments.

The Utility Procedure is

DoCommand(String1) - Send a Command to the
Simulation during the execution of an Experiment.

An Experiment or any Procedure invoked during an Experiment can invoke the
DoCommand Library Procedure. It is this powerful procedure which allows the
Experiment to control the simulation environment. In its invocations, a string containing a
Command or Statement is Translated in the global context and then executed by the
Simulation Object.

Here are some tips for using the DoCommand library procedure. Use 4 double quotes
around strings within strings. Each inner string should be sandwiched by pairs of double
quotes, which get reduced to single quotes when translated. Also, do not pass a string to
DoCommand which contains the name of a TEMPORARY variable because they
variables are not accessible in global context.

Normally, GPSS World simulations enqueue all commands (except HALT, SHOW, and
CONDUCT) on a low priority Command Queue and work on them one at a time until the
queue is empty. However, DoCommand behaves a little differently. It does not return to
the calling procedure until the low priority Command Queue is empty. This means that
after a START Command issued through the DoCommand library procedure returns to
the calling Procedure, the simulation has completed and is ready for the results to be
extracted.

 8.3.2. Math Procedures

The World Procedure Library includes several Mathematical Procedures. In all cases, the
argument is coerced to a numeric value before the Procedure performs its operation.
Angular data are in radians. Numeric values are returned as real numbers.

The Math Procedures are

ABS(Expression) - Absolute value.

ANOVA(ResultMatrixName) - Analysis of Variance.

ATN(Expression) - Arctangent in radians.

COS(Expression) - Cosine. Expression must be in radians.

EXP(Expression) - e raised to the power given by
Expression.

INT(Expression) - Truncation toward zero.

LOG(Expression) - Natural logarithm.

SIN(Expression) - Sine. Expression must be in radians.

SQR(Expression) - Square Root.

TAN(Expression) - Tangent. Expression must be in
radians.

 8.3.3. Query Procedures

Transaction Query Procedures are available which return information based on any
Transaction in the simulation. Except for QueryXNExist(), if you attempt to query a
nonexistent Transaction, an Error Stop will occur. If there is any question, you should test
for existence first.

All arguments are coerced to integers in order to look up either a Transaction or one of
its parameters. The Transaction state query Procedures now include:

QueryXNExist(TransactionNumber) - Return integer 1 if
the Transaction exists in the simulation, integer 0 , if not.

QueryXNParameter(TransactionNumber, Parameter) -
Return the value of a Transaction Parameter. Error Stop
occurs if the Parameter does not exist.

QueryXNAssemblySet(TransactionNumber) - Return the
integer Assembly Set of a Transaction.

QueryXNPriority(TransactionNumber) - Return the integer
Transaction Priority of a Transaction.

QueryXNM1(TransactionNumber) - Return the numeric
Mark Time of a Transaction.

 8.3.4. String Procedures

he GPSS World Procedure Library contains a number of String Procedures which make
it easy to manipulate string data types. As with all built-in Procedures, the String
Procedures coerce arguments into proper form before processing them.

Strings are sequences of ASCII characters. The individual characters can be addressed
by an index called an "Offset". String Procedures that must find a specific character use
the Offset as a 1-relative index into an array of characters. The first character in the
string is associated with an index of 1, the second with 2, and so on.

A null string is a string of length 0. It contains no characters, and is denoted " ". Null
strings are still considered to be valid strings.

A word is a consecutive sequence of printable characters, not including blanks or tabs.

Words may be separated by one or more blank and/or tab characters.

The remainder of this section describes the String Procedure Library. For each
Procedure, the syntax of Procedure invocation is given in a syntax line. Any Procedure
may be invoked in an Expression, without the assignment of the result, as well as in a
PLUS Assignment Statement.

Align(InsertString, SourceString, Offset) - Return a copy
of one string placed in another, right justified.

Catenate(String1, String2) - Return a copy of two strings
combined into one.

Copies(SourceString, Count) - Create a string from many
copies of a string.

Datatype(Datum) - Return a string denoting the data type of
the argument.

Find(TestString, SourceString) - Return the Offset of one
string in another.

Left(SourceString, MaxCount) - Return a copy of a
substring starting on the left.

Length(SourceString) - Return the count of characters in a
string.

Lowercase(SourceString) - Return the lowercase
representation of a string.

Place(InsertString, SourceString, Offset) - Place one
string in another. Left justify.

Polycatenate(String1, String2, String3, String4) - Return
a copy of four strings combined into one.

Right(SourceString, MaxCount) - Return a copy of a
substring starting on the right.

String(Datum) - Convert a data item to its string equivalent.

StringCompare(String1, String2) - Return an integer result
if string comparison.

Substring(SourceString, Offset, MaxCount) - Return a
copy of a substring of the string argument.

Trim(SourceString) - Remove leading and trailing white
space.

Uppercase(SourceString) - Return the uppercase
equivalent of a string.

Value(Datum) - Return the numeric equivalent of a string.

Word(SourceString, WordNumber) - Return a copy of one
of the words in a string.

 1. Align - Right-justify a string.

 Syntax

ReturnString=Align(InsertString,SourceString,Offset)
Arguments

InsertString - The string to be copied. Required. Coerced to string. The argument must
be Expression.

SourceString - The string to be overwritten. Required. Coerced to string. The argument
must be Expression.

Offset - The 1-relative offset in SourceString to receive the rightmost character of
InsertString. Required. Coerced to integer. The argument must be Expression.

Return Value
ReturnString - The string created as a result of inserting InsertString into
SourceString at offset Offset.

Example
SHOW Align("ABC","123456789",6)

"123ABC789"

This example uses a SHOW Command to demonstrate how the align() string Procedure
right justifies the insert string at position 6 of the target string, and displays the result.

Action
Align() coerces the first and second arguments to strings, and the third to an integer. It
then creates a string of blanks large enough to contain the result, and copies the target
string into the result string. Finally, it copies the insert string, or the part of it that fits, into
the result string.

If the Offset is larger than the target string, the resulting string will be larger, as well. Any
characters not specified by the argument strings will be blanks.

If the Offset is less than the length of the insert string, only the characters that fit will be
inserted, starting from the rightmost character of the insert string.

If the Offset is not strictly positive, no characters will be inserted.

 2. Carenate - Combine two strings.

 Syntax

ReturnString = CATENATE(String1,
String2)

Arguments
String1 - The string to be first in the concatenated result string. Required. Coerced to
string. The argument must be Expression.

String2 - The string to be second in the concatenated result string. Required. Coerced to
string. The argument must be Expression.

Return Value
ReturnString - The string created as a result of placing String2 immediately after
String1.

Example
SHOW Catenate("ABC","123")

"ABC123"

This example uses a SHOW Command to demonstrate how the Catenate() string
Procedure combines two strings.

Action
Catenate() first coerces both arguments to strings. It then creates a string large enough
to contain the result, and copies the first string and the second string into the result
string.

 3. Copies - Build a string from multiple copies.

 Syntax

ReturnString = COPIES(SourceString,
Count)

Arguments
SourceString - The string to be duplicated. Required.
Coerced to string. The argument must be Expression.

Count - The number of copies to make. Required. Coerced to
integer. The argument must be Expression.

Return Value
ReturnString - The string created as a result of
concatenating Count copies of SourceString.

Example
SHOW Copies("ABC ",3)

"ABC ABC ABC "

This example uses a SHOW Command to demonstrate how the copies() string
Procedure creates a string out of 3 copies of an existing string.

Action
Copies() coerces the first argument to a string and the second to an integer. It then
creates a string large enough to contain the result, and copies the source string to the
result string once for each count in the second argument.

If the count is not strictly positive, a null string results.

 4. DataType - Determine the type of a data item.

 Syntax

ReturnString = DATATYPE(Datum)
Arguments

Datum - The data item to be examined. Required. The argument must be Expression.

Return Value
ReturnString - The string identifying the data type. One of:

"INTEGER" - Datum is a 32 bit integer,

"REAL" - Datum is a double precision floating point number,

"STRING" - Datum is a character string, or

"UNIDENTIFIED" - The Data Type cannot be determined.

Example
SHOW DataType("ABC")

"STRING"

This example uses a SHOW Command to demonstrate how the DataType() string
Procedure identifies the data type of a string constant.

Action
DataType() does not coerce its argument. It determines the data type of the argument
and returns the string constant associated with that type.

 5. Find - Find one string in another.

 Syntax

ReturnInteger = FIND(TestString,
SourceString)
Arguments

TestString - The string to be found. Required. Coerced to string. The argument must be
Expression.

SourceString - The string to be tested for occurrence of TestString. The argument must
be Expression.

Return Value
ReturnInteger - The 1-relative offset of the first occurrence of TestString in
SourceString. A real value. Zero if not found.

Example
SHOW Find("ABC","123ABC789")

4

This example uses a SHOW Command to demonstrate how the find() string Procedure
finds the occurrence of "ABC" starting at position 4 of string "123ABC789".

Action
Find() coerces the first and second arguments to strings, and tests the second argument
for the existing of a substring equal to the first argument. If it cannot be found, find()
returns 0. Otherwise, find() returns the 1-relative offset in the second string of the first
occurrence of the first string.

6. Left - Return an initial substring.

 Syntax

ReturnString = LEFT(SourceString, MaxCount)
Arguments

SourceString - The source string to be used to create the substring. Required. Coerced
to string. The argument must be Expression.

MaxCount - The maximum number of characters to be used in the substring. Required.
Coerced to integer. The argument must be Expression.

Return Value
ReturnString - The string created as the left MaxCount characters of SourceString.

Example
SHOW Left("123456789",6)

"123456"

This example uses a SHOW Command to demonstrate how the left() string Procedure
extracts the first 6 characters of the string "123456789".

Action
Left() coerces the first argument to a string, and the second to an integer. If MaxCount
is less than 0, it is made equal to 0. Left() then creates a string of length equal to the
smaller of MaxCount and the length of SourceString. The result string is then filled with
characters from SourceString, starting with the first.

 7. Length - Count string characters.

 Syntax

ReturnInteger = LENGTH(
SourceString)

Arguments
SourceString - The string to be examined. Required. Coerced to string. The argument
must be Expression.

Return Value
ReturnInteger - The number of characters in the string. A Real value.

Example
SHOW Length("ABC")

3

This example uses a SHOW Command to demonstrate how the length() string
Procedure returns the character count of the string "ABC".

Action
Length() coerces the argument to a string, counts its characters, and returns the count
as an integer. Null strings have a count of 0.

 8. Lowercase - Convert string to lower case.

 Syntax

ReturnString = LOWERCASE(
SourceString)

Arguments
SourceString - The string to be converted. Required. Coerced to string. The argument
must be Expression.

Return Value
ReturnString - The string created as a result of converting SourceString to lower case.

Example
SHOW Lowercase("123 AbC")

"123 abc"

This example uses a SHOW Command to demonstrate how the lowercase() string
Procedure copies a string and converts the upper case letters to lower case.

Action
Lowercase() coerces the argument to a string, and creates a copy of the string. It then
converts the upper case letters in the copy to lower case and returns it as the result
string.

 9. Place = Left-justify a string.

 Syntax

ReturnString =PLACE(InsertString,SourceString,Offset
)

Arguments
InsertString - The string to be inserted. Required. Coerced to string. The argument must
be Expression.

SourceString - The string to receive the insertion. Required. Coerced to string. The
argument must be Expression.

Offset - The 1-relative offset in SourceString to receive the leftmost character of
InsertString. Required. Coerced to integer. The argument must be Expression.

Return Value
ReturnString - The string created as a result of inserting InsertString into
SourceString at offset Offset.

Example
SHOW Place("ABC","/123456789",3)

"123ABC789"

This example uses a SHOW Command to demonstrate how the place() string Procedure
left justifies the insert string at position 3 of the target string, and displays the result.

Action
Place() coerces the first and second arguments to strings, and the third to an integer. It
then creates a string of blanks large enough to contain the result, and copies the target
string into the result string. Finally, it copies the insert string into the result string.

If the end of the inserted string extends past the end of the original target string, the
resulting string will be larger, as well. Any characters not specified by the argument
strings will be blanks.

If the offset is less than 1, the leftmost characters of the insert string are truncated, and
the remaining characters, if any, are inserted at position 1 of the target string.

 10. Polycatenate - Combine four strings.

 Syntax

 ReturnString = POLYCATENATE(String1, String2, String3, String4
)

Arguments
String1 - The string to be first in the concatenated result string. Required. Coerced to
string. The argument must be Expression.

String2 - The string to be second in the concatenated result string. Required. Coerced to
string. The argument must be Expression.

String3 - The string to be third in the concatenated result string. Required. Coerced to
string. The argument must be Expression.

String4 - The string to be fourth in the concatenated result string. Required. Coerced to
string. The argument must be Expression.

Return Value
ReturnString - The string created as a result of placing copies of the four strings one
after the other.

Examples
SHOW Polycatenate("The ","time ","is ",AC1)

"The time is 0"

This example uses a SHOW Command to demonstrate how the Polycatenate() string
Procedure combines four strings. The SNA AC1 is automatically coerced to a string.

SHOW Polycatenate("Yours"," ","truly,","")

"Yours truly,"

This example uses a SHOW Command to demonstrate how the Polycatenate() string
Procedure combines three string constants. A null string is used as the fourth argument.

Action
Polycatenate() first coerces all four arguments to strings. It then creates a string large
enough to contain the result, and copies the first, second, third, and fourth strings into the
result string. Any of the arguments can be a null string.

 11. Right - Return terminal substring.

 Syntax

ReturnString = RIGHT(SourceString, MaxCount)
Arguments

SourceString - The source string to be used to create the substring. Required. Coerced
to string. The argument must be Expression.

MaxCount - The maximum number of characters to be used in the substring. Required.
Coerced to integer. The argument must be Expression.

Return Value
ReturnString - The string created as the right MaxCount characters of SourceString.

Example
SHOW Right("123456789",6)

"456789"

This example uses a SHOW Command to demonstrate how the right() string Procedure
extracts the last 6 characters of the string "123456789".

Action
Right() coerces the first argument to a string, and the second to an integer. If MaxCount
is less than 0, it is made equal to 0. Right() then creates a string of length equal to the
smaller of MaxCount and the length of SourceString. The result string is then filled with
the last MaxCount characters from SourceString.

 12. String - Create string equivalent.

 Syntax

ReturnString = STRING(Datum)
Arguments

Datum - The data item to be converted. Required. Coerced to string. The argument must
be Expression.

Return Value
ReturnString - The string created as a result of converting Datum to its string
equivalent.

Example
SHOW String(12345)

"12345"

This example uses a SHOW Command to demonstrate how the string() string Procedure
converts the integer constant 12345 to the string constant "12345".

Action
String() coerces the arguments a string, and returns a copy as the result. If the argument
is already a string, it is not modified.

13. StringCompare - Compare two strings.

 Syntax

ReturnInteger = STRINGCOMPARE(String1, String2)
Arguments

String1 - The first of two strings to be compared. Required. Coerced to string. The
argument must be Expression.

String2 - The second of two strings to be compared. Required. Coerced to string. The
argument must be Expression.

Return Value
ReturnInteger - Integer -1, 0, or 1 as String1 precedes, equals, or succeeds String2.

Example
SHOW Stringcompare("ABC","abc")

-1.0000000

This example uses a SHOW Command to demonstrate how the stringcompare() string
Procedure compares the two string constants and returns the result of the comparison.

Action
StringCompare() coerces the first and second arguments to strings. It then compares
them lexicographically.

If the two strings are identical, an integer 0 is returned. Otherwise the strings are
compared character by character until a difference is detected.

If the first difference occurs because one string is shorter than the other, the shorter
string is said to precede the longer one. If the shorter string is String1, -1 is returned. If
the shorter string is String2, 1 is returned.

If the first difference occurs because the character from String1 precedes that from
String2 in the ASCII collating sequence, String1 is said to precede String2, and -1 is
returned. Otherwise, String2 is said to precede String1, and 1 is returned.

 14. SubString - Return part of a string.

 Syntax

ReturnString = SUBSTRING(SourceString, Offset, MaxCount)
Arguments

SourceString - The string to be used as the source of the substring. Required. Coerced
to string. The argument must be Expression.

Offset - The 1-relative offset in SourceString of the first character of the substring.
Required. Coerced to integer. The argument must be Expression.

MaxCount - The maximum number of characters from SourceString to use in the
substring. Required. Coerced to integer. The argument must be Expression.

Return Value
ReturnString - The string created as a result of creating a
copy of a substring derived from SourceString.

Example
SHOW Substring("123456789",3,4)

"3456"

This example uses a SHOW Command to demonstrate how the substring() string
Procedure copies 4 characters from the string constant "123456789" to form a new
string.

Action
Substring() coerces the first argument to a string, and the second and third to integers. If
the Offset argument is less than 1, it is set to 1. Substring () then creates a string large
enough to canteen the lesser of the MaxCount argument or the number of characters
remaining after the offset in the source string. Substring() then copies the characters
from the substring, if any, into the result string.

 15. Trim - Remove leading and trailing white space.

 Syntax

ReturnString = TRIM(SourceString)
Arguments

SourceString - The string to be used as the source of characters. Required. Coerced to
string. The argument must be Expression.

Return Value
ReturnString - The string created as a result of trimming
blanks and tabs from SourceString.

Example
SHOW Trim(" A B C ")

"A B C"

This example uses a SHOW Command to demonstrate how the Trim() string Procedure
creates a new string by removing leading and trailing blanks from a string continuing
them.

Action
Trim() coerces the arguments to a string. It then creates a string large enough to contain
the result, and copies the source string into the result string, omitting leading and trailing
blank or tab characters.

 16. Uppercase - Convert a string to upper case.

 Syntax

ReturnString = UPPERCASE(
SourceString)

Arguments
SourceString - The string to be converted. Required. Coerced to string. The argument
must be Expression.

Return Value
ReturnString - The string created as a result of converting SourceString to upper case.

Example
SHOW Uppercase("123 aBc")

"123 ABC"

This example uses a SHOW Command to demonstrate how the uppercase() string
Procedure copies a string and converts the lower case letters to upper case.

Action
Uppercase() coerces the argument to a string, and creates a copy of the string. It then
converts the lower case letters in the copy to upper case and returns it as the result
string.

 1.7 Value - Convert to numeric equivalent.

 Syntax

ReturnReal = VALUE(Datum)
Arguments

Datum - The data item to be converted. Required. The argument must be Expression.

Return Value
ReturnReal - The double precision real numeric value equivalent to Datum. A real value.

Example
SHOW Value("123.4")

123.4000000

This example uses a SHOW Command to demonstrate how the value() string Procedure
converts the string "123.4" to its numeric value.

Action
Value() determines the data type of the argument. Integers or stings are converted to
their real numeric equivalent, and returned. Real arguments are returned without

modification.

 18. Word - Extract a word from a string.

 Syntax

ReturnString = WORD(SourceString, WordNumber)
Arguments

SourceString - The string to be examined. Required. Coerced to string. The argument
must be Expression.

WordNumber - The 1-relative cardinal number of the word in SourceString to be
returned. The argument must be Expression.

Return Value
ReturnString - The string containing the word extracted from SourceString.

Example
SHOW Word("My country �tis of thee.",2)

"country"

This example uses a SHOW Command to demonstrate how the word() string Procedure
extracts the second word of a source string.

Action
Word() coerces the first argument to a string, and the second to an integer. It then finds
the word corresponding to the second argument, and creates a string large enough to
contain it. Finally, it copies the characters of the word, if any, into the result string.

Words are consecutive printable characters other than tabs or blanks. If the
corresponding word does not exist in the source string, a null string is returned.

8.3.5. Probability Distributions

This chapter contains the information you need to use the theoretical probability
distributions in the Procedure Library. Empirical distributions, on the other hand, are
normally created by using the GPSS FUNCTION Command, using D or C type random
Functions. This is discussed in Chapter 6. As other alternatives, it is easy to create your
own random variate generators by defining your own PLUS Procedures, or to read
empirical data from a file.

Over 20 built in probability distributions are included in the Procedure Library. These
distributions are applicable to a wide range of practical situations. [For an excellent
detailed discussion, see Law, A.M. and W.D. Kelton: Simulation Modeling and Analysis,
2nd Ed., McGraw-Hill, New York (1991)].

