’mMos’

Networ ks, Routers
and Transputers:

Function, Performance, and Applications

Edited by: M.D. May
PW. Thompson

PH. Welch

ST s

INMOS is a member of the SGS-THOMSON Microelectronics Group

[CINMOS Limited

ISBN 90 5199 129 0

INMOS Limited 1993

, Ummosﬂ, IMS, occam and DS-Link are trademarks of INMOS Limited.

(57, 568 THowsON

onies is a registered trademark of the SGS-THOMSON Microelectronics Group.

=0

INMOS Limited is a member of the SGS-THOMSON Microelectronics Group.

Preface

High speed networks are an essential part of public and private telephone and computer commu-
nications systems. Animportant new development isthe use of networkswithin electronic sys-
temsto form the connectionsbetween boards, chipsand even the subsystemsof achip. Thistrend
will continue over the 1990s, with networks becoming the preferred technology for system inter-
connection.

Two important technological advances have fuelled the development of interconnection net-
works. First, it has proved possible to design high—speed links able to operate reliably between
the terminal pins of VLSI chips. Second, high levels of component integration permit the
construction of VL SI routerswhich dynamically route messagesviatheir links. These sametwo
advances have all owed the devel opment of embedded VL SI computersto providefunctionssuch
as network management and data conversion.

Networksbuilt from VLS| routershaveimportant propertiesfor system designers. They can pro-
vide high datathroughput and low delay; they are scalable up to very large numbers of terminals;
and they can support communication on all of their terminals at the same time. In addition, the
network links require only asmall number of connection pointson chipsand circuit boards. The
most complex routing problems are moved to the place where they can be done most easily and
economically —within the VLSI routers.

Thefirst half of thisbook bringstogether acollection of topicsin the construction of communica-
tion networks. Thefirst chapters are concerned with the technol ogies for network construction.
They cover the design of networksin terms of standard links and VL SI routing chips, together
with those aspects of the transputer which are directly relevant to its use for embedded network
computing functions. Two chapters cover performance modelling of links and networks, show-
ing the factors which must be taken into consideration in network design.

The second half of the book brings together a collection of topicsin the application of commu-
nication networks. Theseinclude the design of interconnection networksfor high—performance
parallel computers, and the design of parallel database systems. The final chapters discuss the
construction of large—scal e networkswhich meet the emerging ATM protocol standardsfor pub-
lic and private communications systems.

The 1990swill seethe progressiveintegration of computing and communications. networkswill
connect computers; computers will be embedded within networks; networks will be embedded
within computers. Thusthisbook isintended for all thoseinvolved inthe design of the next gen-
eration of computing and communications systems.

February 1993

Credits

Thisbook has been assembled from anumber of sources. The authors of the chaptersare asfol-
lows:

Chapter 1 M.D. May and PW. Thompson

Chapter 2 M.D. May, R.M. Shepherd and PW. Thompson
Chapter 3 M. Simpson and PW. Thompson

Chapter 4 H. Gurney and C.P.H. Walker

Chapter 5 J.M. Wilson

Chapter 6 C. Barnaby, V.A. Griffiths and PW. Thompson
Chapter 7 C. Barnaby and M.D. May

Chapter 8 C. Barnaby, M.D. May and D.A. Nicole
Chapter 9 J.M. Kerridge

Chapter 10 C. Barnaby and N. Richards

Chapter 11 C.J. Adams, J.W. Burren, J.M. Kerridge,
P.F Linnington, N. Richards and PH. Welch

Appendix A C.PH. Walker
Appendix B C.PH. Walker
Appendix C R. Francis
Appendix D R. Francis

Theeditorswould asoliketothank all thosewho assi sted with the preparation of the manuscript,
particularly Alan Pinder and Glenn Hill of the INM OS documentation group, who provided vital
support for the use of the document preparation system.

Work on this subject has been supported under various ESPRIT projects, in particular ‘ Parallel
Universal Message-passing Architecture’ (PUMA, P2701), and more recently also under the
‘General Purpose MIMD’ (P5404) project. The assistance of the EC isgratefully acknowledged.

Contents

Preface

1 Transputersand Routers. Componentsfor Concurrent Machines .

L1 IntroduCtiont
12 TraNSDUIEIS . . .t e
13 ROUEIS ..
14 MesSsage ROULING oot e
15 AdAresSINg . ..ot
16 Universal ROULINGoi e
17 CONCIUSIONS ...t e e
2 TheT9000 Communications Architecture
21 Introduction
22 ThelMSTOI000 . ..ottt e e e e e e e
2.3 Instruction set basicsSand proCeSSESo v v v it
24 Implementation of Communicationsc. i,
25 Alternativeinpult
26 Sharedchannelsand Resources ...,
2.7 USBOf FES0UICES . . . vttt ettt e e et
2.8 CONCIUSION ...t
3 DSLinksand CI04ROUtErSo oot
31 Introduction
3.2 Usinglinksbetweendevices
3.3 Levesof inNkprotocol it e
3.4 Channel communicationiiririiiii i,
35 Ermorsonlinks e
3.6 Network communications: theIMSC104 iiin...
37 CONCIUSION .o e
4 ConnectingDSLinks
4.1 Introduction
4.2 Signal propertiesof transputer links,
4.3 PCB CONNECLIONSttt e et e e
44 Cableconnectionst
45 EImOr RaES . ..o e e e

© ON R B -

12
14

15

15
15
16
18
24
28

36

39

39
39
39
42
45
46

55

55
55
56
58

4.6 Optical INtErcONNECIONSottt 65
A7 Standards e 67
4.8 CONCIUSIONS . ..ottt e 68
49 REEENCES ... 69
4.10 Manufacturersand productsreferredto i, 70
Using Linksfor System Control 71
5.1 INtrodUCtiont 71
52 Control networks 73
53 Systeminitidization 75
5.4 DeEbUGgING ..ot e 78
5 D EITOIS ..o e e 79
5,6 Embedded applications i 81
57 Control System 81
58 COmMmandsiiiii i 83
5.9 CONCIUSIONSt e e 84
Modelsof DS-Link Performance oo... 85
6.1 Performanceof theDS-Link Protocol 85
6.2 Bandwidth Effectsof Latencyc.c i 90
6.3 A model of ContentioninaSingleC104coin... 95
6.4 SUMIMaAIY ..ottt 103
Performanceof C104ANetworkso, 105
7.1 TheClO4 switCh i e 105
7.2 Networksand Routing Algorithms 105
7.3 TheNetworksInvestigated 107
74 Thetrafficpatterns 109
75 Universal ROULINGo e 110
76 RESUIS .. o 110
7.7 Performance Predictability 116
7.8 CONCIUSIONS ...\ttt e e e e 117
General Purpose Parallel Computersot 119
8.1 INtrodUCtiON i e 119
8.2 Universal messagepassingmachines, 119
8.3 Networksfor Universal message passing machines 122
8.4 Building Universal Parallel Computersfrom T9000sand C104s 126
8.5 SUMMAY . .o e 131

Vii

9 Thelmplementation of Large Parallel Database M achines on T9000 and

CLOANEIWOIKS . .ot e e e e 133
9.1 Database Machinest 133
92 ReviewoftheT8Design ...t e e 134
9.3 AnInterconnection SIrategyvviiii 136
0.4 DalaSIOrage . . .ot 137
9.5 Interconnection SIrategyvv it 139
0.6 Reational ProcessiNgo it 140
9.7 Referentia Integrity Processingot 141
9.8 Concurrency Managementttt e 142
9.9 CompleX DataTyPeSottt 145
0.10 RECOVEIY ..t e 146
9.11 Resource Allocation and Scalability 146
0.12 CONCIUSIONS . .ottt e e e e e e 148

10 A Generic Architecturefor ATM Systems 151
10.1 INtrodUCHiONttt e e e e e 151
10.2 AnIntroduction to Asynchronous Transfer Mode 152
10.3 ATM SYStOmMS . o ittt ettt e 162
104 Mapping ATM onto DS-Links ... 177
10.5 CONCIUSIONS . . v ittt e e e e e e e 181

11 An Enabling Infrastructure for a Distributed Multimedia Industry 183

111 INtrodUCHiONttt e e e e e e 183
11.2 Network Requirementsfor Multimedia 183
11.3 Integrationand SCaliNgt 186
11.4 Directionsin networkingtechnology 186
11.5 Convergence of Applications, Communications and Parallel Processing 187
11.6 A Multimedia Industry —the Need for Standard Interfaces. 188
11.7 Outline of aMultimedia Architecture it 189
11.8 Levelsof conformance. 194
11.9 Building stationsfromcomponentsccv i, 195
11.10 Mapping the Architecture onto Transputer Technology 196
Appendices:
A New link cableconnector i ... 201
B Linkwaveforms e 203
C DS-Link Electrical specification, 205

D An Equivalent circuit for DS-Link OutputPads 209

1 Transputers and Routers:
Components for Concurrent
Machines

1.1 Introduction

This chapter describes an architecture for concurrent machines constructed from two types of
component: ‘transputers’ and ‘routers'. In subsequent chapters we consider the details of these
two components, and show the architecture can be adapted to include other types of component.

A transputer isacomplete microcomputer integrated inasingle VLSI chip. Each transputer has
anumber of communication links, allowing transputers to be interconnected to form concurrent
processing systems. Thetransputer instruction set containsinstructionsto send and receive mes-
sagesthrough theselinks, minimizing delaysininter-transputer communication. Transputerscan
be directly connected to form specialised networks, or can be interconnected via routing chips.
Routing chipsare VLSI building blocks for interconnection networks: they can support system-
wide message routing at high throughput and low delay.

1.2 Transputers

VLSl technology enables a complete computer to be constructed on asingle silicon chip. The
INMOS T800 transputer [1], integrates a central processor, a floating point unit, four kilobytes
of static random access memory plus an interface for external memory, and a communications
system onto a chip about 1 square centimetre in area.