Each Procedure call to a probability distribution requires that you specify a stream
argument. In this position, you are to assert an Expression that evaluates to a Random
Number Generator Entity number. Random Number Generator Entities are created, as
needed, so you need not predefine them. Several Random Number Generators are used
by GPSS World for GENERATE, ADVANCE, and TRANSFER blocks. These are

specified in the "Random" page of the Model Settings notebook. This is discussed in
Chapter 2.

Most of the probability distributions are specified by parameters that select from a family
of functions. Procedure arguments denoted locate, scale, and shape are often used for
this purpose. The locate argument acts like a post-hoc adder, that is applied after the
draw from the distribution. It allows you to move the distribution horizontally, to any
position on the x axis. The scale and shape arguments, if used, select a member from
the family of distributions.

The built-in Procedure Library contains the following probability distributions:

• Beta • LogLaplace

• Binomial • LogLogistic

• Discrete Uniform • LogNormal

• Exponential • Negative Binomial

• Extreme Value A • Normal

• Extreme Value B • Pareto

• Gamma • Pearson Type V

• Geometric • Pearson Type VI

• Inverse Gaussian • Poisson

• Inverse Weibull • Triangular

• Laplace • Uniform

• Logistic • Weibull

 1. Beta
 Syntax

Real = BETA(Stream, Min, Max, Shape1, Shape2)
Arguments

Stream - The random number generator entity number. Required. Coerced to integer.
Must be greater than or equal to 1. The argument must be Expression.

Min- The smallest sample to be generated. Required. Coerced to real. Must be less than
max. The argument must be Expression.

Max- The largest sample to be generated. Required. Coerced to real. Must be greater
than min. The argument must be Expression.

Shape1 - The first selection value used to choose from a family of shapes. Required.
Coerced to real. Must be strictly positive. The argument must be Expression.

Shape2 - The second selection value used to choose from a family of shapes. Required.
Coerced to real. Must be strictly positive. The argument must be Expression.

Return Value
Real - The real value generated as a single instance of the probability distribution.

Probability Density Function

Figure 8�1. The Beta Distribution

Notes
The Beta Distribution degenerates to the Uniform when the Shape1 and Shape2
arguments are 1. That is, Beta(Stream, Min, Max, 1, 1) is distributed as Uniform(
Stream, Min, Max).

Beta(Stream, Min, Max, 1, 2) is a left triangle; Beta(Stream, Min, Max, 2, 1) is a right
triangle.

2. Binomial
 Syntax

Integer = BINOMIAL(Stream, TrialCount, Probability)
Arguments

Stream - The random number generator entity number. Required. Coerced to integer.
Must be greater than or equal to 1. The argument must be Expression.

TrialCount - The number of Bernoulli trials in a sample. Required. Coerced to integer.
Must be strictly positive. The argument must be Expression.

Probability - The success probability of a Bernoulli trial. Must be between 0 and 1.
Required. Coerced to real. The argument must be Expression.

Return Value
Integer - The integer value generated as a single instance of the probability distribution.

Probability Mass Function

Figure 8�2. The Binomial Distribution

 3. Discrete Uniform
 Syntax

Integer = DUNIFORM(Stream, Min,
Max)

Arguments
Stream - The random number generator entity number. Required. Coerced to integer.
Must be greater than or equal to 1. The argument must be Expression.

Min- The smallest sample to be generated. Required. Coerced to integer. Must be less
than or equal to max. The argument must be Expression.

Max- The largest sample to be generated. Required. Coerced to integer. Must be greater
than or equal to min. The argument must be Expression.

Return Value
Integer - The integer value generated as a single instance of the probability distribution.

Probability Mass Function

Figure 8�3. The Discrete Uniform Distribution

4. Exponential
 Syntax

Real = EXPONENTIAL(Stream,
Locate, Scale)

Arguments
Stream - The random number generator entity number. Required. Coerced to integer.
Must be greater than or equal to 1. The argument must be Expression.

Locate - The shift value used to position the distribution. Required. Coerced to real. The
argument must be Expression.

Scale - The compression value used to expand or contract the distribution. Must be
strictly positive. Required. Coerced to real. The argument must be Expression.

Return Value
Real - The real value generated as a single instance of the probability distribution.

Probability Density Function

Figure 8�4. The Exponential Distribution

Notes
The Weibull Distribution degenerates to the Exponential when the shape argument is 1.
That is, Weibull(Stream, Locate, Scale, 1) is distributed as Exponential(Stream, Locate,
Scale).

The Gamma Distribution degenerates to the Exponential when the shape argument is 1.
That is, Gamma(Stream, Locate, Scale, 1) is distributed as Exponential(Stream,
Locate, Scale).

5. Extreme Value A
 Syntax

Real = EXTVALA(Stream, Locate,
Scale)

Arguments
Stream - The random number generator entity number. Required. Coerced to integer.
Must be greater than or equal to 1. The argument must be Expression.

Locate - The shift value used to position the distribution. Required. Coerced to real. The
argument must be Expression.

Scale - The compression value used to expand or contract the distribution. Must be
strictly positive. Required. Coerced to real. The argument must be Expression.

Return Value
Real - The real value generated as a single instance of the probability distribution.

Probability Density Function

Figure 8�5. The Extreme Value A Distribution

6. Extreme Value B
 Syntax

Real = EXTVALB(Stream, Locate,
Scale)

Arguments
Stream - The random number generator entity number. Required. Coerced to integer.
Must be greater than or equal to 1. The argument must be Expression.

Locate - The shift value used to position the distribution. Required. Coerced to real. The
argument must be Expression.

Scale - The compression value used to expand or contract the distribution. Must be
strictly positive. Required. Coerced to real. The argument must be Expression.

Return Value
Real - The real value generated as a single instance of the probability distribution.

Probability Density Function

Figure 8�6. The Extreme Value B Distribution

7. Gamma
 Syntax

Real = GAMMA(Stream, Locate,
Scale, Shape)

Arguments
Stream - The random number generator entity number. Required. Coerced to integer.
Must be greater than or equal to 1. The argument must be Expression.

Locate - The shift value used to position the distribution. Required. Coerced to real. The
argument must be Expression.

Scale - The compression value used to expand or contract the distribution. Must be
strictly positive. Required. Coerced to real. The argument must be Expression.

Shape - The selection value used to choose from a family of shapes. Required. Coerced
to real. Must be strictly positive. The argument must be Expression.

Return Value
Real - The real value generated as a single instance of the probability distribution.

Probability Density Function

Figure 8�7. The Gamma Distribution

Notes
The Gamma Distribution degenerates to the Exponential when the shape argument is 1.
That is, Gamma(Stream, Locate, Scale, 1) is distributed as Exponential(Stream,
Locate, Shape).

For positive integer m, Gamma(Stream, 0, Scale, m) is distributed as the
m-Erlang(Scale) distribution.

8. Geometric
 Syntax

Integer = GEOMETRIC(Stream,
Probability)

Arguments
Stream - The random number generator entity number. Required. Coerced to integer.
Must be greater than or equal to 1. The argument must be Expression.

Probability - The probability of success in each Bernoulli trial. Must be between 0 and 1.
Required. Coerced to real. The argument must be Expression.

Return Value
Integer - The integer value generated as a single instance of the probability distribution.

Probability Mass Function

Figure 8�8. The Geometric Distribution

 9. Inverse Gaussian
 Syntax

Real = INVGAUSS(Stream,Locate,Scale,Shape
)
Arguments

Stream - The random number generator entity number. Required. Coerced to integer.
Must be greater than or equal to 1. The argument must be Expression.

Locate - The shift value used to position the distribution. Required. Coerced to real. The
argument must be Expression.

Scale - The compression value used to expand or contract the distribution. Must be
strictly positive. Required. Coerced to real. The argument must be Expression.

Shape - The selection value used to choose from a family of shapes. Required. Coerced
to real. Must be strictly positive. The argument must be Expression.

Return Value
Real - The real value generated as a single instance of the probability distribution.

Probability Density Function

Figure 8�9. The Inverse Gaussian Distribution

10. Inverse Weibull
 Syntax

Real = INVWEIBULL(Stream, Locate, Scale, Shape)
Arguments

Stream - The random number generator entity number. Required. Coerced to integer.
Must be greater than or equal to 1. The argument must be Expression.

Locate - The shift value used to position the distribution. Required. Coerced to real. The
argument must be Expression.

Scale - The compression value used to expand or contract the distribution. Must be
strictly positive. Required. Coerced to real. The argument must be Expression.

Shape - The selection value used to choose from a family of shapes. Required. Coerced
to real. Must be strictly positive. The argument must be Expression.

Return Value
Real - The real value generated as a single instance of the probability distribution.

Probability Density Function

Figure 8�10. The Inverse Weibull Distribution

 11. Laplace
 Syntax

Real = LAPLACE(Stream, Locate,
Scale)

Arguments
Stream - The random number generator entity number. Required. Coerced to integer.
Must be greater than or equal to 1. The argument must be Expression.

Locate - The shift value used to position the distribution. Required. Coerced to real. The
argument must be Expression.

Scale - The compression value used to expand or contract the distribution. Must be
strictly positive. Required. Coerced to real. The argument must be Expression.

Return Value
Real - The real value generated as a single instance of the probability distribution.

Probability Density Function

Figure 8�11. The Laplace Distribution

 12. Logistic
 Syntax

Real = LOGISTIC(Stream, Locate,
Scale)

Arguments
Stream - The random number generator entity number. Required. Coerced to integer.
Must be greater than or equal to 1. The argument must be Expression.

Locate - The shift value used to position the distribution. Required. Coerced to real. The
argument must be Expression.

Scale - The compression value used to expand or contract the distribution. Must be
strictly positive. Required. Coerced to real. The argument must be Expression.

Return Value
Real - The real value generated as a single instance of the probability distribution.

Probability Density Function

Figure 8�12. The Logistic Distribution

 13. LogLaplace
 Syntax

Real = LOGLAPLACE(Stream, Locate, Scale, Shape)
Arguments

Stream - The random number generator entity number. Required. Coerced to integer.
Must be greater than or equal to 1. The argument must be Expression.

Locate - The shift value used to position the distribution. Required. Coerced to real. The
argument must be Expression.

Scale - The compression value used to expand or contract the distribution. Must be
strictly positive. Required. Coerced to real. The argument must be Expression.

Shape - The selection value used to choose from a family of shapes. Required. Coerced
to real. Must be strictly positive. The argument must be Expression.

Return Value
Real - The real value generated as a single instance of the probability distribution.

14. LogLogistic
 Syntax

Real = LOGLOGIS(Stream, Locate, Scale, Shape)
Arguments

Stream - The random number generator entity number. Required. Coerced to integer.
Must be greater than or equal to 1. The argument must be Expression.

Locate - The shift value used to position the distribution. Required. Coerced to real. The
argument must be Expression.

Scale - The compression value used to expand or contract the distribution. Must be
strictly positive. Required. Coerced to real. The argument must be Expression.

Shape - The selection value used to choose from a family of shapes. Required. Coerced
to real. Must be strictly positive. The argument must be Expression.

Return Value
Real - The real value generated as a single instance of the probability distribution.

 15. LogNormal
 Syntax

Real = LOGNORMAL(Stream, Locate, Scale, Shape)
Arguments

Stream - The random number generator entity number. Required. Coerced to integer.
Must be greater than or equal to 1. The argument must be Expression.

Locate - The shift value used to position the distribution. Required. Coerced to real. The
argument must be Expression.

Scale - The compression value used to expand or contract the distribution. Required.
Coerced to real. The argument must be Expression.

Shape - The selection value used to choose from a family of shapes. Required. Coerced
to real. Must be strictly positive. The argument must be Expression.

Return Value
Real - The real value generated as a single instance of the probability distribution.

Probability Density Function

Figure 8�15. The Lognormal Distribution

16. Negative Binomial
 Syntax

 Integer = NEGBINOM(Stream,SuccessCount,Probability)
Arguments

Stream - The random number generator entity number. Required. Coerced to integer.
Must be greater than or equal to 1. The argument must be Expression.

SuccessCount - The number of successful Bernoulli trials required before returning the
failure count. Required. Coerced to integer. Must be strictly positive. The argument must
be Expression.

Probability - The success probability of a Bernoulli trial. Must be between 0 and 1.
Required. Coerced to real. The argument must be Expression.

Return Value
Integer - The integer value generated as a single instance of the probability distribution.

Probability Mass Function

Figure 8�16. The Negative Binomial Distribution

Notes
The Negative Binomial Distribution degenerates to the Geometric when the
SuccessCount argument is 1. That is, NegBinom(Stream, 1, Probability) is distributed
as Geometric(Stream, Probability).

 17. Normal
 Syntax

Real = NORMAL(Stream, Mean,
StdDev)

Arguments
Stream - The random number generator entity number. Required. Coerced to integer.
Must be greater than or equal to 1. The argument must be Expression.

Mean - The mean value of the distribution. Required. Coerced to real. The argument
must be Expression.

StdDev - The standard deviation of the distribution. Must be strictly positive. Required.
Coerced to real. The argument must be Expression.

Return Value
Real - The real value generated as a single instance of the probability distribution.

Probability Density Function

Figure 8�17. The Normal Distribution

 18. Pareto
 Syntax

Real = PARETO(Stream, Locate,
Scale)

Arguments
Stream - The random number generator entity number. Required. Coerced to integer.
Must be greater than or equal to 1. The argument must be Expression.

Locate - The shift value used to position the distribution. Must be strictly positive.
Required. Coerced to real. The argument must be Expression.

Scale - The compression value used to expand or contract the distribution. Must be
strictly positive. Required. Coerced to real. The argument must be Expression.

Return Value
Real - The real value generated as a single instance of the probability distribution.

Probability Density Function

Figure 8�18. The Pareto Distribution

 19. Pearson Type V
 Syntax

Real = PEARSON5(Stream, Locate, Scale, Shape)
Arguments

Stream - The random number generator entity number. Required. Coerced to integer.
Must be greater than or equal to 1. The argument must be Expression.

Locate - The shift value used to position the distribution. Required. Coerced to real. The
argument must be Expression.

Scale - The compression value used to expand or contract the distribution. Must be
strictly positive. Required. Coerced to real. The argument must be Expression.

Shape - The selection value used to choose from a family of shapes. Required. Coerced
to real. Must be strictly positive. The argument must be Expression.

Return Value
Real - The real value generated as a single instance of the probability distribution.

Probability Density Function

Figure 8�19. The Pearson Type V Distribution

 20. Pearson Type VI
 Syntax

Real = PEARSON6(Stream, Locate, Scale, Shape1, Shape2)

Arguments
Stream - The random number generator entity number. Required. Coerced to integer.
Must be greater than or equal to 1. The argument must be Expression.

Locate - The shift value used to position the distribution. Required. Coerced to real. The
argument must be Expression.

Scale - The compression value used to expand or contract the distribution. Must be
strictly positive. Required. Coerced to real. The argument must be Expression.

Shape1 - The first selection value used to choose from a family of shapes. Required.
Coerced to real. Must be strictly positive. The argument must be Expression.

Shape2 - The second selection value used to choose from a family of shapes. Required.
Coerced to real. Must be strictly positive. The argument must be Expression.

Return Value

Real - The real value generated as a single instance of the probability distribution.

Probability Density Function

Figure 8�20. The Pearson Type VI Distribution

 21. Poisson
 Syntax

Integer = POISSON(Stream, Mean)
Arguments

Stream - The random number generator entity number. Required. Coerced to integer.
Must be greater than or equal to 1. The argument must be Expression.

Mean - The mean number of events to occur. Required. Must be strictly positive.
Coerced to real. The argument must be Expression.

Return Value
Integer - The integer value generated as a single instance of the probability distribution.

Probability Mass Function

Figure 8�21. The Poisson Distribution

 22. Triangular
 Syntax

Real = TRIANGULAR(Stream, Min, Max, Mode)
Arguments

Stream - The random number generator entity number. Required. Coerced to integer.
Must be greater than or equal to 1. The argument must be Expression.

Locate - The shift value used to position the distribution. Required. Coerced to real. The
argument must be Expression.

Min - The smallest value to be drawn from the distribution. Must be less than mode.
Required. Coerced to real. The argument must be Expression.

Max - The largest value to be drawn from the distribution. Must be greater than mode.
Required. Coerced to real. The argument must be Expression.

Mode - The most frequent value of the distribution. Must be greater than min and less
than max. Required. Coerced to real. The argument must be Expression.

Return Value
Real - The real value generated as a single instance of the probability distribution.

Probability Density Function

Figure 8�22. The Triangular Distribution

Notes
"Right" triangular distributions can be generated as Beta distributions.

 23. Uniform
 Syntax

Real = UNIFORM(Stream, Min, Max)
Arguments

Stream - The random number generator entity number. Required. Coerced to integer.
Must be greater than or equal to 1. The argument must be Expression.

Min - The smallest value to be drawn from the distribution. Must be less than max.
Required. Coerced to real. The argument must be Expression.

Max - The largest value to be drawn from the distribution. Must be greater than min.
Required. Coerced to real. The argument must be Expression.

Return Value
Real - The real value generated as a single instance of the probability distribution.

Probability Density Function

Figure 8�23. The Uniform Distribution

Notes
The Beta Distribution degenerates to the Uniform when the shape arguments are 1. That
is, Beta(Stream, Min, Max, 1, 1) is distributed as Uniform(Stream, Min, Max).

 24. Weibull
 Syntax

Real = WEIBULL(Stream, Locate, Scale, Shape)
Arguments

Stream - The random number generator entity number. Required. Coerced to integer.
Must be greater than or equal to 1. The argument must be Expression.

Locate - The shift value used to position the distribution. Required. Coerced to real. The
argument must be Expression.

Scale - The compression value used to expand or contract the distribution. Must be
strictly positive. Required. Coerced to real. The argument must be Expression.

Shape - The selection value used to choose from a family of shapes. Required. Coerced
to real. Must be strictly positive. The argument must be Expression.

Return Value
Real - The real value generated as a single instance of the probability distribution.

Probability Density Function

Figure 8�24. The Weibull Distribution

Notes
The Weibull Distribution degenerates to the Exponential when the shape argument is 1.
That is, Weibull(stream, Locate, Scale, 1) is distributed as Exponential(Stream, Locate,
Scale).

Weibull(Stream, Locate, Scale, 2) is known as the Rayleigh distribution.

Chapter 9 - Advanced
Topics

 9.1. Transaction Chains
Transactions are temporarily bound to other entities by
occupying linked lists called chains. Some entities, such as
Facilities, have several chains. Other entities have just a single
Retry Chain. Each Transaction may be on any number of
chains. However, occupying one kind of chain sometimes
precludes occupancy by the same Transaction on another. For
example, a Transaction on one or more Interrupt Chains
cannot be on the Future Events Chain.

A Transaction can be on no more than one of the following
chains:

• Future Events Chain

• Current Events Chain

• Facility or Storage Delay Chain

• Facility Pending Chain

• User Chain

A Transaction may be waiting for any number of conditions to
occur, can be in any number of Transaction Groups, and may
be preempted from any number of Facilities at any one time.
This means that any single Transaction can be on any number
of Interrupt Chains and any number of Group Chains and any
number of Retry Chains at the same time.

Current Events Chain

The Current Events Chain (CEC) is a linked list of ready
Transactions which have Blocks yet to be entered before
simulated time advances. Although the CEC is kept in priority
order, the Active Transaction is usually returned to the CEC
ahead of its peers. For this reason, once a Transaction starts to
move in the simulation, it tends to keep moving, unless a
higher priority Transaction is reactivated.

When the Active Transaction comes to rest on some
Transaction Chain, the highest priority Transaction remaining
on the CEC becomes the Active Transaction. If the CEC is
empty, the most imminent Transaction on the Future Events
Chain is moved to the CEC.

Future Events Chain

The Future Events Chain (FEC) is a time-ordered chain which
holds Transactions which must wait for a later simulated time.
When all simulation activity for the current clock time is
complete, the next Transaction is taken from the FEC. It is this
action which causes the system clock to be updated. The value
of the system clock is always equal to the scheduled time of
the last Transaction to be taken from the FEC.

ADVANCE Blocks and GENERATE Blocks are the only way to
place a Transaction on the FEC. These blocks take a time
increment as an operand and calculate the absolute time
before placing the Transaction on the FEC. When the system
clock reaches this absolute time, the Transaction is moved to
the CEC so that it may resume its movement in the simulation.
In this manner, a duration or inter arrival time can be simulated.

PREEMPT Blocks, and the new DISPLACE Block, can be used
to remove Transactions from the FEC. Such Transactions can
be rescheduled by entering another ADVANCE Block.

When the scheduler must select a new Active Transaction, if it
cannot find one on the CEC, it must take a Transaction from
the FEC. This removal of one or more Transactions always
causes the system clock to advance. When more than one
Transaction resides on the FEC at the next imminent event
time, a Time Tie is said to exist. If the Model Settings so
dictate, when Time Tied Transactions are moved from the FEC
to the CEC, their order is randomized within priorities. This is
done to prevent unintentional processing cycles from
developing.

A time tie is the occurrence of more than one Transaction with
the same time value at the front of the FEC. When a time tie is
detected, time tied Transactions are removed from the FEC in
random order. For this purpose GPSS World draws pseudo
random numbers from the random number generator specified
in the Simulate page of the Model Settings Notebook. The
removed Transactions are all placed in priority order on the
Current Events Chain (CEC). The highest priority Transaction
on the CEC then becomes the active Transaction. You can
suppress the randomization of time ties by specifying 0 as the
associated random number generator.

Retry Chains

Transactions which fail all tests required for Block entry are
placed on a Retry Chain. These tests occur when a
Transaction attempts to enter a GATE, TEST, TRANSFER

ALL, or TRANSFER BOTH Block. Each entity has a chain of
blocked Transactions, called a Retry Chain. Any Transaction
on a Retry Chain is waiting for the value of an SNA to change.
When the value of the SNA changes, any Transaction on the
Retry Chain of the entity is reactivated. This results in
replacement on the CEC. When the Transaction becomes the
Active Transaction, the specific condition test is repeated.
Since this process often uses computer time without advancing
Transactions in the model, an injudicious choice of conditions
can lead to an inefficient simulation. The power of GATE and
TEST blocks must be exercised with caution.

Transactions on Retry Chains are replaced on the CEC by the
process of reactivation. This is discussed below. If, on retry,
any test is successful, the Transaction enters its next Block.
When a Transaction enters a Block it is removed from all Retry
Chains automatically.

Facility Chains

Each Facility Entity has four Transaction chains. They are:

• PENDING CHAIN - A list of
Transactions waiting to PREEMPT
the Facility in "Interrupt Mode".

• INTERRUPT CHAIN - A list of
Transactions which have been
preempted from ownership of this
Facility.

• DELAY CHAIN - A priority chain of
Transactions waiting for ownership
of the Facility.

• RETRY CHAIN - A list of
Transactions which are waiting for
the status of the Facility to change.

The Pending Chain holds Transactions waiting to enter an
Interrupt Mode PREEMPT Block. A Transaction which attempts
to enter an Interrupt Mode PREEMPT Block on behalf of a
Facility is refused entry to the PREEMPT Block if any
preempted Transactions are on the Interrupt Chain of the
Facility. A Transaction which is refused entry is placed on the
Pending Chain of the Facility. This causes the Transaction to
come to rest in the simulation. When a Transaction gives up
ownership of the Facility, the first Transaction on the Pending

Chain is given ownership and allowed to enter the PREEMPT
Block.

The Interrupt Chain is a list of preempted Transactions. When
a Transaction enters a PREEMPT Block, and the Facility is
currently owned by another Transaction, ownership is given to
the new Transaction. The old Transaction is placed on the
Interrupt Chain so that its ownership may be restored later.
Transactions on one or more Interrupt Chains can still move in
the simulation, however, their movement is restricted. Such a
Transaction cannot exist on the FEC and cannot leave an
ASSEMBLE, GATHER, or MATCH Block where it has been put
in a Match Condition. When a Transaction gives up ownership
of the Facility, if the Pending Chain is empty, the first
Transaction on the Interrupt Chain is given ownership of the
Facility.

The Delay Chain holds Transactions waiting for ownership. A
Transaction which attempts to enter a SEIZE Block on behalf of
a Facility in use is refused entry to the SEIZE Block and is
placed on the Delay Chain of the Facility in priority order.
Similarly, a Transaction which attempts to enter a Priority Mode
PREEMPT Block on behalf of a Facility in use (by a
Transaction of equal or higher priority) is refused entry to the
PREEMPT Block and is placed on the Delay Chain of the
Facility in priority order. This causes the Transaction to come to
rest in the active model and a new Active Transaction to be
chosen. Then, when a Transaction gives up ownership of the
Facility, if the Pending Chain and the Interrupt Chain are
empty, the highest priority Transaction on the Delay Chain is
given ownership of the Facility.

The Retry Chain is a list of Transactions waiting for a Facility
state change. These Transactions are reactivated when the
Facility changes from one state to another.

Transactions waiting on a Delay Chain, a Pending Chain, or an
Interrupt Chain, or owning a Facility are said to be "in
contention" for the Facility. Since a contending Transaction will
eventually become the owner of the Facility, contention for a
Facility carries the obligation of releasing the Facility. If a
Transaction which owns a Facility attempts to leave the
simulation by entering a TERMINATE Block or an ASSEMBLE
Block, an Error Stop occurs. However, a preempted
Transaction is permitted to leave the simulation. Normally,
each Transaction remains in contention until it voluntarily
enters a RELEASE or RETURN Block on behalf of that Facility.
However, PREEMPT and FUNAVAIL blocks have options
which can remove other Transactions from contention for a
Facility. This removes the obligation to return ownership as
well. In fact, a non-contending Transaction which attempts to
enter a RETURN or RELEASE Block will cause an Error Stop.

To summarize, when a Facility is freed by an owning
Transaction, pending Interrupt Mode PREEMPTs are first to be
given Facility ownership, followed by previously preempted

Transactions on the Interrupt Chain, followed by Transactions
waiting normally in priority order on the Delay Chain. When a
new owner is chosen from the Delay Chain or the Pending
Chain, it enters the SEIZE or PREEMPT Block immediately,
and then is scheduled by being placed on the CEC behind its
priority peers.

Storage Entity Chains

Each Storage Entity has two Transaction chains. These chains
are linked lists of Transactions:

• DELAY CHAIN - A priority chain of
Transactions waiting for storage
units.

• RETRY CHAIN - A list of
Transactions which are waiting for
the status of the Storage Entity to
change.

The Delay Chain holds Transactions waiting for storage units.
When a Transaction attempts to enter an ENTER Block on
behalf of a Storage Entity, its storage demand is compared to
the number of storage units available. The maximum available
is defined in a STORAGE Command. If the storage demand
cannot be satisfied, the Transaction is refused entry to the
ENTER Block and is placed on the Delay Chain of the Storage
in priority order. This causes the Transaction to come to rest in
the simulation. A new Active Transaction is chosen. Then,
when a Transaction gives up storage units, the Delay Chain is
scanned in priority order, reactivating Transactions whose
storage demands can be satisfied. A "first fit with skip"
discipline is used. Each Transaction, in turn, is tested. If its
demand can be satisfied it is allowed to enter the ENTER Block
and is placed on the CEC behind its priority peers. If its
demand cannot be satisfied, it remains on the Storage Entity�s
Delay Chain.

The Retry Chain is a list of Transactions waiting for a Storage
Entity state change. These Transactions are reactivated when
the Storage Entity changes from one state to another.

User Chains

Each Userchain Entity contains a Transaction chain called a
User Chain. For a more detailed explanation of the entity type,
Userchain, please refer to Chapter 4. Here we discuss the
Transaction chain, called the User Chain, which is contained in
each Userchain entity.

User chains are linked lists of Transactions which have been
removed from the Current Events Chain by a LINK Block.
Traditionally, there have been two uses for User Chains.

First, it is possible to implement extremely complex Transaction
scheduling disciplines with User Chains. This can be done by
assigning a numerical order value to a Transaction Parameter
before LINKing the Transaction on a User Chain.

Second, older implementations of GPSS suggest that User
Chains be used to avoid scheduling inefficiencies in the GPSS
processor. This is less true in GPSS World because blocked
Transactions do not remain on the CEC in GPSS World.
However, it is still more efficient to avoid testing conditions
which cannot possibly result in a successful test. In this case,
you can place the blocked Transaction(s) on a User Chain until
there is a possibility of success.

 9.2. The Transaction
Scheduler
It is convenient to think of a GPSS simulation as a set of
Transactions which occupy Blocks in a Block Diagram. Both
the Block Input Window and the Blocks Window are essentially
Block Diagrams. At any one time, every Transaction is in
exactly one Block, but most Blocks may contain any number of
Transactions. Each Transaction, in turn, gets an opportunity to
move according to a prescribed path through the Block
Diagram. When a Transaction is refused entry to a Block, it
must wait in its current Block until conditions become favorable
for its movement. The part of GPSS World that is responsible
for this movement is called the Transaction Scheduler. Each
Block type has its own routine which is executed when a
Transaction attempts to enter that Block type. It is the job of the
Transaction Scheduler to call the appropriate routine.

The first thing the Transaction Scheduler does is to identify the
"Active Transaction". If the CEC is not empty, the highest
priority, head-of-line, Transaction on the CEC becomes the
Active Transaction. If the CEC is empty, the Transaction

Scheduler replenishes the CEC with the Transaction(s) from
the FEC with the lowest time value. This action also updates
the system clock.

The Transaction Scheduler then tries to move the Active
Transaction as far as it can in the simulation. In effect, the
Transaction Scheduler removes the Active Transaction from
the CEC, calls the routine for the next sequential Block (NSB),
and unless something extraordinary occurs, replaces the
Transaction in front of its peers (i.e. same priority) on the CEC.
This gives higher priority Transactions a chance to move in the
simulation. The CEC replacement can be modified by
PRIORITY and BUFFER blocks. After a Transaction enters a
BUFFER Block, it is replaced behind its peers on the CEC.
BUFFER blocks are useful if a reactivated Transaction must
get ahead of the Transaction which reactivated it. Other blocks
can interfere with the replacement of a Transaction on the
CEC. For example, ADVANCE(+) (i.e. positive time increment)
calculates a scheduled time and places the Transaction on the
FEC. Other blocks such as LINK, ENTER, SEIZE, and
PREEMPT can cause the Active Transaction to come to rest
on a Transaction Chain.

Removal from or replacement to the CEC has no effect on the
system clock. The simulated time remains the same until there
are no Transactions left on the CEC. Continual replacement of
the Active Transaction on the CEC gives newly reactivated
higher priority Transactions on the CEC a chance to become
the Active Transaction. When the Active Transaction comes to
rest on a Delay Chain or cannot move because of some other
condition, the Transaction Scheduler chooses another Active
Transaction and attempts to move it in the simulation.

The Movement of Transactions

Transactions must be on the CEC in order to move. Even
PREEMPTed or DISPLACEd Transaction must become the
Active Transaction before they can attempt entry into their new
destination Block.

Since a Transaction may be refused entry into a Block, a
Transaction scheduling may not lead to a Block entry. For this
reason, most simulations have fewer Block entries than
Transaction schedulings. On the other hand, EXECUTE blocks
can cause additional Block entries.

When the Active Transaction attempts to enter a Block, the
Transaction Scheduler calls the Block routine associated with
the next Block type. It is the Block routine which decides
whether or not the Transaction can enter the Block. Several
Block types can refuse to allow the Transaction to enter. These
are: ENTER, SEIZE, PREEMPT, GATE, TEST. In addition, if
the Transaction has not cleared all its preemptions, it will be
refused by ADVANCE(+) Blocks and will not be allowed to
leave ASSEMBLE, GATHER, or MATCH Blocks.

When the Active Transaction cannot enter any Block it is said
to "come to rest" within the simulation. It is then removed from
the CEC and placed on one of the Transaction chains
discussed above. Then, a different Transaction is chosen to be
the Active Transaction.

Blocking and Reactivation

The Active Transaction is "blocked" when it must wait for one
or more entities to change state. GATE, TEST, TRANSFER
BOTH, and TRANSFER ALL Blocks can require that specific
conditions be met at one or more entities before the Active
Transaction is allowed to proceed in the model. Each entity has
a Retry Chain for Transactions which were blocked while trying
to enter one of the above GPSS Blocks. When the state of the
entity is changed by some other Transaction, all Transactions
on the associated Retry Chain are replaced on the Current
Events Chain behind their priority peers.

Reactivation is the movement of blocked Transactions to the
CEC. If the Active Transaction changes the state of an entity, it
is possible that one or more Transactions will be reactivated
before the Active Transaction attempts to enter its next Block. If
a higher priority Transaction is reactivated, it will become the
Active Transaction. If you wish a newly reactivated Transaction
to progress immediately, you must either place the active
Transaction on the CEC behind its priority peers (BUFFER or
PRIORITY Block, BU option), or you must cause the
reactivated Transaction to have a higher priority than the old
active Transaction. When a reactivated Transaction becomes
the Active Transaction, the original blocking test is retried.

A Transaction is not permitted to be blocked on a test which
will never be retried. This will lead to an Error Stop.

If an entity state changes more than once before the system
clock is updated, some states may not be detected. This can
happen if the entity state is changed twice before the
suspended blocked Transaction tests the condition. Usually,
this possibility can be excluded by careful use of the BUFFER
Block.

Do not use TEST or GATE Blocks in Refuse Mode, or
TRANSFER (BOTH or ALL) to Block on User Variables.
Transactions cannot be Blocked on Named Values because
the latter do not have a Retry Chain. If you need to react to
values achieved by an integrated variable, you should
associate one or two Transaction generation thresholds with
the User Variable. You can do this in the INTEGRATE
Command. Otherwise, use a Savevalue Entity instead of a

User Variable.

 9.3. Synchronization

Assembly Sets

An Assembly Set is a collection of Transactions. Transactions
in the same Assembly Set are said to be related. When each
Transaction is created, it is given an integer denoting its
Assembly Set. Transactions created by GENERATE Blocks are
given distinct integers starting with 1. Transactions created by
SPLIT Blocks are given the Assembly Set of their parent.

A Transaction can change its Assembly Set by entering an
ADOPT Block.

Assembly Sets are useful for causing synchronization among
Transactions. It is easy to create, wait for, and destroy related
Transactions in a simulation. This makes it easy to represent
processes which at some point must wait for certain events to
occur. The following GPSS blocks are used for that purpose:

• ADOPT - Set Transaction�s Assembly Set.

• ASSEMBLE - Wait for and destroy related
Transactions.

• GATHER - Wait for related Transactions.

• MATCH - Wait for related Transaction to reach
conjugate MATCH Block.

• SPLIT - Create related Transactions.

 9.4. Preemption and
Displacement
Preemption is the replacement of one Transaction which owns
a Facility by another Transaction. The old Transaction is
removed from ownership of the Facility and is placed on the
Interrupt Chain of the Facility. The new Transaction becomes
the owner of the Facility. Preemption occurs when a
Transaction enters a PREEMPT Block, and differs depending
on the mode of the PREEMPT Block.

PREEMPT Blocks operate in either "Priority Mode" or "Interrupt
Mode". In either case, if a Transaction is preempted, it is
placed on the Interrupt Chain of the Facility and ownership is

given to the Active Transaction. However, the behavior of the
two modes differs when the Active Transaction cannot gain
ownership of the Facility. If the Active Transaction attempts to
enter a Priority Mode PREEMPT Block, and the Facility is
owned by another Transaction of equal or higher priority, the
Active Transaction comes to rest on the Facility�s Delay Chain
FIFO (first in, first out) within priority. If the Active Transaction
attempts to enter an Interrupt Mode PREEMPT Block, and
there already is a Transaction preempted at the Facility, the
Active Transaction comes to rest on the Pending Chain of the
Facility.

PREEMPT and DISPLACE Blocks are provided to disrupt
service periods. It is common to simulate a service time by
having a Transaction SEIZE a Facility and then enter an
ADVANCE Block with a positive time argument. When a
Transaction is PREEMPTed at any Facility, or if it is
DISPLACEd, if it is on the FEC it must be removed. This is
done without changing the system clock. Since you may
choose to continue a service period where you left off, a
residual time is saved when a Transaction is removed from the
FEC due to a DISPLACE, PREEMPT or FUNAVAIL Block
entry. The residual time is the scheduled Transaction time
(BDT) minus the current system clock time. This time is saved
automatically and, in addition, it may be stored in a Transaction
parameter. When the Transaction regains ownership of all
Facilities for which it contends, it may be automatically
rescheduled on the FEC using the residual time. If you choose,
you may control this process explicitly by the options available
in PREEMPT and FUNAVAIL statements.

A preempted Transaction cannot exist on the FEC. If a
Transaction on the FEC is preempted, it is removed from the
FEC and placed on a Facility�s Interrupt Chain. If a preempted
Transaction attempts to enter an ADVANCE Block with a
positive time increment, it is refused entry. When all
preemptions have been cleared for a Transaction, it may then
enter an ADVANCE(+) Block. If the PREEMPTed Transaction
has been removed from contention for the Facility with the RE
option of the PREEMPT Block, the preempted Transaction is
not restricted from the FEC.

Preempted Transactions can move through the simulation and
can be preempted from any number of Facilities. A Transaction
is represented on the Interrupt Chain of each Facility where it
has been PREEMPTed. Since a PREEMPTed Transaction
may still move through the simulation, a Transaction may be
PREEMPTed from any number of Facilities at any one time.
However, a Transaction cannot SEIZE or PREEMPT a Facility
at which it is currently PREEMPTed.

A Transaction may be displaced from one Block and moved to
another. If a Transaction is on the FEC, CEC, a Delay Chain, a
Pending Chain, or a User Chain and is PREEMPTed by a
PREEMPT Block with a C operand, or is displaced by a
DISPLACE Block, it is removed from the original chain,

scheduled for a new Block, and placed on the CEC.

A preempted Transaction, which is still in contention for a
Facility, cannot enter a TERMINATE Block. Such Transactions
must enter a RELEASE or RETURN Block before they are
permitted to TERMINATE. Alternately, if you intend to
TERMINATE a preempted Transaction, you could remove the
Transaction from contention for the Facility using the RE option
in the PREEMPT Block.

Chapter 10 -
Performance Tips
This chapter contains a few tips that may enhance the
performance of your simulations. Debugging and
troubleshooting are treated in Chapter 13.

Simulations always proceed slowly when one or more online
windows are open upon them. If speed is important, keep the
dynamic windows closed as much as possible.

GPSS World is designed for multitasking operation. However,
the message related task switching can sometimes cause
window update delays. You can alleviate this by opening fewer
online windows, by Halting the simulation before opening
multiple views, and by running one simulation at a time.

 10.1. Memory Allocations
No entity allocations are required by GPSS World. All are
automatic. For this reason there is no REALLOCATE
statement.

Since GPSS World utilizes virtual memory, you can use more
memory for your simulations than exists in your computer. This
generally causes extra disk accesses to occur. If you find that
your simulations are taking longer to run because of this, you
can remedy the situation by adding more physical memory to
your computer.

For safety sake there is a limit to the size of virtual memory
requests which occur during a simulation. This prevents the
inadvertent access to a large amount of virtual memory causing
performance degradation. If you need to change this limit, you
can do so in the Simulate Page of the Model Settings
Notebook.

 10.2. Identifying
Congestion Points
A common cause of performance problems is an unlimited
creation of Transactions inside your simulation.

It may be useful to view the simulation through each of the
graphics windows. This will often show you the reason that
your simulation is growing. Look in the Blocks window for
congestion points where Transactions are accumulating. Look
at the details view of each of the other entity windows and
check the size of the Retry Chain. This indicate the number of
Transactions blocked on a state change of each entity.

You may want to produce a Standard Report to study the state
of the simulation. To force GPSS World to produce a report,
you can simply type:

REPORT

A buildup of Transactions may be an indication of what would
really happen under the conditions you have simulated. For
example, if your arrival rates exceed the capacity of the
simulated resources, queues will build up indefinitely. In this
case, you would expect to run out of memory eventually. Your
simulation is telling you that a system so designed would be
inadequate to handle the simulated load

10.3. Operating Tips.
1. Simulations run
MUCH slower when
one or more dynamic
windows are open. A
large number of
messages must be
sent continually to
update the windows.
You can speed
performance
immensely by closing
all online windows.