FPU
= CcPU
RAM =
7 Links =

Memory interface

T800 Transputer

Asamicrocomputer, thetransputer isunusual inthat it hasthe ability to communicate with other
transputers via its communication links; this enables transputers to be connected together to
construct multiprocessor systems to tackle specific problems. The transputer isalso unusual in
that it hastheability to execute many software processes, sharing itstime between them automati-

cally, to create new processesrapidly, and to perform communication between processes within
atransputer and between processes in different transputers. All of these capabilities are inte-
grated into the hardware of the transputer, and arevery efficient. Thisisdiscussed in more detail
in chapter 2.

The use of transputersfor parallel programming has been greatly simplified by the development
of the occam programming language [2]. The occam language allows an application to be ex-
pressed as a collection of concurrent processes which communicate viachannels. Each channel
Isapoint-to-point connecti on between two processes; one processawaysinputsfrom thechannel
and the other always outputs to it. Communication is synchronised; the first process ready to
communicate waits until the second isal so ready, then the datais copied from the outputting pro-
cesses to the inputting process and both processes continue.

Each transputer has a process scheduler which allows it to share its time between a number of
processes. Communication between processes on the same transputer is performed using thelo-
cal memory; communication between processeson different transputersisperformed using alink
between the two transputers. Consequently, aprogram can be executed either by asingletrans-
puter or by a collection of transputers connected in a network. Three different ways of using
transputers to execute the component processes of atypical program are shown below.

> _..O_

1 transputer 3 transputers 5 transputers

Figure1.1 Allocations of processesto processors

Figure 1.1 shows the same collection of processes executed on three different specialised net-
works. Inthefirst network, whichisasingletransputer, each communication channel connecting
two processes is implemented using the local memory of the transputer. In the other examples
some or all of the channels are implemented by physical links between different transputers.

Transputers have also been used to construct anumber of general purpose computers, which all
consist of anarray of transputers connected together in anetwork. 1nsome machinesthe network
can be configured by software, for example by connecting thelinksviaaprogrammable crossbar
switch. Many applications have been successfully ported to these machines and have demon-
strated efficient parallel processing.

One of the problems with existing general purpose transputer machinesis the need to carefully
match algorithms to the interconnection networks of specific machines, which resultsin alack
of softwareportability. It hasbecomeclear that astandard architectureisneeded for thesegeneral
purpose message-passing machines. An attractive candidate is a collection of transputers con-
nected by a high throughput, low delay communication network supporting communication
channels between processes anywhere in the network.

1.3 Routers

There are many parallel algorithms in which the number of communication channels between
processes on different transputersis much greater than the number of physical links availableto

connect the transputers. 1n some of these algorithms, a process executed on one transputer must
communicate with processes on alarge number of other transputers. Theserequirementsfor sys-
tem-wide communication between processes can be met by:

* new transputersincluding hardwareto multiplex many ‘ virtual links' along asingle physi-
cal link (see chapter 2)

* new VLS| message-routing chips (routers) which can be used to construct efficient com-
munication networks

This new communications architecture allows communication channels to be established be-
tween any two processes, regardlessof wherethey arephysically located inthe system. Thissim-
plifies programming because processes can be all ocated to transputers to optimize performance
after the program has been written. For general purpose message-passing computers, a further
benefit isthat processes can be allocated to transputers by acompiler, which effectively removes
configuration details from the program, thereby enhancing portability.

16 |Router
— 1

Router
33

16 Router
2

Router
34

Router
48

Figure 1.2 Network constructed from routers

Theuseof two separate chips, oneto perform computing (thetransputer) and oneto perform com-
munication (the router) has several practical advantages.

 Transputers can be directly connected without routers in systems which do not require
message routing, so avoiding the silicon cost and routing delays.

« |t alows routers to have many links (e.g.32) which in turn allows large networks to be
constructed from a small number of routers, minimizing the delay through the network.
For example, 48 such routers can connect 512 terminals with only 3 routing delays, as
infigure 1.2.

* |t avoidsthe need for messagesto flow through the transputer, reducing the total through-
put of the chip interface. This reduces the pin count, power consumption and package
costs of the transputer.

* |t supports scalable architectures in which communication throughput must be balanced
with processing throughput. In such architectures, it isknown that overall communica-
tion capacity must grow faster than the total number of processors - alarger machine
must have proportionately more routers.

Since the new architecture allows all the virtual links of a transputer to pass through a single
physical link, system-wide communication can be provided by connecting each transputer to a
routing network viaasinglelink. Theprovision of several linkson transputersallowseach trans-
puter to be connected to several different networks. Examples of the use of thistechnique are:

» The use of two (or more) identical networksin parallel to increase throughput and fault—
tolerance [7]

» The use of amain network and an (independent) monitoring and debugging network

» The use of amain network and an independent network for input and output (or for access
to discs)

Another technique for increasing the communications throughput isto construct the network us-
ing two (or more) linksin parallel for each connection. An example of a2-dimensional network
of thiskind is shown in figure 1.4.

In some cases, it is convenient to construct a network from routers and attach transputers to its
terminal links. An example isthe multi-stage network showninfigure 1.2. An alternativeisto
construct anetwork such asahypercubeor an array fromanumber of nodes, each node consisting
of one or more transputers and a router as shown in figure 1.4.

Router

Transputer

Figure 1.3 Node combining atransputer and a router
Operation of Routers

Each router has a number of communication links and operates as follows:

* It uses the header of each packet arriving on each link to determine the link to be used to
output the packet;

* |t arbitrates between two (or more) packets which must both be output through the same
link, and causes them to be output one after another;

* |t startsto output each packet as early as possible (immediately after the output link is de-
termined, provided that the output link is not already in use for another packet).

Theoverall throughput of therouter isdetermined by the number of linkswhich can be operating
concurrently. Animportant benefit of employing serial linksfor packet routingisthatitissimple
toimplement afull crossbar switchin VLS|, evenfor alargenumber of links. Useof afull cross-
bar allows packets to be passing through all of the links at the same time.

Theability to start outputting apacket whilst it isstill being input can significantly reduce delay,
especially in networkswhich are lightly loaded. Thistechnique isknown aswormhole routing.
In wormhole routing, the delay through the switch can be minimized by keeping headers short
and by using fast, smple, hardware to determine the link to be used for output.

Theuseof ssmplerouting hardwareallowsthiscapability to be provided for every link intherout-
er. Thisavoidsthe need to shareit between many links which would increase delay in the event
of several packetsarriving at once. Equally, itisdesirableto avoid the need for the large number
of packet buffers commonly provided in some packet routing systems (in which each packet is
input to abuffer before output starts). Theuseof small bufferstogether with simplerouting hard-
ware allows asingle VLSI chip to provide efficient routing between alarge number of links.

The simple communications architecture allows a wide variety of implementations:

¢ CMOS VLSI can be used to construct routers with alarge number of links;
e It is straightforward to combine transputers and small routers on a single chip;

e |t ispossible to construct routersin ECL or Gallium Arsenide technology to support ex-
tremely high speed implementations of the link.

For some purposes, it may be useful to combine arouter together with each transputer inasingle
chip (or asingle package). One exampleisthe construction of atwo dimensional array of ssmple
transputers for image processing (for this application, no off-chip memory is needed, and most
communicationislocal). Thearchitecture of the routing system makes such acombination pos-
sible, asinfigure 1.4.

Y

ST

gllll

Sl ol

gllll
gllll

Figure 1.4 Two dimensional array of nodes

1.4 Message Routing

141 Avoiding Deadlock

The purpose of acommunications network isto support efficient and reliable communication be-
tween processes. Consequently, an essential property of a communications network is that it
should not deadlock, i.e. arrive in astate where further progressisimpossible. However, dead-
lock can occur in most networks unlesstherouting algorithmisdesigned to prevent it. For exam-
ple, consider the square of four nodes shown in figure 1.5. Suppose that every node attemptsto
send apacket tothe oppositecorner at the sametime, and that the routing al gorithm routes packets
inaclockwisedirection. Theneachlink will become*‘busy’ sending apacket to the adjacent cor-
ner and the network will deadlock.

=
>

—
Ll

Figure 1.5 Deadlock in a simple network

It isimportant to understand that deadlock isaproperty of the network topology and the routing
algorithm used; it can also arise with buffered packet routing. In the above example, asingle
packet buffer at each node is sufficient to remove the deadlock but, in general, the number of
packet buffers needed to eliminate deadl ock depends on the network topol ogy, the routing algo-
rithm and the applications program. Thisisclearly not asatisfactory basisfor agenera purpose
routing system.

All of the above problems can be avoided by choosing networks for which deadl ock-free worm-
hole routing algorithms exist. In such networks, buffers are employed only to smooth the flow
of datathrough the network and to reduce congestion; often a buffer of size much less than the
length of a packet is sufficient for this purpose. Most important of all, the buffering needed is
not dependent on the network size or the applicationsprogram. Itispossibleto construct asingle
universal router which can be used for networks of arbitrary size and for programs of arbitrary
complexity. An essential property of such arouter isthat, like atransputer, it can communicate
on al of itslinks concurrently.

It turns out that many regular networks constructed from such routers have deadl ock freerouting
algorithms. Important examples are trees, hypercubes and grids.

A deadlock freerouting algorithm for Trees

A tree consists of a collection of nodes with a single external link from the root. Assume that

two trees! T; with root link r;and 7> with root link r» are both deadlock free; they will always
perform internal communication without deadlock, and will accept and transmit packets along
the root link without deadlock.

A new treeisformed by connecting the root linksr; and r, to anew root node R; afurther link
r onthisnode isthe root link of the newly constructed tree 7.

Any packet arriving at R along r; isrouted either tor, or tor. If itisrouted tor,, it will be con-
sumed by 7>, because T5 isdeadlock free. If itisroutedtor, it will eventually be consumed by
theenvironment. By symmetry, packetsarriving alongr; will also beconsumed. A packet arriv-
ing aongrwill beroutedto either 77 or T5; in either caseit will be consumed because both 77 and
T, are deadlock free.

It remains to show that a tree with only one node is deadlock free; thisis true because the node
can send and receive packets concurrently along its single (root) link.