2. Generally,
simulations without
Data Stream I/O run
faster when only one
simulation is run at a
time. This avoids
additional task
switching overhead.

3. If performance is
important, be sure that
you have a hardware
math coprocessor
capability. You may be
able to find a

coprocessor which
runs on a faster clock
than exists on the
motherboard of your
personal computer.

4. If all these methods
fail to improve
performance
satisfactorily, you
should consider a
CPU upgrade. Be sure
to get hardware math
coprocessor
capabilities. All GPSS
World products can
benefit from
symmetric
multiprocessing. The
Intel variants are
optimized for Pentium.

 10.4. Modeling Tips
The following changes to your models may speed up the
running of your simulations.

1. If your simulation is
behaving in an
unexpected manner,
you should HALT the
simulation and
determine if
Transactions are
building up anywhere.
Start with the Blocks
Window and look for
red Blocks which
indicate a blocking
condition. More
information is
available in the
Detailed view. Begin
STEPping through the
simulation so you can
see the dynamics of
the Transaction flow.
Open the Detailed
View of each Window
type and look for large
Retry Chains. That
would indicate an
unsatisfied blocking

condition.

2. A performance
problem can result
from retesting blocked
Transactions. Several
of the most powerful
GPSS blocks carry
with them the danger
that much computer
time will be wasted on
unsuccessful testing.
When a Transaction is
blocked, the
Simulation Object
places it on one or
more Retry Chains so
that a retest may be
scheduled when
conditions change. If
you use GATE, TEST,
TRANSFER BOTH, or
TRANSFER ALL
blocks and there are
large Retry Chains ,
chances are that a lot
of computer time is
spent in unsuccessful
tests. You should
arrange your model to
minimize unsuccessful
testing in these
Blocks.

3. If you have
Transactions waiting
for a specific condition
and there is no
chance of a
successful test, it is
more efficient to place
blocked Transactions
on a User Chain until
there is a possibility of
success.

4. GPSS is a powerful
simulation language
unlike FORTRAN and
other programming
languages.
Transactions do not
have to be
GENERATEd on
every clock tick.
GPSS schedules

future events and
unblocks Transactions
automatically, you do
not have to keep
testing.

5. Replace Refuse
Mode GATE and
TEST Blocks with
alternate constructs. If
this is not possible,
test conditions which
change infrequently.

6. Use a GPSS
FUNCTION statement
to define probability
distributions instead of
a complex expression
using library functions.

7. COUNT and
SELECT blocks can
generate a lot of
testing. Try to replace
these with less
powerful Blocks
closely matched to
your model.

8. You can force the
Simulation Object to
use a one-day
calendar for
implementation of the
Future Events Chain.
This is a performance
tuning option that may
improved the
performance of
simulation with a small
FEC.

9. You can set aside a
block of contiguous
Transaction
Parameter numbers
and cause Simulation
Object to allocate
them all at once and
to access them by
direct addressing. This
eliminates a serial
search for Transaction
Parameters. Such
allocations are called

Parameter Blocks,
and are specified in
the Simulate Page of
the Model Settings
Notebook, and are
discussed in Chapter
2. You can use the
EQU Command to
cause named
Parameters to reside
in a Parameter Block.

10. Data Stream
Blocks can be
computationally
expensive. You can
speed processing by
using a large amount
of data on a small
number of text lines.
For example, use text
lines that contain
many data items. You
can parse these
structures using the
string procedures in
the Procedure Library.

11. You should keep
Transaction Priorities
contiguous. Use 1, 2,
3, not 12789, -30977,
22. This speeds up
the overhead related
to priority queues.
Zero is the default.

12. At the expense of
some interactivity, the
simulation Poll count
can be increased to
reduce the polling
overhead in the
Simulation Object.
This causes message
polling to be less
frequent. To do so
enter a higher number
in the Simulate Page
of the Model Settings
Notebook.

13. Integrations are
generally slow. If you
know the analytic
solution to the

ordinary differential
equation, using it in an
FVARIABLE, or PLUS
Procedure, is much
faster than actually
playing out the
integration numerically
using one or more
INTEGRATE
Statements.

14. A larger
Integration Error
Tolerance will make
integrations run faster,
at the expense of
some accuracy. The
Integration Tolerance
is set in the Simulate
Page of the Model
Settings Notebook.
The default is 10-6.

15. Using
parts-per-thousand in
Fractional Mode
TRANSFER blocks
instead of a decimal
fraction is a little
faster.

16. MIN and MAX
operators in GPSS
Blocks are time
consuming. It may be
faster to create a
PLUS Procedure to
select entities.

17. Turn off sections
of the Standard
Report that you do not
need. You can do this
in the Report page of
the Model Settings
Notebook.

18. Real numbers in
Numeric Groups are
searched much more
slowly than integers. If
real numbers must be
used, consider using a
coding algorithm so
that only integers are
actually used as

Group members.

Chapter 11 - Standard
Reports
GPSS World provides for extensive statistics reporting that
often gets you the results you need with no additional effort.
The final states of all traditional GPSS Entities are reported in a
Standard Report that is created automatically when each
simulation terminates.

If you have additional reporting needs, you should consult the
discussion of Data Streams in Chapter 4.

 11.1. Report Management
Normally, GPSS World creates a detailed Standard Report of
each simulation. Each Report Object is automatically created
unless you specify NP as operand B of the START Command.
You can also suppress the creation of Standard Reports using
Settings. To do so, be sure Create Standard Reports is
not checked in the Report page of the Model Settings
Notebook.

The REPORT and START Commands are discussed in
Chapter 6.

 11.1.1. Report Windows

\You can cause a Report Object to be opened for each newly
created Standard Report. To do so, check Create Standard
Reports and In Windows in the Report page of the Model
Settings Notebook.

 11.1.2. Controlling Report
Contents

You can select the contents of a model’s Standard Reports
using a set of checkboxes in the Report page of the Model
Settings Notebook. This is opened when you select Edit /
Settings from the Main Menu. This is discussed in Chapter 2.

Report Windows have full text editing, font, color, and printing
capabilities. This is discussed in Chapter 2, under the section entitled,
Text Windows.

 11.2. Sample Report

 11.2.1. Model

The Model File that follows was used to generate the sample
report output in the next section. When this Model File, named
SAMPLE9.GPS, is Translated and run, it produces the
automatic report named SAMPLE9.001. The model’s only
purpose is to display all the various graphics and text windows
in the Tutorial Manual in Chapter 1, Lesson 11 and to
demonstrate the layout of the report and meanings of the
various parts of the report in this chapter.

; GPSS World Sample File - SAMPLE9.GPS Model to demo graphics
windows

Pool STORAGE 400 ;Define Storage

Matrix1 MATRIX ,5,5 ;Define Matrix

Transit TABLE M1,200,200,20 ;Transit time in wait ; and
process

GENERATE (Exponential(1,0,100)) ;Uses built in

; Exponential dist.

JOIN Maingrp ;Xact joins grp called ; Maingrp

JOIN Numgrp,9999 ;Add 9999 to Numeric

; group Numgrp

SAVEVALUE Addup+,1 ;Total of Transactions

; in model ASSIGN Param_1,232 ;Assign Xact parameter

JOIN Numgrp,P$Param_1 ;Put value in Param1

; parameter in ; Numgrp group

LOGIC S Switch_1 ;Turn on a logic switch MSAVEVALUE
Matrix1,2,2,QA$Tot_Process ;Put avg. queue content ; in matrix
cell QUEUE Tot_Process ;Queue for process time SEIZE Facility1
;Own first Facility

LINK Chain1,FIFO,Nxtblk ;Put on Userchain if ; Facility busy

Nxtblk SEIZE Facility2 ;Own a second Facility

SEIZE Facility3 ;Own a third Facility

QUEUE Process_Time ;Keep track of process

; times

ADVANCE 100,(Exponential(1,0,100)) ;Uses built in

; Exponential Dist.

DEPART Process_Time ;Record length of

; process

TABULATE Transit ;Add wait + process

; time to Transit ; Table

RELEASE Facility1 ;Give up 1st Facility

ADVANCE 20 ;Delay time for Fac 2&3

RELEASE Facility2 ;Give up 2nd Facility

ADVANCE 10 ;Extra delay time-Fac 3 RELEASE Facility3 ;Give up
3rd Facility

DEPART Tot_Process ;Leave Queue

UNLINK Chain1,Nxtblk ;Take all waiting Xacts ; off Userchain

ENTER Pool,100 ;Place 100 units in the

; Storage

LOGIC R Switch_1 ;Turn off logic switch LEAVE Pool,50 ;Take 50
units from

; Storage

SAVEVALUE Collect-,1 ;Show negative Savevalue ; in model

REMOVE Maingrp ;Remove Xact from group ; Maingrp

ADVANCE 50,1 ;Wait 10 time units

LEAVE Pool,50 ;Take 50 units from

; Storage

Finis TERMINATE 1 ;Destroy Xact

 11.2.2. Report

This section contains a standard report generated by the
program listed in Section 11.2.1. Each item is explained
individually in Section 11.3.

Let’s now examine the items included in a standard GPSS
World Report. This section includes the complete report
resulting from the simulation in Section 11.2.1. The individual
items are considered separately in Section 11.3.

GPSS World Simulation Report - SAMPLE9.1.1

Tuesday June 6, 2000 14:00:59

START TIME END TIME BLOCKS FACILITIES STORAGES

0.000 5187.692 32 3 1

NAME VALUE

ADDUP 10007.000

CHAIN1 10012.000

COLLECT 10017.000

FACILITY1 10011.000

FACILITY2 10014.000

FACILITY3 10015.000

FINIS 32.000

MAINGRP 10005.000

MATRIX1 10003.000

NUMGRP 10006.000

NXTBLK 12.000

PARAM_1 10008.000

POOL 10002.000

PROCESS_TIME 10016.000

SWITCH_1 10009.000

TOT_PROCESS 10010.000

TRANSIT 10004.000

LABEL LOC BLOCK TYPE ENTRY COUNT CURRENT COUNT RETRY

1 GENERATE 61 1 0

2 JOIN 60 0 0

3 JOIN 60 0 0

4 SAVEVALUE 60 0 0

5 ASSIGN 60 0 0

6 JOIN 60 0 0

7 LOGIC 60 0 0

8 MSAVEVALUE 60 0 0

9 QUEUE 60 9 0

10 SEIZE 51 0 0

11 LINK 51 0 0

NXTBLK 12 SEIZE 51 0 0

13 SEIZE 51 0 0

14 QUEUE 51 0 0

15 ADVANCE 51 1 0

16 DEPART 50 0 0

17 TABULATE 50 0 0

18 RELEASE 50 0 0

19 ADVANCE 50 0 0

20 RELEASE 50 0 0

21 ADVANCE 50 0 0

22 RELEASE 50 0 0

23 DEPART 50 0 0

24 UNLINK 50 0 0

25 ENTER 50 0 0

26 LOGIC 50 0 0

27 LEAVE 50 0 0

28 SAVEVALUE 50 0 0

29 REMOVE 50 0 0

30 ADVANCE 50 0 0

31 LEAVE 50 0 0

FINIS 32 TERMINATE 50 0 0

FACILITY ENTRIES UTIL. AVE. TIME AVAIL. OWNER PEND INTER RETRY
DELAY

FACILITY1 51 0.937 95.278 1 51 0 0 0 9

FACILITY2 51 0.853 86.719 1 51 0 0 0 0

FACILITY3 51 0.949 96.523 1 51 0 0 0 0

QUEUE MAX CONT. ENTRY ENTRY(0) AVE.CONT. AVE.TIME AVE.(-0)
RETRY

TOT_PROCESS 11 10 60 0 6.439 556.700 556.700 0

PROCESS_TIME 1 1 51 0 0.660 67.112 67.112 0

STORAGE CAP. REM. MIN. MAX. ENTRIES AVL. AVE.C. UTIL. RETRY
DELAY

POOL 400 400 0 150 5000 1 23.628 0.059 0 0

TABLE MEAN STD.DEV. RANGE RETRY FREQUENCY CUM.%

TRANSIT 553.184 307.992 0

_ - 200.000 8 16.00

200.000 - 400.000 10 36.00

400.000 - 600.000 7 50.00

600.000 - 800.000 12 74.00

800.000 - 1000.000 11 96.00

1000.000 - 1200.000 2 100.00

USER CHAIN SIZE RETRY AVE.CONT ENTRIES MAX AVE.TIME

CHAIN1 0 0 0.277 48 1 29.927

XACT GROUP GROUP SIZE RETRY

MAINGRP 10 0

NUMERIC GROUP GROUP SIZE RETRY

NUMGRP 2 0

LOGICSWITCH VALUE RETRY

SWITCH_1 1 0

SAVEVALUE RETRY VALUE

ADDUP 0 60.000

COLLECT 0 -50.000

MATRIX RETRY INDICES NUMERIC VALUE

MATRIX1 0

Intermediate Values are Zero.

(2,2) 6.413

Intermediate Values are Zero.

CEC XN PRI M1 ASSEM CURRENT NEXT PARAMETER VALUE

61 0 5187.692 61 1 2

FEC XN PRI BDT ASSEM CURRENT NEXT PARAMETER VALUE

51 0 5389.554 51 15 16

PARAM_1 232.000

62 0 5523.253 62 0 1

This section explains the items in the standard GPSS World
report.

Title

GPSS World Simulation Report - SAMPLE9.1.1

Tuesday June 6, 2000 13:20:07

The title line of the standard report is taken from the name of
the Model File that produced the report. The Date and Time of
the running of the model is also included.

General Information
START TIME END TIME BLOCKS FACILITIES STORAGES

0.000 11359.609 32 3 1

• START TIME. The absolute system clock at the
beginning of the measurement period. Utilizations
and space-time products are based on the
START TIME. The START TIME is set equal to
the absolute system clock by a RESET or CLEAR
statement.

• END TIME. The absolute clock time that the
termination count became 0.

• BLOCKS. The number of Block entities in the
simulation at the end of the simulation.

• FACILITIES. The number of Facility entities in
the simulation at the end of the simulation.

• STORAGES. The number of Storage entities in
the simulation at the end of the simulation.

Names
NAME VALUE

ADDUP 10007.000

CHAIN1 10012.000

COLLECT 10017.000

• NAME. User assigned names used in your
GPSS World model since the last Translation.

• VALUE. The numeric value assigned to the
name. System assigned numbers start at 10000.

Blocks
LABEL LOC BLOCK TYPE ENTRY COUNT CURRENT COUNT RETRY

1 GENERATE 61 1 0

2 JOIN 60 0 0

3 JOIN 60 0 0

4 SAVEVALUE 60 0 0

5 ASSIGN 60 0 0

6 JOIN 60 0 0

7 LOGIC 60 0 0

8 MSAVEVALUE 60 0 0

9 QUEUE 60 9 0

10 SEIZE 51 0 0

11 LINK 51 0 0

NXTBLK 12 SEIZE 51 0 0

• LABEL. Alphanumeric name of this Block if
given one.

• LOC. Numerical position of this Block in the
model. "Location".

• BLOCK TYPE. The GPSS Block name.

• ENTRY COUNT. The number of Transactions
to enter this Block since the last RESET or
CLEAR statement or since the last Translation.

• CURRENT COUNT. The number of
Transactions in this Block at the end of the
simulation.

• RETRY. The number of Transactions waiting for
a specific condition depending on the state of this
Block entity.

Facilities
FACILITY ENTRIES UTIL. AVE. TIME AVAIL. OWNER PEND INTER RETRY
DELAY

FACILITY1 51 0.937 95.278 1 51 0 0 0 9

FACILITY2 51 0.853 86.719 1 51 0 0 0 0

• FACILITY. Name or number of the Facility entity.

• ENTRIES. The number of times the Facility was
seized or preempted since last RESET or CLEAR

command or since the last Translation of the
model.

• UTIL. The fraction of simulated time in the last
measurement period that the Facility was owned.
A measurement period begins with the
Translation of a model or the issuing of a RESET
or CLEAR command.

• AVE. TIME. The average time of ownership by
individual Transactions during the measurement
period. A measurement period begins with a
Translation of the model, or when a RESET or
CLEAR command is issued.

• AVAIL. The availability state of the Facility entity
at the end of the simulation. 1 means available, 0
means unavailable.

• OWNER. The number of the Transaction which
owns the Facility entity. 0 means the Facility is
not owned.

• PEND. The number of Transactions waiting to
preempt this Facility by entering "Interrupt Mode"
PREEMPT blocks.

• INTER. The number of Transactions currently
preempted at this Facility. The count of
Transactions on the interrupt chain.

• RETRY. The number of Transactions waiting for
a specific condition depending on the state of this
Facility entity.

• DELAY. The number of Transactions waiting to
SEIZE the Facility. This chain also contains
Transactions waiting to preempt the Facility in
"Priority Mode" PREEMPT blocks.

Queues
QUEUE MAX CONT. ENTRY ENTRY(0) AVE.CONT. AVE.TIME AVE.(-0)
RETRY

TOT_PROCESS 11 10 60 0 6.439 556.700 556.700 0

PROCESS_TIME 1 1 51 0 0.660 67.112 67.112 0

• QUEUE. Name or number of the Queue entity.

• MAX. The maximum content of the Queue entity
during the measurement period. A measurement
period begins with the Translation of a model or
the issuing of a RESET or CLEAR command.

• CONT. The current content of the Queue entity

at the end of the simulation period.

• ENTRY. Entry count. The total count of Queue
entries during the measurement period.

• ENTRY(0). "Zero entry" count. The total count
of Queue entries with a 0 residence time.

• AVE.CONT. The time weighted average of the
Queue entity content during the measurement
period. The space-time product divided by the
time duration of the measurement period.

• AVE.TIME. The average time per unit of Queue
content utilized during the measurement period.
The space-time product divided by the total entry
count.

• AVE.(-0). The average time per unit of Queue
content utilized during the measurement period,
adjusted for "zero entries". The space-time
product divided by (the total entry count less the
zero entry count).

• RETRY. The number of Transactions waiting for
a specific condition depending on the state of this
Queue entity.

Storages
STORAGE CAP. REM. MIN. MAX. ENTRIES AVL. AVE.C. UTIL. RETRY
DELAY

POOL 400 400 0 150 5000 1 23.628 0.059 0 0

• STORAGE. Name or number of the Storage
entity.

• CAP. The Storage capacity of the Storage entity
defined in the STORAGE statement.

• REM. The number of unused Storage units at
the end of the simulation.

• MIN. The minimum number of Storage units in
use during the measurement period. A
measurement period begins with the Translation
of a model or the issuing of a RESET or CLEAR
command.

• MAX. The maximum number of Storage units in
use during the measurement period.

• ENTRIES. The number of "entries" into the
Storage entity during the measurement period.
The total accumulation of operand B of ENTER
statements.

• AVL. The availability state of the Storage entity
at the end of the simulation. 1 means available, 0
means unavailable.

• AVE.C. The time weighted average of the
Storage content during the measurement period.
The space-time product divided by the time
duration of the measurement period.

• UTIL. The fraction of the total space-time
product of the Storage entity utilized during the
measurement period.

• RETRY. The number of Transactions waiting for
a specific condition depending on the state of this
Storage entity.

• DELAY. The number of Transactions waiting to
enter ENTER blocks on behalf of this Storage
entity.

Tables and Qtables
TABLE MEAN STD.DEV. RANGE RETRY FREQUENCY CUM.%

TRANSIT 553.184 307.992 0

_ - 200.000 8 16.00

200.000 - 400.000 10 36.00

400.000 - 600.000 7 50.00

600.000 - 800.000 12 74.00

800.000 - 1000.000 11 96.00

1000.000 - 1200.000 2 100.00

• TABLE. Name or number of the Table or Qtable
entity.

• MEAN. The weighted arithmetic average of
tabulated values.

• STD.DEV. The weighted sample standard
deviation of tabulated values.

S.D.= SQR((SOS/(COUNT-1)) -
(SUM2/(COUNT)(COUNT-1)))

Where SOS is the accumulated sum-of-squares.

• RANGE. The lower and upper limits of the
frequency class being reported. Values of the
Table argument which are greater than the lower
limit and less than or equal to the upper limit
cause this frequency class to be updated. The B

operand of the TABULATE statement can be
used to provide a weighting factor. Frequency
classes with accumulations of 0 are not reported.

• RETRY. The number of Transactions waiting for
a specific condition depending on the state of this
Table entity.

• FREQUENCY. The total weighted count of
tabulated items to fall within this range. The total
of all TABULATE B operands.

• CUM.% The cumulative frequency count
expressed as percent of total count.

Userchains
USER CHAIN SIZE RETRY AVE.CONT ENTRIES MAX AVE.TIME

CHAIN1 0 0 0.277 48 1 29.927

• USER CHAIN. Name or number of the
Userchain entity.

• SIZE. The number of Transactions on the User
Chain at the end of the measurement period.

• RETRY. The number of Transactions waiting for
a specific condition depending on the state of this
Userchain entity.

• AVE.CONT. The time weighted average of the
User Chain occupancy count during the
measurement period. The space-time product
divided by the time duration of the measurement
period.

• ENTRIES. The total number of Transactions
placed on the User Chain during the
measurement period.

• MAX. The maximum number of Transactions on
the User Chain during the measurement period.

• AVE.TIME. The average time per Transaction
on the User Chain during the measurement
period. The space-time product divided by the
total entry count.

Transaction Groups
XACT GROUP GROUP SIZE RETRY

MAINGRP 10 0

• XACT GROUP. Name or number of the
Transaction Group entity.

• GROUP SIZE. The number of Transactions
which are members of the group at the end of the
simulation.

• RETRY. The number of Transactions waiting for
a specific condition depending on the state of this
Transaction Group entity.

Numeric Groups
NUMERIC GROUP GROUP SIZE RETRY

NUMGRP 2 0

• NUMERIC GROUP. Name or number of the
Numeric Group entity.

• GROUP SIZE. The number of numeric values
which are members of the group at the end of the
simulation.

• RETRY. The number of Transactions waiting for
a specific condition depending on the state of this
Numeric Group entity.

Logicswitches
LOGICSWITCH VALUE RETRY

SWITCH_1 1 0

• LOGICSWITCH. Name or number of the
Logicswitch entity.

• VALUE. The value of the Logicswitch entity at
the end of the simulation. 1 denotes "set" or
"true", 0 denotes "reset" or "false".

• RETRY. The number of Transactions waiting for
a specific condition depending on the state of this
Logicswitch entity.

Savevalues
SAVEVALUE RETRY VALUE

ADDUP 0 60.000

COLLECT 0 -50.000

• SAVEVALUE. Name or number of the
Savevalue entity.

• VALUE. The value of the Savevalue entity at
the end of the simulation.

• RETRY. The number of Transactions waiting for
a specific condition depending on the state of this
Savevalue entity.

Matrix Entities
MATRIX RETRY INDICES NUMERIC VALUE

MATRIX1 0

Intermediate Values are Zero.

(2,2) 6.413

Intermediate Values are Zero.

• MATRIX. Name or number of the Matrix entity.

• RETRY. The number of Transactions waiting for
a specific condition depending on the state of this
Matrix entity.

• INDICES. Up to 6 integers that specify the
element of the Matrix.

• NUMERIC VALUE. The value of this Matrix
entity element at the end of the simulation.
Elements with 0 values are reported in groups.

The Current Events Chain
CEC XN PRI M1 ASSEM CURRENT NEXT PARAMETER VALUE

61 0 5187.692 61 1 2

• XN. Transaction number of each Transaction on
the Current Events Chain

• PRI. Scheduling priority of the Transaction.

• M1. Mark time. The time the Transaction, or its
earliest ancestor, was GENERATEd, or the time
the Transaction entered a MARK Block with no
operands.

• ASSEM. The Assembly Set number of the
Transaction.

• CURRENT. The number of the Block where the
Transaction existed at the end of the simulation
or at the time of this report.

• NEXT. The number of the next Block scheduled
to be entered by the Transaction.

• PARAMETER. The names or numbers of
parameters of the Transaction.

• VALUE. The value of the parameter.

The Future Events Chain
FEC XN PRI BDT ASSEM CURRENT NEXT PARAMETER VALUE

51 0 5389.554 51 15 16

PARAM_1 232.000

62 0 5523.253 62 0 1

• XN. Transaction number of each Transaction on
the Future Events Chain.

• PRI. Scheduling priority of the Transaction.

• BDT. Block departure time. The time of the
absolute system clock when the Transaction is
scheduled to leave the Future Events Chain.

• ASSEM. The Assembly Set number of the
Transaction.

• CURRENT. The number of the Block where the
Transaction existed at the end of the simulation
or at the time of this report.

• NEXT. The number of the next Block scheduled
to be entered by the Transaction.

• PARAMETER. The names or numbers of
parameters of the Transaction.

• VALUE. The value of the parameter.

Chapter 12 - GPSS
World Statistics

 12.1. Collecting Statistics
GPSS World has a versatile statistics collection capability. For
uncomplicated simulations, the statistics in the Standard
Report and the ANOVA Library Procedure will meet the needs
of most users. GPSS World will collect and report the
simulation statistics automatically. This is discussed in Chapter
11.

If you need more detailed statistics, the use of variable entities
and PLUS Procedures provides excellent control in the
collection of statistics. In these definitions, the power of the
mathematical library functions is at your disposal. You then
define statistics tables in one or more TABLE or QTABLE
Statements. The actual recording of data is triggered by one or
more TABULATE Blocks in the simulation. Each time a
TABULATE is entered, a datum is registered in the table.
Alternately, you could record values in Savevalue or Matrix
Entities just prior to the completion of the simulation. Tables,
Qtables, Savevalues, and Matrices are all reported
automatically in the Standard Report, if you have checked them
in the Report Page of the Model Settings Notebook.

QTABLE Commands provide an easier way to collect statistics
based on Queue Entities. In this case, the tabulations are
triggered by entry into DEPART Blocks instead of TABULATE
Blocks.

You can accumulate simulation results in a Result File by using
the Data Stream Blocks, as discussed in Chapter 4. This will
accumulate simulation results in an historical data base which
can be used with the ANOVA Window to calculate confidence
intervals and to perform an automatic Analysis of Variance.

ANOVA

If you are new to simulation, you will notice that when you
repeat a simulation in the same session you may get different
results due to randomness. Such effects must be carefully
distinguished from the real effects caused by new designs in
your simulated systems. The ANOVA Library Procedure
provides you with a simple and yet powerful technique for
establishing that your results do or do not emerge above the
noise level caused by randomness.

In order to measure the amount of random noise, you must
repeat your simulations changing nothing except the random
number seeds. These repeat runs are called replications and

are important for measuring the statistical noise, i.e. the
Standard Error, in your experiment. In the simplest scheme,
each different design you choose to simulate would be
replicated several times. Then the ANOVA Library Procedure
will use the data to detect if the effects of changing the factors
of your experiment were significantly greater than the statistical
noise level. The results of this analysis will appear
automatically in the Simulation Object's Journal Window.

The ANOVA Procedure provides for push button data analysis. It
calculates Confidence Intervals and an Analysis of Variance of
simulation results. Normally, during an experiment, you fill a special
global Matrix Entity called a Result Matrix with the results of the
simulations and then pass it as an argument to the ANOVA
Procedure.

A Result Matrix is built according to a few simple rules. :

1. The Matrix Entity must be in Global Scope, i.e. cannot be a
TEMPORARY MATRIX.

2. The Matrix must have between 1 and 5 dimensions, inclusively, for
the factors of the experiment with exactly one additional dimension
(the last) for replicates.

3. When the Matrix is defined, each dimension must declare the
maximum number of treatment levels for each factor, with the last
dimension declaring the maximum number of replicates within each
level.

Therefore a Result Matrix can have up to 6 dimensions, supporting a
maximum of a 5 factor multiway experiment. (GPSS World Version
4.0 supports only one way ANOVA)

It is up to you to keep track which matrix index values are to be used
for each level of each factor when you record a result into the matrix.
For example, suppose we wanted to build a Result Matrix for an
experiment which examined the effect of the number of bank tellers
on customer waiting time. Since Matrix indices are 1-relative we
could simply use the number of tellers. In that case we would place 3
replicates of simulating two tellers into the following Matrix
elements:

ResultMatrix[2,1], ResultMatrix[2,2], and ResultMatrix[2,3]

Usually though, it won't be so easy, and we will have to associate
factor levels with distinct index values. If the factor levels to be used
were 12 tellers and 16 tellers, we could associate the 12 teller level
with the index value of 1, and the 16 teller level with the index of 2.
This is arbitrary. The above three Matrix Elements would then take
the replicates simulating the effects of 16 tellers. Qualitative factors
such as brand name would always need to be encoded in a similar
way.

Another point concerns the type of numerical result expected by
ANOVA. In general, it is best to use calculated averages from the
simulation as result metrics. The reason for this is that an average of

about 20 or more individual values tends to be Normally distributed
according to the Central Limit Theorem of Statistics. Drastic
departures from normality in the chosen result metrics should be
avoided because they violate the assumptions of the Analysis of
Variance and the calculations of Confidence Intervals.

An example of a PLUS Experiment and ANOVA can be found in the
OneWay.gps sample Model, which is discussed in detail in Lesson 19
of the GPSS World Tutorial Manual.

We now turn to a sample report generated by passing a
completed Result Matrix to the ANOVA Procedure. Then, the
ANOVA table is automatically printed in the Simulation's
Journal Window. If sufficient data has been read, descriptive
statistics for each treatment level, including a 95% confidence
interval is calculated. Also, if there is sufficient data, an ANOVA
table is built. These calculations are displayed at the bottom of
the ANOVA Window.

• If there are fewer
than 2 treatment
levels, only the
descriptive statistics,
and not the ANOVA
table, will be written.

• There must be at
least 2 replications in
each treatment level.
Otherwise only the
descriptive statistics,
and not the ANOVA
table, will be written.

Here is an example of the use of the ANOVA Procedure.

 ANOVA

 Source of Sum of Degrees of Mean F

 Variance Squares Freedom Square

 Treatments 545835.682 1 545835.682 1329.059

 Error 1642.773 4 410.693

 Total 547478.455 5

 Count Mean Std. Dev. Min Max 95% Conf.

 13 190.13 12.75 176.80 202.20 31.67

 23 793.37 25.67 772.70 822.10 63.77

 Figure 12�1. ANOVA Results.

The ANOVA results in the Journal Window displays descriptive
statistics under the ANOVA table. These values are calculated
for each treatment level, and include:

• Treatment - Numeric treatment level.

• Count - Number of result values in the treatment level.

• Mean - The mean of result values in the treatment level.

• Std. Dev. - The standard deviation of the results in the
treatment level.

• Minimum - The least value of results in the treatment level.

• Maximum - the greatest value of results in the treatment level.

• 95% Conf. - An approximate half-range for a 95% confidence
interval for the mean of the treatment level. For example, the
95% confidence interval for the mean result in treatment 2,
above, would be (190.13 - 12.75, 190.13 + 12.75) or (177.38,
202.88).

In the ANOVA table, we first determine the degrees of
Freedom of the Error and Treatments to be 4 and 1,
respectively. Then we take the critical F value from row 4,
column 1, in the following table. The critical value of F, at the
95% level, is 7.71.

Table 12—3. Critical values of F, at 95% Level

 Degrees of Degrees of
Freedom of Treatments

 Freedom of Error 1 2 3
4 5 6

1 161 200

216 225 230 234

2 18.5 19.0
19.2 19.2 19.3 19.3

3 10.1 9.55
9.28 9.12 9.01 8.94

4 7.71 6.94
6.59 6.39 6.26 6.16

5 6.61 5.79
5.41 5.19 5.05 4.95

6 6.00 5.14
4.76 4.53 4.39 4.28

7 5.59 4.74
4.35 4.12 3.97 3.87

8 5.32 4.46
4.07 3.83 3.69 3.58

9 5.12 4.27
3.86 3.69 3.48 3.37

10 4.97 4.10
3.71 3.48 3.33 3.22

11 4.84 3.98
3.59 3.36 3.20 3.10

12 4.74 3.89
3.49 3.26 3.11 3.00

13 4.67 3.81
3.41 3.18 3.03 2.92

14 4.60 3.74
3.34 3.11 2.96 2.85

15 4.54 3.68
3.29 3.06 2.90 2.79

16 4.49 3.63
3.24 3.01 2.85 2.74

17 4.45 3.59
3.20 2.97 2.81 2.70

18 4.41 3.56
3.16 2.93 2.77 2.66

19 4.38 3.52
3.13 2.90 2.74 2.63

20 4.35 3.49
3.10 2.87 2.71 2.60

Since our calculated F value of 1329.059 is larger than 7.71,
we conclude that the difference between treatments is
significant.

If your results are not significant, you should consider
increasing the length of the simulation runs, or increasing the
number of replications of each treatment level, changing only
the random number seeds. This often reduces the noise level
sufficiently to expose real treatment effects, but may be futile if
no real effect exists. You should consider variance reduction
techniques to improve your results. On the other hand, if the
treatments are indistinguishable, any detectable difference will
be due only to a statistical "beta" error which will appear about
5% of the time.

One final tip. If you wish to exclude the effects of starting
conditions from your final simulation, you should use the
RESET Command to begin the measurement period after
transient effects have disappeared. The RESET Command is
discussed in Chapter 6. Plot Windows are useful for observing
the convergence of a simulation to steady state conditions.

 12.2. Space-Time Products
A space-time product is a time duration multiplied by a count.
Space-time products are used in the calculation of several
kinds of useful statistics. For example, to calculate the wages
due to a labor force you could use the number of people who
worked each given number of hours. To calculate the total
hours worked, you could multiply the hours times the number of
people to form a space-time product for each number of hours
worked. You could then add up all the space time products in
order to calculate the total person-hours. Similarly, many
statistics reported in the Standard Reports are accumulations
of space-time products.

Facility, Queue, Storage, and Userchain entities have SNAs
which require space-time products in their evaluation. For
example, the average storage in use is a time weighted
average which gives more weight to those numbers which have
the longest durations. The accumulated space-time product is
divided by the simulated time duration in order to calculate the
average storage in use.

Facility, Queue and Userchain entities also have space-time
products. They are used to calculate average content via a
corresponding SNA. The Facility space-time product is the
accumulation of total busy time. The other space-time products
are equal to the area under the graph of Queue content or
Userchain content.

The RESET command may be used to begin a new
measurement period. A RESET command sets the space-time
product to zero and the total count equal to the current count.
This allows new space-time products to be accumulated. In the
SNAs based on space-time product calculations, this method of
initialization may introduce a small bias on the low side.

 The following table shows the SNAs calculated from space-time
products.

 Table 12�5. Space-Time System Numeric Attributes

 SNA ENTITY CALCULATION

 FR UTILIZATION (ppt) Facility 1000 times (Space-time product)

 divided by (Total Simulated Time)

 FT AVERAGE HOLDING Facility (Space-time-product) divided

 TIME PER CAPTURE by (Total capture count)

 QA AVERAGE CONTENT Queue (Space-time-product) divided by

 (Elapsed time)

 QT AVERAGE RESIDENCE Queue (Space-time-product) divided by

 TIME (Total count)

 QX AVERAGE RESIDENCE Queue (Space-time product) divided by

 TIME EXCLUDING ZEROS (Total Count)-(Count finding zero)

 SA AVERAGE CONTENT Storage (Space-time-product) divided by

 (Elapsed time)

 SR FRACTIONAL Storage 1000 times (Space-time product)

 UTILIZATION divided by

 (Capacity) times (Elapsed time)

 ST AVERAGE HOLDING Storage (Space-time-product) divided by

 TIME (Sum of storage requirements)

 CA AVERAGE CONTENT Userchain (Space-time-product) divided by

 (Elapsed time)

 CT AVERAGE RESIDENCE Userchain (Space-time-product) divided by

 TIME (Total count)

Chapter 13 -
Troubleshooting
The first part of this chapter discusses techniques that may be
helpful in isolating an correcting problems that may occur. The
second major section lists the error messages that may be
displayed and what to do about them.

 13.1. Problems Operating
GPSS World

 Help Problems

If you get a "Help Not Available" Message for a particular topic,
please email the code to problems@minutemansoftware.com
so that the problem can be corrected.

 Performance Problems

Performance problems and tips are discussed in Chapter 10 of
this manual.

 Memory Problems

Since each GPSS World process utilizes up to a gigabyte of
virtual memory, an over commitment of memory usually reveals
itself in high disk activity. This is easily remedied by the
addition of more physical memory in your computer.

To screen for programming errors, GPSS World enforces an
arbitrary limit on the size of memory requests. You can change
this value in the Simulate Page of the Model Settings. The
default is 500,000 bytes.

If you move or resize a Plot Window, you may see only partial
curves on the plot. This means that there may not be enough
space reserved to store the plotted points. You can change this
value in the Report page of the Model Settings Notebook. The
default is to allocate space for 10000 points.

Translation Errors

When you Translate a model, any syntax errors detected are
listed in a circular message queue. You then select Search /
Next Error and Search / Previous Error in the Model Text
Window to work through the errors. Each selection places the
cursor where the syntax scanner was when the error was
detected.

Individual error messages are listed later in this chapter.

Tips
1. Debug a Model File before you use it as the target of an
INCLUDE Command. To do so, paste it into a new Model and
Translate it as if it were the Primary Model File. Correct any
syntax errors before proceeding.

Keyboard Problems

Hot keys and preloaded Function Keys do not work unless a
Simulation Object can be found unambiguously.

Some of the Function keys are reserved for system use.

Disk Problems

The most common problem relating to disks is that you do not
have enough space to complete an action.

Other causes can include a faulty medium, which is often
corrected by reformatting, and more serious hardware errors.

Many of the files used by GPSS World put settings and other
values into Object files. You cannot view and or modify these
files with normal text editing programs.

 13.2. Debugging

GPSS Models

GPSS World has many features which make it easy to find and
fix problems in your simulations. The graphics windows allow
you to determine if problems exist, and the interactive
simulation environment allows you to fix them.

If you have encountered an Error Stop during a simulation, you
will probably be able to fix the problem without even restarting
the simulation. Be sure to read the explanation of the error
message, below.

It is extremely important that you verify that your simulation is
behaving as you intended. There are so many ways that things
can be done that you should use the visualization features of
GPSS World to ensure that the simulation is doing what you
want. You should plan ahead before beginning the testing
phase. You may want to insert a few well-placed TRACE and
UNTRACE blocks, and set up one or more STOP conditions
before you begin the test. TRACE and UNTRACE can be used
in Manual Simulation Mode, as well. Remember that all
statements can be preloaded into the function keys, and that
trace messages are written to the Journal Window, if one is
open.

We recommend that you take a high level view before looking
at specific results. First, use the Blocks Window to view the
startup of the simulation. After you run the simulation past the
starting conditions, you can use the graphics screens, starting
with the Blocks Window, to get a general idea of how your
simulation is working. You should look at the Tables, Facilities,
Storages, and Matrices through the graphics windows and
ensure that each entity is operating as you expected. Don�t
forget that most windows have multiple views available. Look
for congestion, heavily utilized resources, and under-utilized
resources. GPSS World uses colors (normally red) in the
graphics windows to draw your attention to congestion and
heavy utilization. Look for accumulations of Transactions on
Retry Chains. This indicates that blocking is occurring on one
or more resources. Scan all the blocks in the model using the
Blocks Window looking at current Transaction counts and the
total Transaction counts.

It may be best to finish looking at all entities in the graphics
windows before you begin to explore specific problems. Make a
list of unexpected findings. Then view a Standard Report,
looking for unusual results. Be sure to look at the Retry Chains
for blocked Transactions.

When you are ready to go after individual problems, you will
find that the debugging facilities of GPSS World are
unexcelled. if you have not yet done so, you should review the
graphics windows in Chapter 5, and the START, STEP, STOP,
SHOW, and CONTINUE commands. You may wish to plot
open an Expressions Window on specific values of interest in
your simulation.

You can control the simulation very closely using the STOP,
STEP, START, CONTINUE, TRACE, and UNTRACE
Statements, and the menus in the graphics windows. The
menus allow you to select transactions and blocks for
modification and/or for inserting stop conditions. You can do
this with the mouse alone in the Blocks Window.

Occasionally, it is useful to know when certain transactions will
be scheduled. You can look at the Current Events Chain and
the Future Events Chain using the CEC and the FEC
sna[shots. This will list transactions to be scheduled during the

current clock value, and those to be scheduled in the simulated
future. The new Transaction Snapshot allows you to view the
state of a Transaction no matter where it is in the simulation.