S

O

&

QY

2N

2N

Q

& Ol

Figure 1.6 Hypercube constructed from 2N+2 Nodes

1. Note that this construction can easily be generalized from binary to n-ary trees.

A deadlock freerouting algorithm for Hypercubes

To avoid deadlock in a hypercube, each packet is successively routed through the dimensions,
starting from the highest.

A simpleinductive argument can be used to show that thisrouting al gorithmisfree of deadlocks.
Suppose that the order-N hypercube is deadlock free. Combine two such order-N hypercubes
H; and H> toforman order-(N+1) hypercube by linking corresponding nodesof H; and H>. Any
packet originating at anodern in H; and destined for anodein H, will first travel along the link
joining n to the corresponding nodein H,; from thisnode it will be delivered by routing within
H, and thisis deadlock free by assumption. Similarly, any packet originating at anoden in H,
and destined for anode in H; will first travel along the link joining » to the corresponding node
in Hy; from this node it will be delivered by routing within H; and thisis deadlock free by as-
sumption. An important property of the nodeisthat it is able to send and receive along a link
at the sametime; thisis needed to ensure that a packet can flow from node4; in Hj to the corre-
sponding node A, in H, at the same time as a packet flows into 4; from A;,.

It remains to show that the order-0 hypercube is deadlock free (which it is, being just asingle
node)!

The effect of the routing algorithm can easily be understood in terms of the example shown in
figure 1.5 above, which shows a 2—cube. Instead of routing all packetsin a clockwise direction,
the deadlock-free algorithm routes two of the packets anti-clockwise. Since the links are bi—
directional thisallowsall of the packetsto berouted without deadlock, asillustratedinfigure 1.7.

—

Figure 1.7 Avoiding deadlock in a simple network

Thefact that the hypercubeissymmetrical meansthat the order of sequencing through thedimen-
sions does not matter; it isimportant only that every packet is sequenced in the same order.

A deadlock freerouting algorithm for Arrays

The technique of routing a packet by systematically sequencing through the dimensions can be
applied to any processor array. In fact, any rectangular processor array - whatever its size and
dimension - isdeadlock free! To provethisitisfirst necessary to establishthat alineof processing
nodes(aone-dimensional array) isdeadl ock free; thisisguaranteed if apacket generated at anode
takes the shortest path to its destination node.

A simple inductive argument similar to that used for the hypercube can now be used to establish
that this routing algorithm is deadlock free.

1.5 Addressing

Every packet must carry with it the address of its destination; thismight bethe address of atrans-
puter, or the address of oneof anumber of virtual channel sforminginput channelsto atransputer.
Asapacket arrivesat arouter, the destination address must be inspected before the outgoing link
can be determined; the delay through the router is therefore proportional to the address length.
Further, the address must itself be transmitted through the network and therefore consumes net-
work bandwidth.

Itisthereforeimportant that thisaddress be as short aspossible, both to optimize network latency
and network bandwidth. However, it is aso important that the destination link can be derived
from the address quickly and with minimal hardware. An addressing system which meets both
of these requirementsisinterval labelling.

151 Interval Labelling

Aninterval labelling scheme[6] assignsadistinct |abel to each transputer in anetwork. For sim-
plicity, the labelsfor an N transputer network can be numbersin therange[0,1, ... ,N-1]. At
each router in the network, each output link has one or more associated intervals, where an inter-
val isaset of consecutivelabels. Theintervalsassociated with thelinkson arouter are non-over-
lapping and every label will occur in exactly oneinterval.

As apacket arrives at arouter, the address is examined to determine which interval contains a
matching label; the packet is then forwarded aong the associated output link.

Theinterval labelling scheme requires minimal hardware; at most apair of comparatorsfor each
of theoutgoing links. Itisalsovery fast, sincethe output link can be determined, oncethe address
has been input, after only a single comparison delay provided all the comparisons are done con-
currently.

Thereremainsthe question of how to assign labelsto an arbitrary network. Thefollowing exam-
plesgivelabelingsfor networksconstructed from nodesasshowninfigure1.3. Intervalsarerep-
resented with the notation [a,b), which meansthe set of |abels greater than or equal toa and less
than b; note however that the comparisons are performed modul o the total number of label's, and
intervals are permitted to ‘wrap around’ through zero.

Trees can belabelled

Thetransputersin abinary tree? with N nodes are labelled asfollows. Supposethereare L nodes
totheleft of theroot node. Then thetransputersto theleft of theroot are numbered O, ... ,L—1,;
the transputer of the root node is labelled L; the transputers to the right are labelled L+1,. . .
aN_ 1!

Any noden inthetreeisitself the root node of asubtree S with nodess;, ... ,s,. Theinterval
associated with the left link of n is [s;, . . . , n); that associated with the right link is [n+1,
.. .5 +1); that associated withtheroot link is[s, +1, ... ,5). Theinterva [s,+1, ... ,5) consists
of al of the labelsin the tree apart from thosein §; numerically it consists of the two intervals
[s,+1,... N+1)and [O,... ,5). Anexampleisshownin figure 1.8. Thisshowsthelabelsas-
signed to each node, and the intervals assigned to the links of two of the nodes.

2. Thisconstruction can easily be generalized from binary to general trees, asillustrated in figure 1.8.

10

Figure 1.8 A Tree with Interval Labelling
Hypercubes can be labelled

Thelabelling of the hypercubefollowsthe construction given for the deadl ock free routing algo-
rithm. In combining the two order-n hypercubes H; and H>, the transputersin H; are labelled
0,...,2"—landthosein H, arelabelled 27, ... ,2n+1_1. Thelink from each nodeh; in H;
to the corresponding node /1, in H; islabelled with theinterval [27, . .. ,2"+1) at h;, and with
[O,... ,2" at hy. Thisinductively constructs ahypercube together with the deadl ock-free rout-
ing algorithm described above.

Arrays can belabelled

The labelling for an array follows the construction of the deadlock free routing algorithm. An
n-dimensional array is composed of m arrays of dimension n—1, with m corresponding nodes
(onefrom each n—1 dimensiona array) joined to form aline. If each of then—1 dimensional ar-
rayshasp nodes, the nodesin then—1 dimensional arraysare numbered O, . . ., p-1;p, . . ., 2p-1,

;. (m=1)p, . .., mp—1. Onevery linethelink joining thei®" nodeto the (i+1)” nodeislabelled
[ip, . . ., mp) and thelink to the (i~1)" nodeislabelled [0, . . ., (i-1)p). Thisinductively labels
an array to route packets according to the deadlock free algorithm described above. Anexample
isshownin figure 1.9. This shows the labels assigned to each node, and the intervals assigned
to the links of one of the nodes.

11

0 1 2 3
[0.8) 4 5 6 7
- [8,9) 9 [10,12)——
8 9 10 11
[12,16)
12 13 14 15

Figure 1.9 An Array with Interval Labelling
Labelling arbitrary networks

The above labelings provide optimal routing, so that each packet takes one of the shortest paths
to its destination. It can easily be shown [6] that any network can be labelled so as to provide
deadlock freerouting; it is only necessary to construct a spanning tree and label it as described
above. Thismay produce anon-optimal routing which cannot exploit all of the links present in
the network asawhole. Optimal labelings are known for all of the networks shown below:

trees

hypercubes

arrays

multi-stage networks
butterfly networks
rings3

In high performance embedded applications (or in reconfigurable computers) specialised net-
works are often used to minimize interconnect costs or to avoid the need for message routing.
Inthese systems, anon-optimal |abelling can be used to provide l ow-speed system-wide commu-
nications such as would be needed for system configuration and monitoring.

15.2 Header Deletion

Themain disadvantagesof theinterval labelling system arethat it doesnot permit arbitrary routes
through a network, and it does not allow a message to be routed through a series of networks.
These problems can be overcome by a simple extension: header deletion. Any link of arouter
can be set to delete the header of every packet which passes out through it; the result is that the
data immediately following becomes the new header as the packet enters the next node.

Header del etion can be used to minimizedelaysintherouting network. Todothis, aninitial head-
er isused to route the packet to adestination transputer; thisheader isdeleted asit leavesthefinal
router and entersthe transputer. A second header isthen used to identify the virtual link within

3. Note that the optimal labelling of aring requires that one of the connections be duplicated in order to avoid
deadlock.

12

the destination transputer. Asthe number of transputersis normally much less than the number
of virtual links, theinitial header can be short, minimizing the delay through each router.

Another important use of header deletion isin the construction of hierarchical networks. Inthe
2-dimensional array of figure 1.4, eachtransputer could bereplaced with alocal network of trans-
puters as shown in figure 1.10. Headers are deleted as packets leave or enter alocal network.
A single header can be used to route a packet within alocal network, whilst three headers are
needed to route a packet viathe 2-dimensional array.

Router

7

Router

Figure 1.10 Local network of transputers and a router

1.6 Universal Routing

Therouting algorithms described so far provide efficient deadlock free communications and al-
low awide range of networksto be constructed from astandard router. Packetsare delivered at

high speed and with low latency provided that there are no collisions between packetstravelling
through the same link.

Unfortunately, for general purpose concurrent computers, thismay not be enough. Inany sparse
communication network, some communication patterns cannot be realized without collisions.
Such collisions within the network can reduce system performance drastically. For example,
some parallel agorithmsrequirethat all messagesfrom one phase of acomputation are delivered
before the next phase starts; the late arrival of a single message delays all of the processors. In
the absence of any bound on message latency it is difficult - and in many casesimpossible - to
design efficient concurrent programs. The problem of constructing general purpose concurrent
computers therefore depends on the answer to the following question:

Isit possible to design auniversal routing system: arealizable network and arouting algorithm
which can implement all communication patterns with bounded message latency?

Infact, auniversal routing system allowing the construction of scalable general purpose parallel
computers was discovered by Valiant in 1980 [3]. This meets two important requirements:

 The throughput of the network increases proportionately with the number of nodes.

13

 The delay through the network increases only slowly with the number of nodes (propor-
tional to log(p) for p nodes).

Notice that the aim is to maximize capacity and minimize delay under heavy load conditions -
aparallel communications network isavital component of aparallel computer. Thisisnot the
same as, for example, minimizing delay through an otherwise empty network.

A p-node hypercube hasadelay of proportional tolog(p) (written O(log(p))) if thereareno colli-
sions between packets. Thisis an unreasonable assumption, however, as al of the transputers
will be communicating via the network simultaneously. An important case of communication
isthat of performing aper mutationinwhich every transputer simultaneously transmitsamessage
and no two messages head for the same destination. Valiant’s proof [4] demonstrates construc-
tively that permutation routing is possiblein atime proportional tolog(p) on asparsep-node net-
work even at high communication load.

To eliminate the network hot-spots which commonly arise when packets from many different
sourcescollideat alink in asparse network, two phaserouting isemployed. Every packetisfirst
dispatched to a randomly chosen intermediate destination; from the intermediate destination it
continuesto itsfinal destination. Thisisadistributed algorithm - it does not require any central
co-ordination - so it is straightforward to implement and scales easily. Randomization does not,
in fact, strictly guarantee a delivery time which is O(log(p)) - but it gives it a sufficiently high
probability to achieve the universality result. The processorswill occasionally be held up for a
|ate message, but not often enough to noticeably affect performance. Simulated resultsof univer-
sal routing are presented in chapter 7.

1.6.1 Randomizing Headers

How isthetwo-phase algorithm implemented? Asapacket entersarandomizing network, it must
be supplied with a new, random, header; this header will be used to route the packet to arouter
whichwill serveastheintermediate destination. Any input link of arouter can be set to random-
izepacketsasthey arrive. Whenever apacket startsto arrivealong such alink, thelink first gener-
ates arandom number and behaves asif this number were the packet header. The remainder of
the packet followsthe newly supplied random header through the network until the header reach-
es the intermediate (random) destination.

At thispoint, the first (randomizing) phase of the routing is complete and the random header is
removed to allow the header to progressto itsfinal destination in the second (destination) phase.
Theremoval of the random header is performed by a portal in each router which recognizesthe
random header associated with the router. The portal deletes the random header with the result
that the original header is at the front of the packet, as it was when the packet first entered the
network. This header is now used to route the packet to its final destination.

Unfortunately, performing routing in two phases in the same network makes the paths of the
packets more complicated. The result isthat deadlock can now occur.

1.6.2 Avoiding Deadlock

A ssimple way to avoid deadlock isto ensure that the two phases of the packet transmission use
completely separate links. The node numbers are partitioned into two halves: one half contains
the numbers used for the randomizing phase. The numbersinthe other half are used for the des-
tination phase. Similarly thelinksare partitioned into two sets: one set isused in therandomizing
phase and the other set in the destination phase.

Effectively this scheme providestwo separate networks, onefor the randomizing phase, and one
for the destination phase, with only one set of routers. The combination of the two networkswill

14

be deadlock freeif both of the networks are deadlock free. The simplest arrangement isto make
the randomizing network have the same structure as the destination network - and to make both
employ one of the known deadlock free routing algorithms.

Universal routing can be applied to awide variety of networksincluding hypercubes and arrays

[5].

1.7 Conclusions

Concurrent machines can be constructed from two components: transputers and routers. Trans-
puters can be connected viatheir links to form dedicated processing systems in which commu-
nication takes place only between directly connected transputers. They can aso be connected
viarouters allowing system-wide communication.

The provision of system-wide inter-process communication simplifies the design and program-
ming of concurrent machines. It allows processes to be allocated to transputers after aprogram
iswritten in order to optimize performance or minimize cost. It ensures that programs will be
portable between different machines, although their performance will vary depending onthe ca-
pabilities of the specific communications network used.

The communications architecture allows awide variety of implementations. VLS| routers can
provide routing between alarge number of links, minimizing network delays. Very fast routers
with fewer links can be constructed using high-speed technology. Transputers and routers can
be combined on VLS| chipsto provide network nodes.

Transputersand routers can be used to build machinesin which abalanceis maintained between
communi cation throughput and processing throughput. Universal routing can be used to achieve
bounded communication delay, and fast process scheduling within the transputers allows this
communication delay to be hidden by asmall amount of excessparallelism. Animmediate possi-
bility isthe devel opment of astandard architecturefor scalable general purpose concurrent com-
puters, as discussed in chapter 8.

References
[1] M. Homewood, D. May, D. Shepherd, The IMS T800 Transputer
IEEE Micro 7 no. 5, October 1987
[2] INMOS Limited, occam?2 reference manual, Prentice Hall 1988
[3] L.G. Vaiant, A scheme for fast parallel communication
SIAM J. on Computing 11 (1982) pp. 350-361
[4] L.G. Valiant, General Purpose Parallel Architectures,

TR-07-89, Aiken Computation Laboratory, Harvard University

[9] L.G. Valiant, G.J. Brebner, Universal Schemes for Parallel Communication
ACM STOC (1981) pp. 263-277

[6] J. van Leeuwen, R.B. Tan Interval Routing
The Computer Journal 30 no. 4 pp. 298-307 1987

[7] P. Thompson, Globally Connected Fault—Tolerant Systems
in Transputer and occam Research: New Directions, J. Kerridge (Ed)
|OS Press 1993

15

2 The T9000 Communications
Architecture

2.1 Introduction

This chapter describes the communications capabilities implemented in the IMS T9000 trans-
puter, and supported by the IMS C104 packet router, which isdiscussed in chapter 3. The T9000
retains the point-to-point synchronised message passing model implemented in first generation
of transputersbut extendsit intwo significant ways. Themost important innovation of the T9000
isthe virtualization of externa communication. This allows any number of virtual links to be
established over asingle hardware link between two directly connected T9000s, and for virtual
links to be established between T9000s connected by arouting network constructed from C104
routers. A second important innovation istheintroduction of amany-one communication mech-
anism, theresource. Thisprovides, amongst other things, an efficient distributed implementation
of servers.

22 ThelMST9000

The IMS T9000 is a second—generation transputer; it has a superscalar processor, a hardware
scheduler, 16K bytes of on-chip cache memory, and an autonomous communi cations processor.

Processor Pipeline
Address
Work- Generator 1 FPU
cs:pa(r:]e Address
ache Generator 2 alu
| System Services | Virtual
| Timers | —> Channel
Processor
16 Kbyte ~l__ Linko
Instruction <:
and Data > Link 1
Cache
. Link 2
Programmable - > Link 3
Memory
Interface ~ Event0—3

Figure2.1 ThelMS T9000 Transputer

TheT9000'sschedul er alowsthe creation and execution of any number of concurrent processes.
The processes communicate by passing messages over point-to-point channels. Channels are
unidirectional, and message passing is synchronised and unbuffered; the sending process must
wait until the receiving process is ready, and the receiving process must wait until the sending
processisready. Onceboth processesare ready the message can be copied directly from onepro-
cessto the other. The use of thistype of message passing removes the need for message queues

16

and message buffersin theimplementation, and prevents accidental |ossof datadueto variations
intheorder inwhich processes happento be executed. The T9000'sschedul er also provideseach
process with its own timer, and the means for a process to deschedule until its timer reaches a
specified alarm time.

The T9000's processor and scheduler implement communication between processes executing
on the same processor. The T9000's communication system allows processes executing on dif-
ferent transputers to communicate in the same manner as processes on the same transputer. The
communication system hasfour link interfaces, each of which may bedirectly connectedtoalink
interface of another transputer, or may be connected via a network of routing devices to other
transputers. Messagesare passed over theselinksby the autonomous communi cations processor,
the virtual channel processor (VCP).

2.3 Instruction set basics and processes

2.3.1 Sequential processes
The T9000 has a small set of registers which support the execution of sequential processes:

Registers Workspaces Program
FAreg Areg
FBreg Breg
FCreg Creg
Workspace
Next Instruction

Figure2.2 [IMST9000 Registers

The workspace pointer (Wptr) points to the workspace of the currently executing process. This
workspace, whichistypically organized asafalling stack, containsthelocal variablesand tempo-
rariesof the process. When aprocessisnot executing, for examplewhileit iswaiting for acom-
muni cation, itsworkspace al so contains other information, such asthe process' instruction point-
er.

Theinstruction pointer (1ptr) points at the next instruction to be executed by the current process.

The Areg, Breg and Creg are organized as stack. The stack isused for the evaluation of integer
and address cal culations, and as the operands of more complex instructions, such asthe commu-
nication instructions. The FAreg, FBreg and FCreg form another stack, used for floating point
arithmetic.

2.3.2 Concurrent processes

The T9000 provides efficient support of concurrency and communication. It has a hardware
scheduler which enables any number of processesto be executed together, sharing the processor
time. Thisremovesthe need for a software kernel.

17

At any time, a concurrent process may be:

active being executed
on alist waiting for execution

inactive ready to input
ready to output
waiting until a specified time
waiting for a semaphore

TheT9000’'sscheduler operatesin such away that inactive processes do not consumeany proces-
sor time.

Theactive processeswaitingto beexecutedareheld onalist. Thisisalinkedlist of processwork-
spaces, implemented using two registers, one of which pointsto thefirst process on thelist, the
other to the last.

Infigure 2.3, Sisexecuting, and P, Q and R are active, awaiting execution.

Registers Workspaces Program
Front
P
Back
Q
A
B R
C
Workspace S
Next Instruction

Figure2.3 Active processes

The T9000 provides a number of instructionsto support the process model. Theseinclude start
process, and end process. The start process instruction creates anew concurrent process by ad-
ding a new workspace to the end of the scheduling list, enabling the new concurrent processto
be executed together with the ones already being executed. The end processinstruction allows
anumber of concurrent processesto join together, so that a successor processis executed when,
and only when, al of its predecessors have terminated with an end process instruction.