The TRACE Block can be used as a manual simulation
command to turn on the trace indicator of the Active
Transaction. Trace messages are written to the Session
Journal, if you are using one.

The Journal Window can be quite helpful in program testing.
Not only is it useful when you are Translating a non-GPSS
World program for the first time, but you can use it to
accumulate a chronology of entity definitions, trace messages.

You may want to make some minor alterations to your model,
for debugging purposes. The speed of the Translator makes it
easy. There are many possibilities.

• You may want to "sandwich" a
SEIZE or ASSEMBLE Block
between a JOIN and REMOVE
Block. This will allow you to
visualize the Delay Chain or the
Match Chain in the Data Window by
using the GROUPS command.

• You may want to insert TRACE
and UNTRACE blocks to cause
special transactions to appear
differently in the Blocks Window.

• You may want to temporarily alter
the flow of transactions for test
purposes.

Sometimes problems occur which can be detected only when
you compare two or more simulations. You should constantly
be alert for unreasonable findings which deserve an
explanation. For example, you should simulate treatments
where the effects are well known. This provides an important
check for the "reasonableness" of you simulation. The ANOVA
Window, discussed in Chapter 12. is available for calculating
confidence intervals and for determining the significance of
differences in results.

After you are satisfied that your simulation is doing exactly
what you want, you are ready to validate it by comparing it to
one or more known real-world systems. It is very important to
build confidence in your simulation results by demonstrating
that the simulation accurately predicts the real situation for one
or more occasions, and that there is no known instance where

it is inaccurate. Although many unvalidated simulations are
useful and effective, you should spend significant effort trying
to find a way to compare predicted values to actual ones, if you
can.

After the testing phase, you�re ready to simulate your system. It
is up to you to establish that the effects you observe in your
simulations are above the statistical noise level. The Analysis
of Variance provided by the ANOVA Window can give you
confidence that your results are due to more than just random
variability. However, the design of experiments and the
analysis of statistical data are highly developed disciplines
worthy of considerable study. You may choose to apply even
more sophisticated statistical techniques to your results.

The results of simulation studies often suggest new things to
be studied. It is not unusual to cycle repeatedly through the
Testing and Experimentation phases in order to refine the final
designs, or to improve the model in other ways. The interactive
and unified design of GPSS World simulation environment
make the process as easy and immediate as possible.

Manual Simulation Mode
You can use a TRACE or UNTRACE Statement in Manual
Simulation Mode to alter the Trace Indicator of the Active
Transaction. To do this, put a STOP on a given Block or
Transaction using the STOP Command, or in the Blocks
Window. When the simulation stops, type in TRACE as a
Manual Simulation Statement. The current Active Transaction
will be traced from that point on. When used this way, the
TRACE Block does not become part of the model and only the
single Transaction that has passed through the TRACE Block
will produce trace messages.

Debugging techniques
Debugging simulations is usually a matter of placing stop
conditions and examining the state of the simulation at specific
instants. Snapshots of the CEC and FEC provide in depth
looks at the events yet to occur. Stop conditions are normally
set by the STOP Command. However the Point and Shoot
debugging methods associated with the Blocks Window, and
the Hot Keys, including ad hoc preloaded function keys, can
speed the process considerably. Point and Shoot debugging is
discussed in Chapter 2.

A common alternative approach is to use TRACE and
UNTRACE Blocks to selectively turn on the Trace Indicators of
certain key Transactions. Then, a chronology of the lifetime of
each such transaction is written into the Journal Window.
TRACE and UNTRACE Blocks can be used in Manual
Simulation Mode as if they were Commands to change the
state of the Active Transactions.

Another useful technique is to use a Refuse Mode TEST Block
to monitor for a specific condition. You can use a Stop
Condition to halt the simulation when an event is detected. For
example, the following Statements will cause a simulation to be
halted when the content of the Queue Entity Teller exceeds 20.

 STOP ,Stopper

 GENERATE ,,,1

 Tester TEST G Q$Teller,20

 Stopper TERMINATE

Refuse Mode GATE and TEST Blocks use a lot of CPU time.
You may find it more convenient to HALT the simulation in
some other manner shortly before the event is to occur, and
then use a SPLIT Block in Manual Simulation Mode to send the
test Transaction to the Block labeled Tester. In that case you
would not use the GENERATE Block.

If you are having difficult determining exactly what the problem
is, it is sometime useful to open windows of all types to screen
for unusual circumstances. Look at all the entities that have
been defined in your simulation. Look for red Blocks in the
Blocks Window where congestion is occurring. Be sure to
switch to the detailed views in each window when you can in
order to examine all the state variables. A buildup in the Retry
Chain of one or more entities is a common symptom of an
inadvertent blocking condition.

The online windows make the simulation run very slowly. This
is because the simulation must wait for the windows to be
updated by a succession of messages sent from the Simulation
Object. You may find it better to use stop conditions in order to
open the dynamic windows only after the simulation has halted.

The Journal Window is useful during model building and
testing. Even if you are not placing stop conditions, it is still a
good idea keep a Journal Window open.

PLUS Procedures

The interactive environment provides many advantages for
debugging PLUS Procedures.

If a PLUS Procedure is running when you enter a HALT
Command, the Procedure sends a message indicating the
Statement that was next to be performed, and then exits from
the PLUS Procedure. The simulation is halted just after the
previous Block entry. You can then use the SHOW Command
to examine the state of the simulation. However, notice that the

temporary data items will no longer exist. For this reason, you
may need to add additional debugging statements to your
PLUS Procedure until you are sure it is behaving correctly. One
common method is to add additional assignment statements
that place values in permanent User Variables or Matrix
elements. These can be examined when the simulation is
Halted. Another method is to temporarily define the
PROCEDURE as an EXPERIMENT. Then you can use the
DoCommand Library Procedure to SHOW itermediate values in
the Simulation Object’s Journal.

If you enter a CONTINUE Command after a PLUS Procedure
has been interrupted, the Procedure is run again from the
beginning. The Simulation Object restarts by scheduling the
next Block entry, not by performing the PLUS Statement where
it left off. This means that you may need to plan ahead, and
add additional debugging statements into your PLUS
Procedure. However, this is easier than it looks, because you
can redefine the PLUS Procedure interactively. One way to do
this is to place the PLUS Procedure in a separate file, and use
interactive INCLUDE Commands to redefine the simulations�s
version of the Procedure. Then, you can invoke the Procedure
Interactively by a SHOW Command, examine the results, and
redefine the Procedure interactively to make corrections.

 13.3. Error Messages

Error Conditions

There are many conditions which prevent the normal
completion of a statement during a Session. Some messages
originate with the Translator, some with the Simulation Object.
The latter events are called "Error Stops". Most Error Stops
provide a message describing what went wrong. If you cannot
determine the problem from the message, a longer explanation
is available in this chapter. In general, you will find that you will
need to modify the simulation before you retry the statement
which failed.

If your model resides on multiple Model Files, you can
determine which source file caused the problem. Error
messages indicate the File Number of the Model File
containing the Block Statement which failed. The file number
gives the ordinal of the file containing the error. Files are
considered numbered in the order in which they are
encountered by the Translator, with duplicates considered as
separate files. The Primary Model File is file 0.

GPSS World Errors
If operation is interrupted with a System Error Message Box,
you should record the title of the box, and CLICK on Display
Register Information. In the next window record the name of
the DLL or EXE file and the segmented address to the right of
it. This information is normally in the third or fourth line down
from the top.

It is possible that an internal error could cause a message to be
written starting with "System error." followed by a message. If
this happens, please report the error.

Error Reporting Procedure
Copy the message precisely, and write down the steps
necessary to repeat the error. Test this procedure yourself to
confirm that the error persists. Create a nonproprietary Model
Object that you can send to Minuteman Software to reproduce
the error. Use the Help / About menu item in the Main
Window and write down the GPSS World Version type and
number, and the Registered User information.. Then notify
MINUTEMAN Software. If you do not have a paid-up
telephone support contract, send the problem description and
supporting materials to support@minutemansoftware.com.
Better yet, visit the Problems Page on our Internet Web site,
www.minutemansoftware.com. You’ll find it in the General
Information section. Generally, we must be able the reproduce
the problem in order to fix it. Many problems occur only under a
precise sequence of keystrokes and mousing operations.

Messages
A device-hardware failure has occurred.
An input or output operation has failed. The system reports that
a hardware failure has occurred. Retry the operation. If the
error persists, contact your hardware support person for
assistance.

A system failure has occurred.
Please follow the Error Reporting Procedure, above.

A Transaction is blocked on an impossible
condition.
The Active Transaction is attempting to wait for a condition
which can never occur. Such a Transaction would never be
able to enter the Block. You must change values, operands, or
the flow of Transactions in the simulation to prevent this
condition. Do not attempt to block on an integrated User
Variable. Use the Transaction generation thresholds in the
INTEGRATE Command for that purpose.

http://www.minutemansoftware.com/

A Transaction tried to SEIZE or PREEMPT its own
Facility.
The Active Transaction already owns a Facility which it again
tries to SEIZE or PREEMPT. You must change values,
operands, or the flow of Transactions in the simulation to
prevent this condition.

A Transaction which owns a Facility is attempting
to terminate.
The simulation is attempting to destroy a Transaction which
owns one or more Facilities. Transactions must release
Facilities before they are terminated. You must change values,
operands, or the flow of Transactions in the simulation to
prevent this condition.

A Transaction which was preempted at a Facility
tried to seize or preempt it.
The Active Transaction is preempted at a Facility which it again
tries to SEIZE or PREEMPT. You must change values,
operands, or the flow of Transactions in the simulation to
prevent this condition.

Access is denied.
A read or write operation was disallowed because another
process is using the file.

Action already taken.
The action has completed and does not need to be repeated.

Add not defined for this Data Type.
The calculation failed because an operand has taken on a
value which cannot be coerced to an arithmetic value. You
must change values, operands, or the flow of Transactions in
the simulation to prevent this condition.

Addition Overflow.
The result of the operation exceed the maximum value
permitted. You must change values, operands, or the flow of
Transactions in the simulation to prevent this condition.

An application error has probably occurred.
An error occurred during an input/output operation. Please
follow the Error Reporting Procedure, above.

An internal error has occurred.
An error occurred during an input/output operation. Please
follow the Error Reporting Procedure, above.

Argument B must be greater than argument A.
When the arguments were evaluated, argument B was not
greater than argument A. You must change values, operands,
or the flow of Transactions in the simulation to prevent this
condition.

Arithmetic overflow.
The result of the operation exceed the maximum value
permitted. You must change values, operands, or the flow of
Transactions in the simulation to prevent this condition.

Array coordinate is out of range.
The element of the array does not exist. You must change
values, operands, or the flow of Transactions in the simulation
to prevent this condition.

Array ordinal error.
The element of the array does not exist. You must change
values, operands, or the flow of Transactions in the simulation
to prevent this condition.

Assembly count was not positive.
The evaluation of an assembly count results in a 0 or negative
value. You must change values, operands, or the flow of
Transactions in the simulation to prevent this condition.

Attempt to release an idle Facility.
The Active Transaction is attempting to release a Facility which
it neither owns nor has been preempted from. You must
change values, operands, or the flow of Transactions in the
simulation to prevent this condition.

Attempt to release an unowned Facility.
The Active Transaction is attempting to release a Facility which
is not owned. You must change values, operands, or the flow
of Transactions in the simulation to prevent this condition.

Attempt to release more storage than existed.
The Active Transaction is attempting to cause a storage entity
to have more available capacity than was defined in the
STORAGE Command. You must change values, operands, or
the flow of Transactions in the simulation to prevent this
condition.

Authorization has failed.
You have attempted an action which requires authorization that
you do not currently have. Please consult with your Network
Administrator.

Bad format for call data.
An error occurred during an input/output operation. Follow the
GPSS World Error procedure, above.

Block index is not positive.
An incremental value used to calculate Block addresses is zero
or negative. You must change values, operands, or the flow of
Transactions in the simulation to prevent this condition.

Block index is too big.
A Block location was calculated that exceeds the number of
Blocks in the model. You must change values, operands, or the
flow of Transactions in the simulation to prevent this condition.

Block labels cannot be used elsewhere.
Block labels cannot be used as entity names or as names in
other parts of the model.

Block limit is too small.
The Block limit location comes before the starting Block
location. You must change values, operands, or the flow of
Transactions in the simulation to prevent this condition.

Call stack overflow. Possible circular reference.
Increase the stack size.
The nesting depth of procedure calls exceeded the maximum
allowed. This maximum can be set in the Model Settings
Notebook. It is possible that the Procedure calls formed an
unending sequence that you must change. This can happen if
a Procedure calls the Procedure which called it.

Can�t get Local Plus Array.
A memory request was denied. The maximum memory request
can be specified in the Simulate Page of the Model Settings
Notebook. Be sure you have enough swap space on your hard
disk drives.

Can�t get memory for Text String.
A memory request was denied. The maximum memory request
can be specified in the Simulate Page of the Model Settings
Notebook. Be sure you have enough swap space on your hard
disk drives.

Can�t get Numeric Group Element.
A memory request was denied. The maximum memory request
can be specified in the Simulate Page of the Model Settings
Notebook. Be sure you have enough swap space on your hard
disk drives.

Can�t get Parameter Block.
A memory request was denied. The maximum memory request
can be specified in the Simulate Page of the Model Settings
Notebook. Be sure you have enough swap space on your hard
disk drives.

Can�t get Transaction Parameter.
A memory request was denied. The maximum memory request
can be specified in the Simulate Page of the Model Settings
Notebook. Be sure you have enough swap space on your hard
disk drives.

Can�t get Transaction queuing element.
A memory request was denied. The maximum memory request
can be specified in the Simulate Page of the Model Settings
Notebook. Be sure you have enough swap space on your hard
disk drives.

Can�t get Transaction.
A memory request was denied. The maximum memory request
can be specified in the Simulate Page of the Model Settings
Notebook. Be sure you have enough swap space on your hard
disk drives.

Cannot be created.
A memory request was denied. The maximum memory request
can be specified in the Simulate Page of the Model Settings
Notebook. Be sure you have enough swap space on your hard
disk drives.

Cannot find Model Settings to update.
Please follow the Error Reporting Procedure, above.

Cannot perform requested action.
Please follow the Error Reporting Procedure, above.

Character error in statement.
An invalid character was found in a text line. Please correct the
character using the full screen editor of the Model Window.

Circular reference in expressions.
The nesting depth of in an expression evaluation exceeded the
maximum allowed. This maximum can be set in the Model
Settings Notebook. It is possible that the GPSS Variable

Entities and Procedure calls formed an unending sequence
that you must change.

This error usually is caused by a circular reference during the
evaluation of an expression. You must change values,
operands, or the flow of Transactions in the simulation to
prevent this condition. You can assign an intermediate value to
a savevalue or Transaction parameter. Then evaluate another
function or variable based on the saved value.

Conjugate block is not a MATCH block.
The Active Transaction is attempting to test for a match
condition in a Block which is not a MATCH Block. You must
change values, operands, or the flow of Transactions in the
simulation to prevent this condition.

Corrupt stack.
Please follow the Error Reporting Procedure, above.

COUNT block ran out of entities.
The Active Transaction has initiated a count calculation in a
COUNT Block which ran out of entities before it could be
completed. You must change values, operands, or the flow of
Transactions in the simulation to prevent this condition.

DASD error.
An input or output operation has failed. The system reports that
a hardware failure has occurred. Retry the operation. If the
error persists, contact your hardware support person for
assistance.

Data Stream failed to open.
The Data Stream OPEN Block failed.

Data Stream read failed.
The Data Stream READ Block failed. A hardware error may
have occurred.

Data Stream write failed.
The Data Stream WRITE Block failed. A hardware error may
have occurred.

Datum has not been initialized.
You have attempted to use a variable in an operation before it
has been given an initial value. You must change values,
operands, or the flow of Transactions in the simulation to
prevent this condition.

Decrement not defined for this data type.

The variable has a value which could not be coerced into an
arithmetic value. You must change values, operands, or the
flow of Transactions in the simulation to prevent this condition.

Divide not defined for this data type.
The variable has a value which could not be coerced into an
arithmetic value. You must change values, operands, or the
flow of Transactions in the simulation to prevent this condition.

Division overflow.
The result of the operation exceed the maximum value
permitted. You must change values, operands, or the flow of
Transactions in the simulation to prevent this condition.

Division range error.
One of the operands has a value for which the operation is not
defined. Divide by zero. You must change values, operands, or
the flow of Transactions in the simulation to prevent this
condition.

Do you really want to write over the existing file?
A file by the same path and name already exists. If you answer
yes the existing file will be replaced.

Do you want to retry?
A temporary failure was detected. If you answer yes, the
operation will be retried.

Do you want to Save the changes?
Changes have been made to a model or its settings, or the
settings have been refreshed. If you answer yes, it will be
written out to the Primary Model File.

Entity is not a BVariable.
The Active Transaction caused an attempt to evaluate a
Variable Entity which does not exist. You must change values,
operands, or the flow of Transactions in the simulation to
prevent this condition.

Entity is not a Variable.
The Active Transaction caused an attempt to evaluate a
variable entity which does not exist. You must change values,
operands, or the flow of Transactions in the simulation to
prevent this condition.

Error creating ANOVA Table.

An error occurred while attempting to perform the calculation in
an ANOVA Window. Each treatment level must have more than
1 result, and for an ANOVA Table there must be more than 1
treatment level. Treatment levels, when specified, must be
nonnegative integers.

Error in derivative Evaluation found while
Integrating:
An error was detected evaluating the derivative while
attempting to integrate the following User Variable. You must
change values, operands, or the flow of Transactions in the
simulation to prevent this condition.

Error in INCLUDE file.
The Translator detected a syntax error in a Secondary Model
File. You should open the Model Window onto this file and
Translate as if it were the Primary Model File and correct the
errors.

Error in Model. Can�t open Block View. Please
Translate, and make corrections.
The Translator detected a syntax error in the Model File when
an attempt was made to open the Block Input Window. Please
Translate the model and correct the errors before attempting to
open the Block Input Window.

Error in Operand A of QUEUE.
The evaluation of Operand A of a QUEUE Block resulted in a
nonpositive value You must change values, operands, or the
flow of Transactions in the simulation to prevent this condition.

Error in Threshold Evaluation found while
Integrating:
An error was detected evaluating a Transaction generation
threshold while attempting to integrate the following User
Variable. You must change values, operands, or the flow of
Transactions in the simulation to prevent this condition.

Error priming GENERATE Block with its first
Transaction.
GPSS World was not able to initialize the GENERATE block
with its first Transaction. There is an error in the calculation of
its arrival time, or in one of the other Operands of the
GENERATE Blocks.

Error processing the interaction.
The Translator detected a syntax error in the list of Interactive
Statements. Please correct this and retry the interaction.

Error writing Default Settings and Configuration.
An error occurred writing model settings or project
configuration to disk. This could be caused by a hardware
error, or a disk full condition.

Error writing Report File.
An error occurred writing a Report File to disk. This could be
caused by a hardware error, or a disk full condition.

Error: Unable to delete the file.
An attempt to delete a file failed. The file could be shared with
another process, it could no longer exist, or a hardware error
could have occurred.

EXECUTE block cannot act on another EXECUTE
block.
The Active Transaction caused an EXECUTE Block to attempt
to execute another EXECUTE Block, or itself. You must
change values, operands, or the flow of Transactions in the
simulation to prevent this condition.

Exponentiation Overflow.
The result of the operation exceed the maximum value
permitted. You must change values, operands, or the flow of
Transactions in the simulation to prevent this condition.

File Close error.
An attempt to close failed. A hardware error could have
occurred.

File length error.
An attempt to read a file failed. The file system could be
corrupt, or a hardware error could have occurred.

File Open error.
An attempt to open a file failed. The file system could be
corrupt, or a hardware error could have occurred.

File Read error.
An attempt to read a file failed. The file system could be
corrupt, or a hardware error could have occurred.

File Read/Write error.
An attempt to read or write a file failed. The file system could
be corrupt, or a hardware error could have occurred.

File type error.
An attempt to access a file failed. The file system could be
corrupt, or a hardware error could have occurred.