Priority scheduling

TheT9000 scheduler isactually more complex than described above. It providestwo scheduling
gueues, one for each of two priorities. Whenever a process of high priority (priority 0) is able
to proceed, it will do soin preferenceto alow priority (priority 1) process. If ahigh priority pro-
cessbecomesactivewhilst alow priority processisexecuting, thehigh priority process preempts
the low priority process.

Toidentify aprocessentirely, itisnecessary toidentify both the process’ workspaceanditsprior-
ity. These can be encoded in asingle word by or-ing the priority of the process into the bottom
bit of the workspace address; the resulting value is known as the process id.

18

24 Implementation of Communications

The T9000 provides a number of instructions which implement communication over channels.
Theseinstructions use the address of the channel to determine whether the channel isinternal or
isavirtual channel. Thismeansthat the sameinstruction sequence can be used, allowing apro-
cess to be written and compiled without knowledge of where its channels are connected.

Since channelsare distinct objects from the processes which communicate over them, they serve
to hidetheinternal structure of such processesfrom each other. A process which interactswith
othersonly viachannelsthus hasavery clean and simpleinterface, which facilitates the applica-
tion of structured programming principles.

Before achannel can beused it must be allocated and initialized. The details depend on whether
the channel is to connect two processes on the same transputer, or two processes on different
transputers.

24.1 Variablelength input and output

Thevariableinput message(vin), variable output message (vout) andload count instructionspro-
vide the basi c message passing mechanism of the T9000. They convey amessage and itslength,
from an sending processto an receiving process. The receiver specifies the maximum length of
message that it is prepared to receive, and the sender the actual length of the message to be sent.
If the actual length islonger than the receiver is prepared to receive than an error is signalled.

A sending process performs an output by |oading the evaluation stack with a pointer to the mes-
sage, thelength of the message and the address of the channel. It then executesavout instruction.
A receiving process performs an input by loading the evaluation stack with a pointer to the vari-
able, the maximum length of message and the address of the channel. It then executes avin
instruction followed by a load count instruction. The load count instruction either loads the
length of the messagereceived ontotheeval uation stack, or signalsanerror, if thelength specified
by the sender was too long.

2.4.2 Internal channel communication

A channel between two processes on the same transputer is implemented by a single word of
memory. Before the channel is used it must be initialized to the specia value Not Pr ocess
(=80000000;4) which cannot be the address of the workspace of any process.

At any time, aninternal channel (asinglewordin memory) either holdstheidentity of aprocess,
or holdsthe special valueNot Pr ocess, whichindicatesthat the channel isempty. The channel
isinitialized to Not Pr ocess beforeit isused.

When amessageis passed using the channel, the identity of thefirst processto becomeready is
stored inthechannel, and the processor startsto executethe next processfromthe scheduling list.
When the second process to use the channel becomes ready, the message is copied, the waiting
processisadded to the scheduling list, and thechannel isresettoitsinitial state. It doesnot matter
whether the receiving or the sending process becomes ready first.

Infigure 2.4, aprocess P isabout to execute an output instruction on an ‘empty’ channel C. The
eval uation stack holds apointer to amessage, the address of channel C and acount of the number
of bytesin the message.

19

P C
Registers
A: count
B: channel Not Process
C: pointer

Figure2.4 Output to empty channel

After executing the variable output instruction, the channel C holdsthe address of the workspace
of P, and the address and length of the message to be transferred are stored in the workspace, as
showninfigure2.5. Pisdescheduled, and the processor startsto execute the next processfrom
the scheduling list.

P C
Workspace

Next
instruction

Length

Pointer

Figure2.5 Outputting Process Descheduled

Thechannel C and the processP remainin thisstate until asecond process, Q executesavariable
input instruction on the channel, as shown in figure 2.6.

P C Q
Workspace A: count
P B: channel
Next
instruction C: pointer
Length
Pointer

Figure2.6 Input on a Ready Channel

Since the channel is not empty, the message is copied and the waiting process P is added to the
scheduling list. The channel Cisreset toitsinitial ‘empty’ state, asshown in figure2.7. The
length of the message (as specified by P) isrecorded in the workspace of Q so that it can be put
onto the stack by the load count instruction.

20

P C Q
Workspace

Next

. ! Not Pr ocess
instruction

— List =

Length

Figure2.7 Communication completed, output ready first

If P isthe receiving process and Q the sending one, the same set of pictures apply, except that
the final stateisas shown in figure 2.8.

P C Q
Workspace

Next
instruction Not Pr ocess

Length

Figure2.8 Communication completed, input ready first

2.4.3 External channa communication

The synchroni sed message passing of thetransputer requiresthat databe copied fromthe sending
process to the receiving process, and that the sending process continue execution only after the
receiving process has input the data. Where the processes communicating reside on different
transputers, it is necessary to transfer the data from one transputer to the other, and to signal in
the other direction that an input has occurred. Thus the connection between the processes must
convey information in both directions.

Virtual links

In the first—generation transputers, each point-to-point physical link between transputers pro-
vides two communication channels, onein each direction. Inthe new transputers, each physical
link provides an arbitrary number of point-to-point virtual links. Each virtual link providestwo
channels, one in each direction. Hardware within the transputer multiplexes virtual links onto
thephysical links. At any moment, each physical link has an associated list of virtual linkswait-
ing to useit.

Each virtual link is represented by a pair of virtual link control blocks (VLCBS), one on each
transputer. When a process executes an input or output instruction to send or receive a message
on avirtual link, the processis descheduled and itsidentity isstored in the control block. At the
sametimethe control block isused to determine the physical link to be used for the communica
tion, andisadded to the associated list of waiting virtual links. Anexampleof how thelistsmight
look at one moment isillustrated in figure 2.9.

21

VCP Registers VLCBs
Front
Link O
Back
Front
Link 1
Back

Figure2.9 Queuesof VLCBs
M essage—passing Protocol

When an output is performed, the messageistransmitted as a sequence of packets, each of which
isrestricted in length to amaximum of 32 data bytes. There are several reasons for thiswhich
areexplained below. Each packet of the message startswith aheader, which isused to route the
packet to an receiving processon aremotetransputer. Theheader alsoidentifiesthe control block
of thevirtual link used by the remote receiving process. Thusavirtual link isestablished by set-
ting up a control block in each of two transputers such that the header in each control block is
set to cause packets to address the other control block.

Each packet of amessageistransferred directly from the sending processto the physical link and
istransferred directly from the physical link to the receiving process, provided that a processis
waiting when the packet arrives. Anacknowledgement packet isdispatched back alongthevirtu-
al link as soon as each packet startsto arrive (thustransmission of acknowledge packets can over-
lap transmission of message packets). At the outputting end of the virtual link, the process will
be rescheduled after the last acknowledgement packet has been received.

When thefirst packet of amessage startsto arrive on avirtual link, it is possible that no process
iswaiting to input the message. In thiscase, it is essential that the packet is stored temporarily
so that communication via other virtual links sharing the same physical link is not delayed. A
single packet buffer associated with each virtual link control block is sufficient for this purpose,
sincetheoutputter will not send any further packetsuntil an acknowledgement packet isreceived.

The splitting of messagesinto packets of limited size, each of which isacknowledged before the
next is sent, has several important consequences:

e |t prevents any single virtual link from hogging a physical link
e |t prevents asingle virtual link from hogging a path through a network

* |t providesflow-control of message communication and providesthe end-to-end synchro-
nization needed for synchronised process communication

* [t requiresonly asmall buffer to be used to avoid blockinginthe casethat amessagearrives
before a processisready to receiveit

22

Each VLCB must be initialized with the address of the packet buffer for the input channel, the
header to be used for outgoing packets, and which physical link isto be used by the virtual link.

The implementation of message—-passing

When amessageis passed viaavirtual channel the processor of the T9000 delegates the job of
transferring the messageto the V CPand deschedul esthe process. Onceamessage hasbeentrans-
ferredtheV CP causesthewaiting processto berescheduled. Thisallowstheprocessor to contin-
ue the execution of other processes whilst the external message transfer takes place.

Infigure 2.10 processes P and Q, executed by different transputers, communicate using avirtual
channel C implemented by alink connecting two transputers. P outputs, and Q inputs; note that
the protocol used by the VCP ensures that it does not matter which of P and Q becomes ready
first.

P C Q
Registers VLCB VLCB Registers
A: count A: count
B: channel B: channel
C: pointer 7 C: pointer

Figure 2.10 Communication between transputers

The VCP, on being told to output a message, stores the pointer, count and process id into the
VLCB, and causes the first packet of the message to be sent. The VCP maintains queues of
VL CBsfor packetsto besent on each link, so the sending of apacket isintwo parts; firstly adding
the VL CB to the corresponding queue, and then subsequently taking the VLCB from the front
of the queue and sending apacket, with the header provided by theVLCB. Thequeuesof VLCBs
areillustrated in figure 2.9.

Subsequently, on receipt of an acknowledge packet for this virtual channel, the VCP sends the
next packet of the message. This continues until all packets have been sent. When thefinal ac-
knowledgeisreceived, theVCPreadsthe processid from the VL CB and causesthe waiting pro-
cess to be scheduled.

23

P C Q
Workspace VLCB VLCB Workspace
— = List ‘T L List =
P Q
Next Next
instruction Pointer Ho——o— Pointer instruction
Count Count

Figure2.11 Communication in Progress

Thereceiving transputer’sresponseto thefirst packet will depend upon whether acorresponding
variable input message instruction has yet been executed. The V CP can determinethisfrom the
state of the VL CB associated with thevirtual channel onwhichthepacket hasarrived. If aninput
instruction has not yet been executed, then the VV CP stores the packet into the packet buffer pro-
vided by the VLCB, and an acknowledgement will subsequently be generated once an input
instruction is executed.

When a process executes a variable length input instruction, the processor passes the process
identifier, thevirtual channel address, the pointer, and the maximum length, to the VCP and des-
chedulesthe process. The VCP, on being told to input a message, stores the pointer, maximum
length and processid into the VL CB and recordsthat aninput has been requested. TheVCPthen
examines the VL CB to determine whether a data packet has already arrived. If the data packet
has already arrived, it will now be handled; otherwise data packets are handled as they arrive.