File was not created by this version of GPSS
World. Settings have been refreshed.
A Model File was opened which did not include the same
version of Model Settings as that used by the software. The
Model Settings have been refreshed with the default values.

File write error. Possible disk full.
An error occurred writing a File to disk. This could be caused
by a hardware error, or a disk full condition.

Filename exceeded range.
The file specification is too long. Choose a short specification,
or use a different directory.

Floating point exception during Integration.
A floating point operation encountered an overflow or
underflow. Scale the values of your variables so that they fit
into real value limits.

Font must be between 4 and 200 points. Using 12
Points.
You must use a Font between 4 and 200 points.

GENERATE block must have A or D operand.
You cannot use a GENERATE Block that has neither A nor D
Operand.

Help System failure.
The online Help System is not active. Be sure you have
rebooted after the installation.

Identifier has not been defined.
You have referred to a name which you did not define. Add the
appropriate definition to the model.

Illegal attempt to make Queue entity content
negative.
A Transaction tried to enter a QUEUE or DEPART Block, which
would have caused the content of a queue entity to be
negative. This is not allowed. You must change values,
operands, or the flow of Transactions in the simulation to
prevent this condition.

Illegal combination of operands in ALTER block.
You have used an illegal combination of operands in an ALTER
Block. Please consult Chapter 7 of this manual for the details
on using ALTER blocks.

Illegal combination of operands in REMOVE block.
You have used an illegal combination of operands in a
REMOVE Block. Please consult Chapter 8 of this manual for
the details on using REMOVE blocks.

Illegal combination of operands in UNLINK block.
You have used an illegal combination of operands in an
UNLINK Block. Please consult Chapter 8 of this manual for the
details on using UNLINK blocks.

Illegal SNA class in COUNT or SELECT block.
You have used an illegal SNA class in operand E of a COUNT
or SELECT Block. Please consult Chapter 8 of this manual for
the details on using these blocks.

Incorrect Keyword.
You have used a keyword which does not belong where you
tried to use it. Please correct the statement.

Incorrect media; a CRC error has occurred.
A media error has occurred attempting to access an external
file. Please replace the media where the file occurred.

Increment not defined for this data type.
The variable has a value which could not be coerced into an
arithmetic value. You must change values, operands, or the
flow of Transactions in the simulation to prevent this condition.

Input and output have the same name.
Do not use the same name for input and output.

Integer division overflow.
The result of the operation exceed the maximum value
permitted. You must change values, operands, or the flow of
Transactions in the simulation to prevent this condition.

Integer division range error.
One of the operands has a value for which the operation is not
defined. Divide by zero. You must change values, operands, or
the flow of Transactions in the simulation to prevent this

condition.

Integration Tolerance cannot be maintained for :
During the integration of the following variable, a reduction in
ministep size was not sufficient to bring the local error below
the error tolerance. You must either increase the Error
Tolerance in the Simulate Page of the Model Setting Notebook,
or you must create your own integration method using one or
more PLUS Procedures. It is possible that the derivatives of
Integration Variables are too large in magnitude.

Integration Variable was not initialized:
When attempt was made to integrate the following variable it
was found to have no initial value. You must change values,
operands, or the flow of Transactions in the simulation to
prevent this condition.

Internal depth error.
Please follow the Error Reporting Procedure, above.

Invalid 0 or negative argument.
The argument must be strictly positive. You must change
values, operands, or the flow of Transactions in the simulation
to prevent this condition.

Invalid access.
Please follow the Error Reporting Procedure, above.

Invalid compilation type.
Please follow the Error Reporting Procedure, above.

Invalid data type.
Please follow the Error Reporting Procedure, above.

Invalid discrete Function argument.
When the argument of a discrete function was evaluated it was
too large or it was 0 or negative. You must change values,
operands, or the flow of Transactions in the simulation to
prevent this condition.

Invalid drive or directory.
An attempt was made to use an invalid drive or directory.
Please correct and retry.

Invalid expression.
An expression was not correctly formed using defined syntax.
Please correct it and retry the operation. The formal grammar

is given in the Appendix.

Invalid Function.
Please read Section 4.4 and the section on FUNCTION
statements in Chapter 6. You must obey the rules for function
statements and function follower statements.

Invalid handle.
Please follow the Error Reporting Procedure, above.

Invalid maximum Y value.
The Y value is not permitted. It must be greater than the
minimum Y value. Please correct it and retry the operation.

Invalid Minimum Y Value.
The Y value is not permitted. It must be less than the maximum
Y value. Please correct it and retry the operation.

Invalid number of Matrix indices.
The dimension of the matrix implied by the number of indices in
the matrix element specifier does not match that of the
MATRIX Command. Please correct the element specifier or the
MATRIX definition.

Invalid number of procedure arguments.
The procedure invocation does not have the number of
arguments required by the Procedure definition. Please correct
the invocation or the definition.

Invalid Parameter.
The Transaction Parameter does not exist. You must change
values, operands, or the flow of Transactions in the simulation
to prevent this condition.

Invalid PLUS Procedure.
You must define the PLUS Procedure before you invoke it.

Invalid threshold arrival block found while
Integrating:
During the integration of the following variable, a threshold
crossing occurred but the destination Block number was not in
the range of valid Blocks. You must change values, operands,
or the flow of Transactions in the simulation to prevent this
condition.

List Function argument is too large.
When the argument of a list function was evaluated it exceeded

the size of the list. You must change values, operands, or the
flow of Transactions in the simulation to prevent this condition.

Lock violation.
A file sharing violation has occurred. Retry the operation when
you have control of the resource.

Logarithm range error.
The operand cannot be nonpositive. You must change values,
operands, or the flow of Transactions in the simulation to
prevent this condition.

Manual Simulation failure.
The Manual Simulation Statement encountered an Error Stop.
Additional details follow.

Matrix column cannot be system assigned or
Block Label.
The matrix column is not correctly specified. Change the Matrix
element specifier in the offending Statement.

Matrix is too large.
A memory request was denied. The maximum memory request
can be specified in the Simulate Page of the Model Settings
Notebook. Be sure you have enough swap space on your hard
disk drives.

Matrix row cannot be system assigned or Block
Label.
The matrix row is not correctly specified. Change the Matrix
element specifier in the offending Statement.

Maximum depth exceeded: Possible circular
reference.
The nesting depth of in an expression evaluation exceeded the
maximum allowed. This maximum can be set in the Model
Settings Notebook. It is possible that the GPSS Variable
Entities and Procedure calls formed an unending sequence
that you must change.

This error usually is caused by a circular reference during the
evaluation of an expression. You must change values,
operands, or the flow of Transactions in the simulation to
prevent this condition. You can assign an intermediate value to
a savevalue or Transaction parameter. Then evaluate another
function or variable based on the saved value.

Memory request denied.

A memory request was denied. The maximum memory request
can be specified in the Simulate Page of the Model Settings
Notebook. Be sure you have enough swap space on your hard
disk drives.

Memory-parameter error.
A memory request was denied. The maximum memory request
can be specified in the Simulate Page of the Model Settings
Notebook. Be sure you have enough swap space on your hard
disk drives.

Minimum must be less than maximum.
You cannot have minimum value greater than the maximum.
Please correct it and retry the operation.

Model name must be 1-8 slphanumeric or _
characters.
You must use up to 8 letters, digits, or underscores for your
Model Name.

Model Settings are not available.
Please follow the Error Reporting Procedure, above.

Modulo Division not fefined for this data type.
The variable has a value which could not be coerced into an
arithmetic value. You must change values, operands, or the
flow of Transactions in the simulation to prevent this condition.

Modulo Division range error.
One of the operands has a value for which the operation is not
defined. Divide by zero. You must change values, operands, or
the flow of Transactions in the simulation to prevent this
condition.

Multiple Internal IO Threads.
Please follow the Error Reporting Procedure, above.

Multiplication overflow.
The result of the operation exceed the maximum value
permitted. You must change values, operands, or the flow of
Transactions in the simulation to prevent this condition.

Multiply not defined for this data type.
The variable has a value which could not be coerced into an
arithmetic value. You must change values, operands, or the
flow of Transactions in the simulation to prevent this condition.

Name has not been given a value.

If you do not assign a value to a name in an EQU statement,
GPSS World assigns a distinct "system" number. Names with
system assigned values may be used to name entities, but may
not be used by themselves in expressions.

Do not confuse the value of a name with the result of an SNA.
For example, if you define a variable entity named VAR1, you
evaluate it by a reference to V$VAR1 and not to VAR1. Here,
VAR1 serves as the entity specifier.

Negative A operand in SPLIT block.
The Active Transaction has caused the A operand of a SPLIT
Block to be evaluated with an invalid negative result. You must
change values, operands, or the flow of Transactions in the
simulation to prevent this condition.

Negative Storage request.
When operand B of an ENTER or LEAVE Block was evaluated,
the storage requested was less than 0. You must change
values, operands, or the flow of Transactions in the simulation
to prevent this condition.

Negative time increment.
The Active Transaction has caused a negative time increment
to be calculated. You must change values, operands, or the
flow of Transactions in the simulation to prevent this condition.

Network error.
An error occurred during network communications. Please retry
the operation. If the error persists, please contact your Network
Administrator.

No fonts installed.
The font(s) could not be found. Please consult your system
documentation to install them.

No Model Translation is in progress.
Please follow the Error Reporting Procedure, above.

No Read/Write activity is in progress.
Please follow the Error Reporting Procedure, above.

No room for conversion to floating point number.
Please follow the Error Reporting Procedure, above.

Non-positive list Function argument.
When the argument of a list function was evaluated it was 0 or

negative. You must change values, operands, or the flow of
Transactions in the simulation to prevent this condition.

Nonpositive modulus.
The modulus must be positive. You must change values,
operands, or the flow of Transactions in the simulation to
prevent this condition.

Not a DOS disk.
A media error has occurred attempting to access an external
file. Please replace the media where the file occurred.

Number too large to print.
Please follow the Error Reporting Procedure, above.

Object code is corrupt.
Please retranslate the model. If the error persists, please follow
the Error Reporting Procedure, above.

Old file format. Settings have been refreshed.
A Model File was opened which did not include the same
version of Model Settings as that used by the software. The
Model Settings have been refreshed with the default values.

Open failed.
An attempt to open a file failed. The file system could be
corrupt, or a hardware error could have occurred.

Operand B of QUEUE or DEPART is negative.
An entry into this Block would cause the content of a queue
entity to be negative. This is not allowed.

Operation has not been defined for this data type.
Please follow the Error Reporting Procedure, above.

Out of resources.
An input or output operation failed and the system reported that
there were insufficient resources. Please consult your software
support or network administrator.

Out of structures.
An input or output operation failed and the system reported that
there were insufficient structures. Please consult your software
support or network administrator.

Parameter number must be a positive integer.

A nonpositive Transaction Parameter was specified. You must
change values, operands, or the flow of Transactions in the
simulation to prevent this condition.

Path not found.
An input or output operation attempted to use a Path that does
not exist in your file system. Please correct the situation and
retry the operation.

Please Translate it separately and correct errors.
Translate the Model Object by opening it in the Model Window
and choosing Command / Create Simulation. The
correct the errors and retry the original operation.

Plot limit exceeded.
You cannot add more plot lines to this Plot Window. You can
open additional Plot Windows, however.

PLUS Array has not been defined.
You must define the array before you access it.

PLUS Procedure cannot be found.
You must define the PLUS Procedure before you invoke it.

Previous Read/Write not yet complete.
Please follow the Error Reporting Procedure, above.

Procedure Statement limit exceeded.
The Procedure is too large. Please break it into modules
implemented as multiple PLUS Procedures.

Ready.
The simulation at the Simulation Object is Halted, and awaits
interactions.

Reference to a non-existent Block Entity.
The Active Transaction has caused a reference to a Block
entity which does not exist. You must change values,
operands, or the flow of Transactions in the simulation to
prevent this condition. If you have forgotten to enter a Block
statement, you should do so and continue.

Reference to a non-existent Function entity.
The Active Transaction has caused a reference to a function
entity which does not exist. You must change values,

operands, or the flow of Transactions in the simulation to
prevent this condition. If you have forgotten to enter a
FUNCTION statement, you should do so and continue.

Reference to a non-existent Matrix entity.
The Active Transaction has caused a reference to a matrix
entity which does not exist. You must change values,
operands, or the flow of Transactions in the simulation to
prevent this condition. If you have forgotten to enter a MATRIX
statement, you should do so and continue.

Reference to a non-existent Parameter.
The Active Transaction has caused a reference to a
Transaction parameter which does not exist. You must change
values, operands, or the flow of Transactions in the simulation
to prevent this condition. Transaction parameters are created in
ASSIGN, MARK, SPLIT, and TRANSFER SUB blocks.

Reference to a non-existent Savevalue entity.
The Active Transaction has caused a reference to a Savevalue
entity which does not exist. You must change values,
operands, or the flow of Transactions in the simulation to
prevent this condition.

Reference to a non-existent Storage entity.
The Active Transaction has caused a reference to a storage
entity which does not exist. You must change values,
operands, or the flow of Transactions in the simulation to
prevent this condition. If you have forgotten to enter a
STORAGE statement, you should do so and continue.

Reference to a non-existent Table entity.
The Active Transaction has caused a reference to a table entity
which does not exist. You must change values, operands, or
the flow of Transactions in the simulation to prevent this
condition. If you have forgotten to enter a TABLE or QTABLE
statement, you should do so and continue.

Reference to a non-existent Variable entity.
The Active Transaction has caused a reference to a variable
entity which does not exist. You must change values,
operands, or the flow of Transactions in the simulation to
prevent this condition. If you have forgotten to enter a
VARIABLE, FVARIABLE, or BVARIABLE statement, you
should do so and continue.

REmove option was not specified.
You have specified a destination Block without using the
required RE option. Please consult the Block statement
description in Chapter 8 for more details.

REmove option was used with no destination.
You must specify a destination Block location when you use
the RE option. Please consult the Block statement description
in Chapter 8 for more details.

Report is complete.
A Standard Report has been created and written to a disk file.
If you are using the Automatic Report File Management, as
discussed in Chapter 11, a Report Window has been added to
the Reports menu of the Model Window.

Resource or data is locked.
An input or output operation failed because another process is
using it. Please wait until it is available. If the problem persists,
consult your network administrator.

Sharing buffer exceeded.
An input or output operation failed because another process is
using it. Please wait until it is available. If the problem persists,
consult your network administrator.

Sharing violation.
An input or output operation failed because another process is
using it. Please wait until it is available. If the problem persists,
consult your network administrator.

Square Root not defined for this data type.
The variable has a value which could not be coerced into an
arithmetic value. You must change values, operands, or the
flow of Transactions in the simulation to prevent this condition.

Square Root Rrange error.
The argument cannot be negative. You must change values,
operands, or the flow of Transactions in the simulation to
prevent this condition.

Stack overrun. You must increase the stack
space.
The stack size is insufficient for the depth of the procedure call
process. This could be caused by a circular reference. If you
need more space, you can change the stack size in the
Simulate Page of the Model Settings Notebook.

Status message sequence error.
Please follow the Error Reporting Procedure, above.

Storage request exceeds total capacity.

When operand B of an ENTER Block was evaluated, the
storage requested exceeded the total capacity of the storage
entity. You must change values, operands, or the flow of
Transactions in the simulation to prevent this condition. You
may wish to redefine the storage entity and continue.

Subtract not defined for this data Ttype.
The variable has a value which could not be coerced into an
arithmetic value. You must change values, operands, or the
flow of Transactions in the simulation to prevent this condition.

Subtraction overflow.
The result of the operation exceed the maximum value
permitted. You must change values, operands, or the flow of
Transactions in the simulation to prevent this condition.

Syntax error in operator.
Your Statement has a syntax error. In the Model Window, you
can use Search / Next Error or Search / Previous
Error to move the cursor directly to the faulty Statement.
Please correct it and retry the operation.

Syntax error in the label.
Your Statement has a syntax error. In the Model Window, you
can use Search / Next Error or Search / Previous
Error to move the cursor directly to the faulty Statement.
Please correct it and retry the operation.

System error. Bad DEQ Call.
Please follow the Error Reporting Procedure, above.

System error. Bad FEC.
Please follow the Error Reporting Procedure, above.

System error. Bad Token String.
Please follow the Error Reporting Procedure, above.

System error. Corrupt chain in UnQQE.
Please follow the Error Reporting Procedure, above.

System error. Corrupt chains in DEQ.
Please follow the Error Reporting Procedure, above.

System error. Dangling QQE.
Please follow the Error Reporting Procedure, above.

System error. Divide overflow.
Please follow the Error Reporting Procedure, above.

System error. Expression not registered.
Please follow the Error Reporting Procedure, above.

System error. FEC corrupt.
Please follow the Error Reporting Procedure, above.

System error. Internal overflow.
Please follow the Error Reporting Procedure, above.

System error. Invalid indirect pointer.
Please follow the Error Reporting Procedure, above.

System error. Invalid indirection.
Please follow the Error Reporting Procedure, above.

System error. Invalid keyword code.
Please follow the Error Reporting Procedure, above.

System error. Invalid operand.
Please follow the Error Reporting Procedure, above.

System error. Missing TTE.
Please follow the Error Reporting Procedure, above.

System error. Negative time increment.
Please follow the Error Reporting Procedure, above.

System error. No next Block.
Please follow the Error Reporting Procedure, above.

System error. No next BTE.
Please follow the Error Reporting Procedure, above.

System error. No QQE.
Please follow the Error Reporting Procedure, above.

System error. QCB cache failure.
Please follow the Error Reporting Procedure, above.

System error. Stack overflow.

Please follow the Error Reporting Procedure, above.

System exception detected.
Please follow the Error Reporting Procedure, above.

Test expression does not have numeric or logic
value.
You can only use numeric values as the results of TEST Block
expressions. You must change values, operands, or the flow of
Transactions in the simulation to prevent this condition.

The Backup File could not be written. Do you wish
to continue the SAVE?
The Backup file could not be preserved because the name is
not distinct or because there was not enough space. If you
answer Yes the Save will continue but the backup file will not
be valid.

The device is write-protected.
A write to a write-protected device has failed. Please remove
the protection and retry the operation.

The disk is full.
The disk(ette) device being written to is out of space. You must
abort the statement, provide for more space, and try it again.

The drive is locked.
An input or output operation failed because another process is
using it. Please wait until it is available. If the problem persists,
consult your network administrator.

The file could not be found.
An input or output operation attempted to use a file that does
not exist in your file system. Please correct the situation and
retry the operation.

The file is too big.
The file appears to be corrupt. Please replace it or create it
again, and retry the operation.

The item was not located.
An input or output operation attempted to use an object that
does not exist in your file system. Please correct the situation
and retry the operation.

The j Argument must be greater than the i
Argument.

A Procedure invocation used arguments which were not valid.
You must change values, operands, or the flow of Transactions
in the simulation to prevent this condition.

The location argument must be greater than 0.0.
A Procedure invocation used arguments which were not valid.
You must change values, operands, or the flow of Transactions
in the simulation to prevent this condition.

The Matrix index is not positive.
The Active Transaction has caused a matrix row to be
evaluated which is 0 or is negative. You must change values,
operands, or the flow of Transactions in the simulation to
prevent this condition.

The Matrix index is too large.
The Active Transaction has caused a matrix index to exceed
the size of that dimension. You must change values, operands,
or the flow of Transactions in the simulation to prevent this
condition. You may wish to redefine the matrix entity and
continue.

The Matrix offset is too big.
The Active Transaction has caused a matrix index to exceed
the size of that dimension. You must change values, operands,
or the flow of Transactions in the simulation to prevent this
condition. You may wish to redefine the matrix entity and
continue.

The max argument must be greater than the mode
argument.
A Procedure invocation used arguments which were not valid.
You must change values, operands, or the flow of Transactions
in the simulation to prevent this condition.

The Mean must be greater than 0.0.
A Procedure invocation used arguments which were not valid.
You must change values, operands, or the flow of Transactions
in the simulation to prevent this condition.

The mode argument must be greater than the min
argument.
A Procedure invocation used arguments which were not valid.
You must change values, operands, or the flow of Transactions
in the simulation to prevent this condition.

The p Argument must be strictly between 0 and 1.
A Procedure invocation used arguments which were not valid.