When adatapacket ishandled, theVV CP acknowledgesthe packet by adding the VL CB to aqueue
for the sending of acknowledge packets. (Acknowledge packets are sent in just the same way
as data packets, but use a separate set of queues.) TheV CP then storesthe datainto the memory
locations specified by the input instruction, provided that the total amount of data that has been
received is not greater than the maximum amount specified. If more data than thisis received
thenall datain excessof themaximum allowedisdiscarded. When afinal datapacketisreceived,
the V CP reschedules the receiving process, having first recorded the amount of data received?
into the process workspace. This value will be used by a subsequent load count instruction.

Themessageisthuscopied throughthelink, by meansof theVL CBsat either end being alternate-
ly queued to send data and acknowledge packets respectively, asillustrated infigure 2.11. After
all thisisdonethe processes P and Q are returned to the corresponding scheduling lists as shown
infigure 2.12.

4. If too much dataisreceived, aspecial error value (= FFFFFFFF;4) is recorded instead.

24

P C Q
Workspace VLCB VLCB Workspace
Next Next
instruction instruction
— List — OO0 — List —

Figure2.12 Communication completed

24.4 Known length communication

In many cases both the sender and receiver of amessage know the precise length of the message
to betransferred in advance. Inthiscaseit ispossibleto optimize the operation of message pass-
ing and the T9000 provides anumber of instructionswhich do this. The most important of these
are input message and output message®.

These instructions are like vin and vout except that both the receiver and the sender specify the
actual length of messageto be passed. Thereisno need for an instruction which corresponds to
load count in this case.

The operation of known length internal communicationissimilar to variablelength communica
tion. However, thefirst process to synchronize does not need to store the length, since the same
length will be specified by the second process.

The operation of known length external communication isidentical to the variable length case,
except for the omission of the load count instruction.

25 Alternativeinput

In asystem, it is sometimes necessary for a process to be able to input from any one of several
other concurrent processes. For example, consider a process which isimplementing a bounded
buffer between two other processes, one of which (aperipheral of some kind) outputs datato the
buffer along a channel, the other (the ” consumer™) requests data from the buffer along another
channel, andreceivesit viaathird, asillustratedinfigure2.13. Thebehavior of the buffer process
is determined not only by itsinternal state, but also by whether the other processes wish to add
or to take data from the buffer.

Thealternative construct isameansto sel ect between one of anumber of guarded processes, each
comprising a guard and an associated process; the guard is typically an input®. The aternative
selects aguarded process whose guard isready. If aparticular guarded processis selected then
both the guard and the associated process are executed. Guards may also have a boolean part
which force the guard to be disregarded if the boolean is FALSE.

5. Notethat thisisthe only form of communication supported by the first—generation transputers.

6. In principle, outputs could equally well be used as guards; however the implementation becomes considerably
more complex if both inputs and outputsare allowed asguards. Thusin the T9000 output guardsare not allowed.

25

Peripheral

4

Figure2.13 Buffer process

The T9000'simplementation of alternative separates the selection of aguarded processfromits
execution. This means that the only new mechanism needed is one to support selection.

The idea behind the selection mechanism is that for each guard, the channel is examined to see
if itisready. If, when al the channels have been examined, no ready channel has been found,
the process deschedules until at least oneisready. The process then re—examines the channels
and chooses the first one that it finds ready. The key to the mechanism is therefore, the means
by which a process can deschedule until one of several channels becomes ready.

The first aspect of this mechanism is that channels can be enabled and disabled. A channel is
enabled (by the process performing the alternative) by executing an enable channel instruction.
One effect of thisinstruction isthat if the channel subsequently has an output performed on it,
the output will signal the process performing alternative that the channel has becomeready. An
enabled channel is disabled by the process performing alternative executing a disable channel
instruction, which reverses the effect of an enable channel instruction.

The second aspect of the mechanism is the use of a special workspace location by the process
performing aternative. This location serves a number of purposes. Firstly, in the case of a
straightforwardinput itisused to hold the pointer to thelocation to storethe message, asdi scussed
previously; consequently it isreferred to asthe” pointer location”. Secondly, whilst an alterna-
tiveisbeing performed, it contains one of the special valuesEnabl i ng (= Not Pr ocess +1),
Wai ti ng (= Not Process + 2), or Ready (= Not Process + 3). Asno processwhichis
performing anormal input could be descheduled with one of these valuesin its pointer location
(processes being forbidden to input messagesto these addresses), the valuein thelocation distin-
guishes a process performing aternative from an inputting process. Thirdly, it isused to record
whether any channel which hasbeen examinedisready. Finally, itisalso used to record whether
aprocess performing alternative is active or descheduled.

The implementation of alternative can now be explained.
Alternative start

The first thing that a process does to perform an aternative is to execute an alternative start
instruction. This setsthe pointer location of the workspace to the value Enabl i ng, indicating
that an alternativeisin progress, that no guard hasyet been seen to be ready, and that the process
performing aternativeis active.

Enable channd

Theprocess performing alternativethen executesan enabl e channel instructionfor every channel
guard. Thisinstruction determineswhether the channel isready, and, if itisnot ready, theinstruc-

26

tion enablesit. If, on the other hand, the channel is ready the instruction sets the value in the
pointer location to Ready.

For an internal channel, the processor determines whether a channel isready by examining the
channel word. If it contains the identity of another process, then that process has performed an
output on the channel, and so the channel isready. Otherwise, the channel is empty, and sois
enabled by writing inti it the process id of the process performing alternative.

For avirtual channel, the processor usesthe VCP to enable the channel. The VCP examinesthe
VLCB of the channel; if the packet buffer already containsthefirst packet of amessage then the
channel isready. Otherwise, the VCP recordsin the VLCB that the channel has been enabled.

Alter native wait

Once aprocess has enabled all the channelsfrom which it wishesto make aselection, it executes
an alternative wait instruction. Thisfirst writesthe value- 1 to location O of the workspace, in
preparation for the selection process. Then, if the pointer location still containsthevalue Enab-

| i ng, indicating that no guard isyet ready, the instruction writesthe value Wi t i ng into the
pointer location, indicating that the process performing alternativeisnot active, and deschedul es
the process. Otherwise, the pointer location contains Ready, indicating that at least one guard
Is ready, so the process continues to make its selection.

If aprocessdeschedul eson execution of analternativewait instruction, it will be scheduled when
one of the guards becomes ready. The process will then proceed to make its selection.

Output on an enabled channel

When an output occurs on an internal channel which contains a processid, the sending process
distingui shes between achannel whichisready for input and achannel whichisready for alterna-
tive input by examining the pointer location of the waiting process. If thisword contains one of
thespecial valuesEnabl i ng, Wi t i ng, or Ready then the channel isin use by aprocess per-
forming an alternative. Inthiscasethe sending processwill storeinformation into its own work-
space and deschedule asif theinputter were not ready, and may al so perform some other actions,
depending on the value in the pointer word of the receiving process:

e |f thevalueisEnabl i ng thentheoutputinstruction changesthevalueto Ready, indicat-
ing that an enabled channel is ready.

* |If the valueis Wi t i ng, and hence the process performing alternative is descheduled,
then the output instruction changes the value to Ready, and schedul es the process per-
forming alternative.

e |f the valueis Ready, the output instruction performs no additional action.

When an output occurs on an enabled virtual channel, the VCP of the outputting transputer will
send thefirst packet of the message as usual; indeed, the sending transputer hasnoindication that
the channel has been enabled. When the first packet arrives on an enabled virtual channel, the
V CP placesthe packet in the packet buffer, and records that a packet hasarrived asisnormal for
for achannel on which no input has been performed. The VCP also informs the scheduler that
an enabled channel has becomeready. The scheduler will then examine the pointer word of the
process which enabled the channel and performs the same actions as an output instruction
executed by alocal process, as described above.

Once an output has been performed on an enabled channel two conditions are true; firstly, that
the process performing alternative is active (either because it has not descheduled, or because a
channel which hasbecome ready has scheduled it); and secondly, the pointer word of the process
performing alternative hasthevalue Ready. Thesetwo, together with the condition for desche-

27

dulingwhenanalter nativewait instruction isexecuted, ensurethat aprocessexecutestheinstruc-
tion following an alternative wait instruction if, and only if, at least one guard is ready.

Disable channd

The process performing aternative selects a guarded process by executing a disable channel
instruction for each guard and then executing an alternative end instruction. In addition to the
channel address, the disable channel instruction takes a code offset as a parameter. Thisisthe
offset fromthealternativeendinstructiontothecodefor theguard. If thedisablechannel instruc-
tion finds that achannel isready, then workspace 0 is examined; if it contains avalue other than
- 1 then a selection has already been made, so no further actionistaken. If it contains- 1 then
thisisthefirst ready channel to be disabled and the code offset associated with this channel is
written into workspace O.

The operation of disable channel depends on whether the channel isinternal or isavirtual chan-
nel.

For an internal channel, the channel word is examined. If it containsthe identity of the process
performing alternative, an output has not been performed, the channel is not ready, and the
instruction resets the channel word to Not Pr ocess . If the channel contains the identity of a
sending process, then the channel is ready and may be selected.

For avirtual channel, the processor usesthe VVCPto disablethe channel. TheVCP examinesthe
VLCB of thechannel; if it containsthefirst packet of amessage then the channel isready. Other-
wise, the VCP removes the information that the channel is enabled from the VLCB.

Alternative end

When all the guards have been disabled, onewill have been sel ected, because guards are not dis-
abled until at least one is ready, and the first ready guard that is disabled will be selected. The
process performing alternative jJumpsto the code corresponding to the selected guard by execut-
ing the alternative end instruction. Thisinstruction reads the code offset from workspace 0, and
addsit to the instruction pointer. In thisway the guarded process corresponding to the selected
channel is caused to be executed.

A note about boolean guards

In the above, the fact that the guarded processes can have bool ean guards has been overlooked.
In fact, the enable channel and disable channel instructionstake an additional parameter which
isthe boolean guard. If the guard is FALSE (= 0) they perform no action.

251 Extensionsof alternative
Prioritized and fair alternatives

The T9000' s alternative mechanism actually implements aprioritized alternative, the guards be-
ing prioritized in the order in which they are disabled. This can be directly useful; for example,
consider a bounded buffer where we wish to prioritize receiving data from the peripheral over
supplying it to aconsumer. This can easily be achieved by always disabling the channel to the
consumer process’ first, so that if both the peripheral and the consumer happen to be ready, the
aternativeend instruction will awaysfind the offset to the code which interactswith the periph-
eral.

The prioritized alternative which isactually provided can also be used to implement fair alterna-
tives. For example, if we wish to ensure that the bounded buffer on average favours neither the

7. Sincetheimplementation only providesfor input guards, it is necessary to use two channels between the buffer
and the consumer process, so that the consumer can perform an output to the buffer to indicate its readiness to
receive an item.

28

peripheral nor theconsumer, then thiscan beachieved by alwaysdisabling first thechannel which
was not selected on the previous iteration of the buffer control |oop.

Other guards

In addition to inputs from channels, aternatives alows two other types of guard which may be
used in addition to, or instead of channel guards.

ThefirstisaSKI P guard, whichisalwaysready. Thisguardisuseful in conjunctionwith boolean
guards, and is supported by the enable skip and disable skip instructions.

The second isatimer guard, which can be used for implementing timeouts, or for arranging for
severa different timerelated operationsto be scheduled by asingleprocess. Theimplementation
of timer guardsis built upon the implementation described above. However, some extramecha-
nismsare needed, and this necessitates the use of thetimer alternative start and timer alternative
wait instructions, rather than alter native start and alter native wait, for any alternativewhich con-
tainstimer guards. Timer guardsare supported by theenabletimer and disabletimer instructions.

2.6 Shared channds and Resources

2.6.1 Alternative

The alternative mechanism is very general. It allows a choice to be made between channels,
SKI Ps and timers; each guard of an alternative may contain a boolean part; and the choice be-
tween guardsisprioritized. Furthermore, there is complete freedom about how the channelsare
used both within and outside the alternative. It isthis generality that necessitates the enabling
and disabling of all the guards every time an alternative is executed, a consequence of whichis
that the cost of an aternativeis proportional to the number of guards. Thiscost isincurred every
time a selection is made.

Users

Channels:

Server

Figure2.14 Server and users

2.6.2 Servers

One common use of an alternative is to implement a server, or to provide access to aresource.
For examplefigure 2.14illustratesthe notion of asimple server which offersaserviceto N users,
each connected to the server by one of an array of channels.

Asthe provision of the service may involve further interaction with the user, it is necessary for
the codewhich providesthe serviceto be passed itsidentity. Inthiscase, theindex of the channel
in the array identifies the user.

29

In addition to the potentially large cost of the alternative, there is another potential drawback to
thisimplementation of aserver; thisis, that the server must know the identity of all the channels
connecting to users, since it hasto enable and disable them in order to select one. A user cannot
usearesourcethat doesnot know about the channel alongwhichit communicates. A further diffi-
culty isthat fairness between the usersis complicated to implement.

The T9000 provides a communication mechanism called a ** resource” which overcomes both
of these these problems. A resource may be thought of as a shared channel which connects a
number of “user’” processesto a‘‘server’” process.

2.6.3 Sharing a channel by a semaphore

Before describing the T9000's resource mechanism and its use, we will first consider another
mechanism that might be used.

Using an efficient semaphore mechanism (which the T9000 does provide), we could implement
resources by means of a single communication channel, whose use was shared by means of a
semaphore. Theresulting systemwould compriseachannel, used to synchronizewith theserver,
and aqueue of processeswaiting to usethe server, belonging to the semaphore. Whilst thismech-
anism would work, it has two drawbacks:

e |t is not a distributed mechanism —it would work only on a single transputer.

* [t nolonger allowschannelsto be used asan abstraction. Rather than merely communi cat-
ing viaachannel, auser would have to first claim the semaphore.

The resource mechanism overcomes both of these problems.

2.6.4 Resources

A resource connects a number of user processesto asingle server process. The resource com-
prises a number of resource channels, one for each user, and a resource data structure (RDS).
A user process communicates with the server by outputting on its resource channel, exactly as
if it were an ordinary channel. The server selects a resource channel by executing a a grant
instruction with the address of the RDS. Once a user process has output on aresource channel,
the grant will deliver theidentifier of the chosen resource channel to the server. The server can
then input from the chosen resource channel. Thus the operation of aresourceislike that of an
alternative, in that the functions of selection and communication are separated.

Theidentifier associated with aresource channel isasingleword valuewhichisdelivered to the
server on completion of agrant. Thisisthe only information delivered to the server to identify
the chosen resource channel, and hence, the user. Although it might seem as though the server
should receivetheaddressof the chosen resourcechannel, thisisnot always adequate. For exam-
ple, in the server shown in figure 2.14 above, the service—providing code may need the index of
the channel rather than the channel itself, sothat it can usethisindex inan array of reply channels.
On the other hand, if the channel address is what is wanted, then the identifier can be set to be
the channel address.

Resour ce data structure

Theresource data structure contains oneword used to synchronize the server processwith auser
process, and apair of wordsused to implement aqueue. Unlikeachannel shared by asemaphore,
the queue is not a queue of waiting processes, but a queue of resource channels, each of which
has been output to by a user process.

30

Back of Queue

Front of Queue

Synch word

Figure2.15 Resource Data Structure (RDYS)

AnRDSisinitialized by setting both the synchronization word and thefront pointer to Not Pr o-
cess.

Resour ce channels

A resource channel isachannel together with an apair of words. Inthe caseof avirtual resource
channel, the extrapair of words are associated with the VLCB of the receiving (resource) side.
Theaddressof aresource channel doesnot distinguishitfroman ordinary channel, and aresource
channel whichisnot currently part of aresource may be used used just like an ordinary channel,
in which case the pair of wordsis not used.

Resour ce instructions

In addition to the output instructions mentioned previously, there are threeinstructions provided
to implement the resource mechanism. These are:

¢ mark resource channel
e grant
e unmark resource channel

The operation of mark resource channel

The resource mechanism allows resource channel sto be made part of aresource (** marked’”) by
either the server or by theuser8. A server may mark aresource channel irrespective of when the
user outputs on the channel; auser must mark aresource channel prior to outputting on the chan-
nel.

A resource channel is marked as being part of a resource by the execution of a mark resource
channel instruction. This instruction takes three parameters; a pointer to the resource channel,
theidentifier, and apointer to the RDS. There aretwo possibilities: either the channel isempty,
or an output has already occurred.

If the channel isempty, then theidentifier and the pointer to the RDS are stored in the extrawords
associated with the channel. For aninternal channel, the special value ResChan (= Not Pr o-
cess +2) iswritten into the channel word to indicatethat it is part of aresource; for an externa
channel the VCP recordsthisinthe VLCB. Thisisillustrated in figure 2.16.

8. A user located on adifferent transputer from the server must arrange for aprocess local to the server to
do this. Thisisdiscussed in section 2.7.3.

31

RDS

Channel Identifier

Pointer to RDS

Process workspace

Channel:

In resource mode

Figure 2.16 Channel after mark resource channel but before output

If an output hasalready been executed on the channel, then the mark resource channel instruction

must be being executed by the server. In this case the channel will be queued on the RDS, using
thefirst of thepair of wordstoformalinked list, with the second extraword containing theidenti-
fier. Thisisillustrated in figure 2.19.

The operation of grant

A server process grants use of aresource by loading the evaluation stack with a pointer to the
resource data structure and apointer to alocation whichisto receivetheidentifier of the granted
resource channel, and then executing a grant instruction.

If thereisaresourcechannel onthequeue, itisdequeued anditsidentifier iswrittenintotheloca
tion provided for it. The server then continues and can input from the (now unmarked) resource

channel.

RDS

Empty

Pointer to server

Channel:

Server

Y

Id location

Pointer to location|

Process workspace

Figure2.17 RDSand Server after grant

If thereisno resource channel onthe queue, thenthereisno user processwaiting for theresource.
In this case the instruction writes the process id of the server into the synchronization word of

32

theRDS, writestheaddressto wheretheidentifier will bewritteninto theworkspace of the server
and deschedulesit. Thisisillustratedinfigure2.17. The server will be rescheduled when auser
outputsto theresource. Thusthe resource mechanism also provides non—busy waiting, just like
aternative.

Note that once aresource channel is granted to aresource it becomes unmarked. It must be re—
marked before it can be used as part of the resource again. Inthe meantimeit can be used asa
normal channel.

The operation of output

An output performed on aunmarked resource channel isindistinguishable from an output on an
ordinary channel, asillustrated in figure 2.18.

Process workspace

Channel:

Pointer to process

Figure2.18 Channel after output only

When an output is performed on amarked internal channel, the output instruction readsthe chan-
nel wordinthenormal way. On discovering that it containsthe special value Res Chan, indicat-
ing that it is a marked resource channel, the instruction reads the pointer to the RDS from one
of the extrawords of the resource channel and examines the RDS.

If thereis no server present in the RDS, the output instruction queues the resource channel onto
theRDS, asshowninfigure2.19. If thereisaserver present, then theinstruction grantsthe chan-
nel to the server; the channel word is set to the process id of the sending process, the resource
channel’s identifier is written into the address specified in the pointer location of the server’s
workspace, and the server is rescheduled, as shown in figure 2.20.