You must change values, operands, or the flow of Transactions
in the simulation to prevent this condition.

The Random Stream number must be positive.
A nonpositive Random stream number was detected. You must
change values, operands, or the flow of Transactions in the
simulation to prevent this condition.

The required label is missing.
You have skipped a required label field.

The Scale Argument must be greater than 0.0.
A Procedure invocation used arguments which were not valid.
You must change values, operands, or the flow of Transactions
in the simulation to prevent this condition.

The Shape argument must be greater than 0.0.
A Procedure invocation used arguments which were not valid.
You must change values, operands, or the flow of Transactions
in the simulation to prevent this condition.

The Standard Deviation must be greater than 0.0.
A Procedure invocation used arguments which were not valid.
You must change values, operands, or the flow of Transactions
in the simulation to prevent this condition.

The t Argument must be greater than 0.0.
A Procedure invocation used arguments which were not valid.
You must change values, operands, or the flow of Transactions
in the simulation to prevent this condition.

The Table is too large.
The Table size exceeds the Max Storage Request, which can
be set in the Simulate Page of the Model Settings Notebook,

The upper count limit is too low.
The Active Transaction has cause an operand to be evaluated
which resulted in an entity number lower than the starting
number. You must change values, operands, or the flow of
Transactions in the simulation to prevent this condition.

There are no Transactions. Check Transaction
limits and blocking.
Either you have entered a statement which requires an Active
Transaction, and there is none, or all GENERATE statements
have reached their creation limits.

To set up an Active Transaction you must enter a START

command with a GENERATE statement in the translated
program. You may then STOP or interrupt a simulation in order
to set up the Active Transaction. The STEP command is
available to control the stopping point of the simulation.

If you limit the number of Transactions created by using
operand D in all GENERATE statements, you may run out of
Transactions before the termination count returns to zero. You
must provide another source of Transactions in the simulation
(SPLIT or GENERATE), you must increase the termination
count in one or more TERMINATE blocks, or you must reduce
the termination count in the START statement.

There is more data.
Please follow the Error Reporting Procedure, above.

There is no such Transaction.
The Transaction that was to be accessed does not exist right
now.

There is no Transaction for the Parameter
reference.
You have entered a statement which needs one or more
parameters of the Active Transaction for its evaluation.
However, there is no Active Transaction.

There is no Transaction for this SNA evaluation.
The statement being evaluated has an SNA which requires a
Transaction for its evaluation and there is none. You must
correct the SNA or you must change values, operands, or the
flow of Transactions in the simulation to prevent this condition.

There must be an Arrival Block for the Threshold
Expression.
You cannot specify a Transaction generation threshold without
specifying which Block is to receive the newly generated
Transactions.

This Function has not yet been implemented.
Please follow the Error Reporting Procedure, above.

Tolerance must be between 0.000000001 and 0.1,
inclusively.
The integration error tolerance setting is out of range. Correct it
in the Simulate Page of the Model Settings Notebook.

Too many open files.
Please follow the Error Reporting Procedure, above.

Transaction cannot be found.
The Transaction that was to be accessed does not exist right
now.

TRANSFER Operand B or C must be used.
You must change the Block to have a B or C operand.

Translation error.
Your Statement has a syntax error. In the Model Window, you
can use Search / Next Error or Search / Previous
Error to move the cursor directly to the faulty Statement.
Please correct it and retry the operation.

Trigonometric function domain error.
The value of the operand is not in the range permitted for this
function. You must change values, operands, or the flow of
Transactions in the simulation to prevent this condition.

Truncate not defined for this data type.
The variable has a value which could not be coerced into an
arithmetic value. You must change values, operands, or the
flow of Transactions in the simulation to prevent this condition.

Unknown format. Settings have been refreshed.
A Model File was opened which did not include the same
version of Model Settings as that used by the software. The
Model Settings have been refreshed with the default values.

Unknown token.
Please follow the Error Reporting Procedure, above.

Unqueued window notice.
Please follow the Error Reporting Procedure, above.

Use of a nonpositive entity number.
The Active Transaction has cause an operand to be evaluated
which resulted in a 0 or negative entity number. You must
change values, operands, or the flow of Transactions in the
simulation to prevent this condition.

Write fault.
An error occurred writing a File to disk. This could be caused
by a hardware error, or a disk full condition.

You cannot wait on this SNA.
The Active Transaction is attempting to wait for a condition

which can never occur. Such a Transaction would never be
able to enter the Block. You must change values, operands, or
the flow of Transactions in the simulation to prevent this
condition. Do not attempt to block on an integrated User
Variable. Use the Transaction generation thresholds in the
INTEGRATE Command for that purpose.

You cannot change a block location value in an
EQU statement.
Names which are in use as Block statements cannot be used in
EQU statements. Block locations are automatically kept in
ascending sequence starting with 1. Blocks are renumbered
when a Block is inserted into or deleted from the simulation.

You cannot use GENERATE in Manual Simulation.
Use SPLIT.
To create Transactions interactively you must use SPLIT, not
GENERATE.

You must select at least one Block.
You cannot perform the action until you have selected one or
more Blocks.

You must specify an SNA.
You must specify an operand that is a valid System Numeric
Attribute.

Appendix
This chapter presents a formal description of the commands
and GPSS statements to be used with GPSS World. The first
section contains the definitions of the elements of the language
used in GPSS Statements the second contains the grammar
for PLUS, the Programming Language Under Simulation, and
the third a glossary of commonly used terms.

 1.1. GPSS Grammar
Null :== []0,0

No entry. May be skipped.

Uppercase :==A | B | C | D | E | F | G | H | I | J | K | L | M | N | O
| P | Q | R | S | T | U | V | W | X | Y | Z

Capital letters A through Z.

Lowercase :== a | b | c | d | e | f | g | h | i | j | k | l |
m | n | o | p | q | r | s | t | u | v | w | x | y | z

Lower case letters a through z.

Alphabetic :==Uppercase |Lowercase

Either capital or lower case letters.

Digit :== 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Numerals 0 through 9.

Comma :== ,

The comma symbol.

Blank :== []1,1

Blank. A space containing no printable character.

Delimiter :== ; | Comma | Blank

A semicolon, comma, or blank. Delimiters are used to define
the end of a field.

NonnegInteger :== [Digit]1,15

Number of between 1 and 15 digits, inclusively.

PosInteger :== [1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9]1,1 [Digit]0,15

Number of between 1 and 15 digits, inclusively. First digit may
not be 0.

Fraction :== .[Digit]1,15

Decimal point followed by 1 to 15 digits inclusively.

Sign :== Null | + | -

A plus or minus sign. If omitted, plus is assumed.

Integer :== Sign NonnegInteger

An integer with an optional sign.

NonnegNumber :==[Null | NonnegInteger]1,1 [nul | fraction
]1,1

A nonnegative number which may include a fractional part.

Exponent :==E Sign [Digit]1,3

E and an optional sign followed by 1, 2, or 3 digits.

Number :==NonnegInteger [Exponent]0,1

A nonnegative number with an optional fractional part and
optional exponent.

SignedNumber :==Sign Number

A number which may be positive or negative, may have a
fractional part, and may have an exponent. the sign need not
be present.

Name :== Alphabetic [_|Alphabetic | Digit]1,250 - [Keyword |
SNA | EntitySNAclass]

An underscore, alphabetic character, or digit occurring 1 to 250
times and excluding reserved keywords. A name cannot be a
verb or a valid SNA or SNA class. Lower case letters are
automatically converted to upper case.

StatementLabel :== Name

A statement label is a name used in the label field of a GPSS
statement to give a name to a GPSS entity like a STORAGE or
TABLE or to give a location name to a BLOCK.

ResultMatrixName :== Name

A Result Matrix Name is passed to the ANOVA procedure to
identify a Matrix Entity with special properties.

AtomicSNA :== A1 | AC1 | C1 | M1 | PR | TG1 | XN1 | Z1

Atomic SNAs are System Numeric Attributes which do not
need an entity specifier. For example, C1 is the relative system
clock.

EntitySNAclass :==[BV | CA | CC | CH | CM | CT | F | FC | FI |
FN | FR | FT | FV | GN | GT | LS | MB | MP | MX | N | P | PR | Q
| QA | QC | QM | QT | QX | QZ | R | RN | S | SA | SC | SE | SF |
SR | SM | ST | SV | TB | TC | TD | V | W | X]1,1

Entity SNAs must be followed by an entity specifier in order to
build a valid SNA. The entity specifier is the name or number of
the entity, or when preceded by [*], is the name or number of
the parameter of the Active Transaction containing the entity
number. SNA class MX is excluded since it must also contain
row and column specifiers (see directmatrixSNA and
indirectmatrixSNA below).

SimpleSNA :== EntitySNAclass [PosInteger | $Name]1,1

A simple SNA is an entity SNA which does not use indirect
addressing. The entity specifier must be a positive integer or a
name preceded by [$]. SNA class MX is excluded since it must
also contain row and column specifiers (see directmatrixSNA
and indirectmatrixSNA below).

DirectMatrixSNA :==MX[PosInteger | $Name]1,1 ([[P]0,1
Posinteger | [P$]0,1Name]1,1,[[P]0,1 Posinteger [P$]0,1
Name]1,1)

The MX is followed by a matrix entity specifier followed, in
parentheses, by a row specifier and a column specifier. The
row and column specifiers are positive integers, names or P
class SNAs, separated by a comma. Indirect addressing is
described below. The [$] is used as a separator when
referencing a parameter by name in a row or column specifier.

DirectSNA :==AtomicSNA | SimpleSNA | DirectMatrixSNA

A direct SNA is any SNA which doesn�t use indirect
addressing.

IndirectMatrixSNA :==MX[[PosInteger | $Name | *[PosInteger |
[$]0,1 Name]1,1]1,1 ([[P]0,1 PosInteger | [P$]0,1 Name |
*[PosInteger | [$]0,1 Name]1,1 Comma [[P]0,1 PosInteger |
[P$]0,1 Name | *[Posinteger | [$]0,1 Name]1,1)]1,1
-[DirectMatrixSNA]

The MX is followed by a matrix entity specifier followed, in
parentheses, by a row specifier and a column specifier. The
row and column specifiers are separated by a comma. At least
one item must be specified using indirect addressing. If row
and column specifiers are SNAs, they must be P class SNAs.

SNA*Parameter :==[BV | CA | CC | CH | CM | CT | F | FC | FI |
FN | FR | FT | FV | GN | GT | LS | MB | MP | MX | N | P | PR | Q
| QA | QC | QM | QT | QX | QZ | R | RN | S | SA | SC | SE | SF |
SR | SM | ST | SV | TB | TC | TD | V | W | X]1,1 *[PosInteger |
[$]0,1 Name]1,1

This is indirect addressing. The entity number is in a
Transaction Parameter. The entity SNA class is followed by *
followed by the name or number of a parameter of the Active
Transaction containing the entity number.

IndirectSNA :==SNA*Parameter | IndirectMatrixSNA

An SNA where the entity, row or column is specified by indirect
addressing.

MatrixSNA :==DirectMatrixSNA | IndirectMatrixSNA

Any MX class SNA.

SNA :==DirectSNA | IndirectSNA

Simpleterm :==Name | SNA | SignedNumber

Simplest items in an expression.

MathFunction :== ABS | ATN | COS | EXP | INT | LOG | RND |
SIN | SQR | TAN

Mathematical routines in the math library. these may be used
to build expressions.

MathFunctionTerm :==MathFunction(Expression)

A call to a math library subroutine with an expression as the
argument.

BinaryOperator :== + | - | # | / | \ | ^

Addition, subtraction, multiplication, division, integer division,
and exponentiation. The [*] symbol is reserved for indirect
addressing.]#] represents multiplication and ^ represents
exponentiation.

BlockName :==

ADOPT | ADVANCE | ALTER |
ASSEMBLE | ASSIGN | BUFFER |
CLOSE | COUNT | DEPART |
ENTER | EXAMINE | EXECUTE |
FAVAIL | FUNAVAIL | GATE |
GATHER | GENERATE | INDEX |
INTEGRATION | JOIN | LEAVE |
LINK | LOGIC | LOOP | OPEN |
MARK | MATCH | MSAVEVALUE |
OPEN | PLUS | PREEMPT |
PRIORITY | QUEUE | READ |

RELEASE | REMOVE | RETURN |
SAVAIL | SAVEVALUE | SCAN |
SEEK | SEIZE | SELECT | SPLIT |
SUNAVAIL | TABULATE |
TERMINATE | TEST | TRACE |
TRANSFER | UNLINK | UNTRACE |
WRITE

GPSS block names.

LogicSwitchOp :== I | R | S

The operators used in the operator field of LOGIC blocks: I
(invert), R (reset), or S (set).

RelationalOp :== E | G | GE | L | LE | NE

The relational operators used in the operator field of certain
GPSS blocks: E (equal), G (greater than), GE (greater than or
equal to), L (less than), LE (less than or equal to), NE (not
equal to).

ConditionalOp :== E | G | GE | L | LE | MAX | MIN | NE

The conditional operators used in the operator field of certain
GPSS blocks: E (equal), G (greater than), GE (greater than or
equal to), L (less than), LE (less than or equal to), MAX
(maximum), MIN (minimum), NE (not equal to).

GateOp :== FNV | FV | I | LS | LR | M | NI | NM | NU | SE | SF |
SNE | SNF | SNV | SV | U

The operators used in the operator field of GATE blocks. The
operators specify a test condition and an entity type. The
operators are:

• FNV Facility must be not available.

• FV Facility must be available.

• • I Facility must be preempted.

• LS logicswitch must be set.

• LR logicswitch must be reset.

• M MATCH block must have a Transaction of the
same assembly set as the Active Transaction.

• NI Facility must not be currently preempted.

• NM MATCH block must NOT have a
Transaction of the same assembly set as the
Active Transaction.

• NU Facility must not be in use.

• SE Storage must be empty.

• SF Storage must be full.

• SNE Storage must be not empty.

• SNF Storage must be not full.

• SNV Storage must be not available.

• SV Storage must be available.

• U Facility must be in use.

LineNumber :== Number

CommandName :==

BVARIABLE | CLEAR
| CONDUCT |
CONTINUE | EQU |
EXIT | FUNCTION |
FVARIABLE | HALT |
INCLUDE | INITIAL |
INTEGRATE |
MATRIX | QTABLE |
REPORT | RESET |
RMULT | SHOW |
START | STEP |
STOP | STORAGE |
TABLE | VARIABLE

GPSS Commands do not define block entities. They set the
conditions of the simulation and define other GPSS entities.

Verb :== BlockName | CommandName

Statement specific syntax is discussed in Chapters 3, 6, 7, and
8.

1.2. PLUS Grammar

Procedure :=

PROCEDURE ProcedureName (FormalArgumentList)
Statement

Experiment :=

EXPERIMENT ProcedureName (FormalArgumentList)
Statement

Statement := CompoundStatement | IfStatement |
IfElseStatement | WhileStatement | AssignStatement |
GotoStatement | ReturnStatement | ProcedureCallStatement |
LabeledStatement | TempDeclarationStatement

LabeledStatement := Label Statement

Label := Name :

TempDeclarationStatement :=TempVarDeclareStatement |
TempMatrixDeclareStatement

TemporaryVarDeclareStatement := TEMPORARY NameList ;

TempMatrixDeclareStatement :=

TEMPORARY MATRIX name [IntegerList] ;

CompoundStatement := BEGIN StatementSequence END ;

FormalArgumentList := Name [, Name] ... | NULL

StatementSequence := Statement [Statement] ... | NULL

AssignStatement := Lvalue = Expression ;

IfStatement := IF (Expression) THEN Statement

IfElseStatement :=

IF (Expression) THEN Statement ELSE Statement

WhileStatement: WHILE (Expression) DO Statement

GotoStatement := GOTO LabelName ;

ReturnStatement := RETURN [Expression] ;

ProcedureCallStatement := ProcedureCall ;

ProcedureCall := ProcedureName(ExpressionList)

ProcedureName := LibraryProcedureName | Name

FormalArgumentList := Name [, Name] ... | NULL

StatementSequence := Statement [Statement] ... | NULL

ExpressionList := Expression [, Expression] ...

ExperimentName := Name

ModelName := Name

StringConstant := " [Character]..."

ParenthesizedExpression := (Expression)

Expression := Expression | SuperResult

:= SuperResult

SuperResult := SuperResult & InterResult

:= InterResult

InterResult := InterResult = SubResult

:= InterResult /= SubResult

:= SubResult

SubResult := SubResult < Comparator

:= SubResult > Comparator

:= SubResult <= Comparator

:= SubResult >= Comparator

:= Comparator

Comparator := Comparator + Term

:= Comparator - Term

:= Term

Term := Term # Factor

:= Term / Factor

:= Term \ Factor

:= Term @ Factor

:= Factor

Factor := Factor ^ Factor

:= - Factor

:= + Factor

:= Number

:= GeneriicDatum

:= TextString

:= ParenthesizedExpression

:= ProcedureCall

:= FunctionCall

:= SNA

GenericDatum := Name

:= ArrayElement

ArrayElement := Name [ExpressionList]

LValue := Name

:= Name [ExpressionList]

 Glossary
Active Transaction - That GPSS Transaction in a simulation
which is at the Head of the Current Events Chain and is the
next to attempt entry into a GPSS Block.

Command File - A Secondary Model File intended for
interactive use. A Function Key loaded with an INCLUDE
Statement can run a Control File with a single keystroke.

Data Stream - A sequence of text lines identified by a unique
positive integer.

Entity Label - A Named Value used in the Label field of a
GPSS Statement.

GPSS Statement - A GPSS Block Statement or a Command
occurring in a single Text Line.

Immediate Command - A Command which when sent to a
Simulation Object is performed immediately and is not placed
on the Command Queue. HALT and SHOW are the only
Immediate Commands. A HALT Command interrupts any
running simulation and deletes all remaining Commands from
the Command Queue.

Interactive Statement - A Model Statement sent to an existing
simulation.

Manual Simulation Statement - an Interactive Block
Statement, causing a temporary Block to be created, and
causing the Active Transaction to attempt entry.

Model - A sequence of Model Statements.

Model File - A file containing Model Statements.

Model File Number - the 0-relative ordinal of the Model File in
the order encountered by the Translator. The Model Object is
assigned Model File Number 0.

Model Statement - A GPSS Statement or a PLUS Procedure
definition.

Named Value - A user created name used in a model.

PLUS Procedure - A PLUS PROCEDURE Statement obeying
the Syntax rules of the PLUS Language.

Primary Model File - A Model File brought into a Model
Window of a GPSS World Session.

Project - A set of Folders (or directories) for holding files
relating to a single modeling activity. Project directories are set
in the Configuration Notebook.

Queued Command - A Command which when sent to a
Simulation Object is placed on a Command Queue behind all
other Commands waiting to be performed. All Commands
except CONDUCT, HALT and SHOW are Queued Commands.

Secondary Model File - A Text Object Translated as a result
of an INCLUDE Command.

Session - The Sequence of Events from the Opening to the
Closing of the GPSS World process.

Simulation - The Result of Translation of a model, whose state
can be advanced by a Simulation Object.

Statement - A GPSS Statement or a PLUS Statement.

String - A sequence of characters.

Termination Count - The state variable in each simulation
that, when it becomes nonpositive, causes the simulation to
end.

Text Line - A Sequence of up to 250 print characters, including
blanks and tabs, terminated by, but not including, a CR LF
sequence.

Trace Indicator - A Transaction state variable that causes a

Trace Message to be created by each Block entry.

Translator - That part of the GPSS World Control Process
which converts a model into a simulation.

User Variable - A Named Value not occurring in any GPSS
Statement Label field.

	Table of Contents
	GPSS World REFERENCE MANUAL
	Chapter 1. Introduction
	Chapter 2. Operating GPSS World
	Chapter 3. Model Statements
	Chapter 4. GPSS Entities
	Chapter 5. GPSS World Windows
	Chapter 6. GPSS Commands
	Chapter 7. Block Statements
	Chapter 8. PLUS - The Programming Language Under Simulation
	Chapter 9. Advanced Topics
	Chapter 10. Performance Tips
	Chapter 11. Standard Reports
	Chapter 12. GPSS World Statistics
	Chapter 13. Troubleshooting
	Appendix