33

RDS

Channel Identifier

Client Processes

Channel Identifier

Channel Identifier

Channel Identifier

Figure 2.19 Four resource channels after mark resource channel and output

When an output is performed on amarked virtual resource channel thefirst packet istransmitted
inthe normal way. Indeed, thereisno indication at the output end of the virtual channel that the
channel isaresource channel. When the packet arrives at the receiving transputer, the VCP will
notice that the packet has arrived on a marked resource channel, and cause the associated RDS
to be examined by the scheduler. If thereisno processid of aserver present in the RDS, then

the scheduler queues the resource channel on the RDS as shown in figure 2.19. If thereisapro-

cessid inthe RDS, then the channel isunmarked and granted to the server. The scheduler reads

thepointer towherethe server wishestheidentifier to be stored fromtheserver’spointer location,

stores the identifier there, and reschedules the server as shown in figure 2.20.

34

RDS Client Processes

Channel Identifier

Server

Channel Identifier

Channel Identifier|- - - |- - - - -

Channel Identifier

Figure 2.20 RDS with queued resource channels and server after grant

Note that in both the internal and external case the resource channel isthen in the same state as
achannel after an output has been performed and before the corresponding input has been per-
formed, as shown in figure 2.18.

2.7 Useof resources

The T9000's resource channel mechanism can be used in several ways, three of which we now
discuss.

2.7.1 Resourcesasareplacement for alternative; Omniscient servers

Consider the server example shown in figure 2.14, in which a set of users request some service
from aserver by communicating on an array of channels. We assumethat the central server pro-
cess repeatedly chooses auser which hasrequested it, provides some service for atime, and then
chooses another user. If no user requires the service, the server will wait non-busily.

Although this can be implemented directly using the T9000's alternative mechanism, the cost
may be too high if there are alarge number of users, and the time taken to perform the service
issmall. However, if thisis so, we can implement the above server using aresource.

The server processfirst createsand initializes aresource data structure, and then marksall of the
resourcechannelsinthearray asbeing part of that resource. Theidentifier of each resourcechan-

35

nel is set to the index of that channel in the array. The server then repeatedly selects a user by
performing grant, inputs from the chosen user and providesthe service. Thegranting of the cho-
sen channel enablesit to be used asan ordinary channel, and so the server hasto re-mark the chan-
nel toincludeitintheresource when the server hascompleted thisiteration. Finaly, if and when
the server terminates, the channels may haveto be placed in astate where they can be used again
asordinary channels. Thisis done by means of the unmark resource channel instruction.

In order that the new code works correctly, the channels must have been allocated as resource
channels. Thiscan be achieved either by allocating all channelsasresource channels, or by alo-
cating only those channels used in resources as resource channels, in order to optimize memory

usage.

Thisimplementation hasaone-off set up and take down cost, proportional to the number of users,
and aconstant per-iteration cost which isindependent of the number of users. Theusers(sending
processes) cannot distinguish between thisimplementation and one using alternative—or indeed
one in which every user is provided with its own server, which simply performs input!

The use of resourcesinstead of alternativeisefficient only whereanumber of constraints are ob-
eyed. Boolean guardsand explicitly prioritized sel ection must be avoided, and the server process
must interact with only the selected user, and not with any other users.

2.7.2 Resourcesin alternatives

Although the above has been suggestivethat resources are some sort of areplacement for alterna-
tives, they areinfact complementary. Resources may be used asguardsin aternativesby means
of the enable grant and disable grant instructions.

Theuseof resourcesinthisway isvery natural. For example, consider abounded buffer process,
with severa providers of dataand several usersthereof, asillustrated in figure 2.21.

Users

Server

Providers

Figure2.21 Server with users and inputs

This can be implemented using two resources, one for the users and one for the providers. The
server can use an alternative to select between the users as agroup and the providers asagroup,
and then within each branch of the alternative it can make a further selection by the resource
mechanism asalready described. Thisensuresthat the server will wait (non—busily) until either

36

auser or aprovider isready to communicate. When there are many inputs and users waiting,
the server can prioritize either usersor providers within the alternative as previously explained.

2.7.3 lgnorant servers

We have seen how to useresourcesinstead of alternatives. Inthat case, the server knowsthrough
which channels its users communicate, and how many users there are, but the users are unable
todistinguishtheresourcefromanalternative. Wenow consider how resourcescan beused when
the server and the users know only the location of the RDS. In this case the resource channels
can be generated dynamically as needed.

We start by explaining how to do this where the users are located on the same transputer as the
server, and then we explain how to do thiswhere the usersand server may belocated on different
transputers.

Local server and users

In this case the user knows that it is going to use aresource channel and knows the RDS of the
resource. The user allocatesthree words of memory for use asaresource channel, initializesthe
channel parttoNot Pr ocess, and executesamark resource channel instruction which specifies
the RDS of theresource and givesthe address of the channel itself astheidentifier of thechannel.
Theuser then performsan output onthechannel. Theserver, whenit grantsthisresourcechannel,
will be delivered the address of the channel, and can then input from the user. In practice, it will
probably be necessary for the resource to be able to output to the user, aswell asthe user output-
tingtotheresource. A channel can beestablishedinthereversedirection according to some con-
vention known both to user and server.

Distributed serversand user

Thedistributed caseismore complex becausetheuser cannot initializeand mark aresource chan-
nel by itself. Firstly, asthe user and server arelocated on different transputers, avirtual resource
channel must beused. It must first be alocated, then both ends of the virtual link must beinitial-
ized. Once this has been done something must mark the input side of the virtual channel; this
something must be executed on the same transputer as the server, not on the same transputer as
the user!

However, if we assume the existence of a distributed kernel, capable of allocating, initializing
and marking virtual channels, thedistributed case becomesstraightforward. Firstly, theuser asks
thekernel toinitializeand mark avirtual channel connected to the server®. Thekernel then coop-
erateswith the kernel on the server’s machineto initialize the virtual channel, and then the local
kernel waitsfor the remote kernel to mark thevirtual channel. Thelocal kernel then informsthe
user process of whichvirtual channel to use, and the user process proceedsto output on that chan-
nel.

2.8 Conclusion

The T9000 transputer and C104 router provide the mechanisms necessary for the construction
of large concurrent distributed systems. The T9000 providesa processand communication mod-
el, based around synchronised message passing over unidirectional point-to-point channelsin-
cluding an efficient and non-busy implementation of message passing, alternative and resources.

The communication system of the T9000 enables channels to be established between processes
executing on different transputers, and for the same communication model to be maintained
whether processes are located on a single transputer, or on a number of transputers.

9. Thekernel can appear asalocal server to the user.

37

When two T9000 transputers are directly connected, many virtual channelsare provided in each
direction between processes on the two transputers. 1f C104 routers are used, anetwork may be
built which allows processes distributed over any number of transputers to communicate. The
scheduling and communication mechanisms of the T9000 provide efficient support for awide
variety of operating system kernel functions and concurrent programming constructs.

38

39

3 DS-Links and C104 Routers

3.1 Introduction

Millions of serial communication links have been shipped as an integral part of the transputer
family of microprocessor devices. This‘OS-Link’, asitisknown, providesaphysical point—to—
point connection between two processes running in separate processors. It is full-duplex, and
has an exceptionally low implementation cost and an excellent record for reliability. Indeed, the
OS-Link hasbeenusedinamost al sectorsof the computer, telecommunicationsand el ectronics
markets. Many of these links have been used without transputers, or with a transputer ssmply
serving as an intelligent DMA controller. However, they are now a mature technology, and by
today’s standards their speed of 20 Mbits/sisrelatively low.

Since the introduction of the OS-Link, a new type of serial interconnect has evolved, known as
theDS-Link. A major feature of theDS-Link isthat it providesaphysical connection over which
any number of software (or ‘virtual”) channels may be multiplexed; these can either be between
two directly connected devices, or can be between any number of different devices, if the links
are connected via (packet) routing switches. Other featuresinclude detection and location of the
most likely errors, and atransmission speed of 100 Mbits/s, with 200 Mbits/s planned and further
enhancement possible.

Although DS-Links have been designed for processor to processor communication, they are
equally appropriate for processor to memory communication and specialized applications such
as disk drives, disk arrays, or communication systems.

3.2 Using links between devices

DS-Links provide point—to—point communication between devices. Each connected pair of DS
Links implements a full-duplex, asynchronous, flow—controlled connection operating at a pro-
grammabl e speed of up to 100 MBits/sor more. Point to point links have many advantages over
bus based communications in a system with many devices:

e Thereisno contention for the communication mechanism, regardless of the number of
devicesin the system.

e Thereis no capacitive load penalty as more devices are added to the system.

¢ The communications bandwidth does not saturate as more communicating devices are
added to the system. Rather, thelarger the number of devices, the greater the total com-
muni cations bandwidth of the system.

* Removing thebusasasingle point of failureimprovesthe fault—tol erance of the system.

For small systems, anumber of DS-Links on each device can provide complete connection be-
tween afew devices. By using additional message routing devices, networks of any size and
topology can be built with complete connection between all devices.

3.3 Levesof link protocol

As with most communications systems, the links can be described at a number of levelswith a
hierarchy of protocols. The lowest level of electrical signalsis considered in detail in chapter
4.

40

3.3.1 Bitleve protocol

To achieve the speed required, anew, ssmple link standard has been produced. DS-Links have
four wiresfor eachlink, adataand‘ strobe’ linefor each direction. Thedataline carriestheactual
signal, and the strobe line changes state each time the next bit has the same value asthe previous
onel0. By thismeanseach DSpair carriesan encoded clock, inaway which allowsafull bit-time
of skew—tolerance between the two wires. Figure 3.1 showsthe form of signals on the dataand
strobewires. All signalsare TTL compatible.

Data
Strobe |

Figure3.1 Link dataformat

Sincethedata—strobesystem carriesaclock, thelinksareasynchronous; thereceiving devicesyn-
chronizes to the incoming data. This means that DS-Links ‘autobaud’; the only restriction on
thetransmission rateisthat it does not exceed the maximum speed of thereceiver. It also simpli-
fies clock distribution within a system, since the exact phase or frequency of the clock on apair
of communicating devicesisnot critical.

3.3.2 Token level protocol

In order to provide efficient support for higher level protocols, it is useful to be able to encode
““tokens’ which may contain a data byte or control information (in other standards these might
be referred to as ** characters’ or **symbols’ — note that they have no relation to the ““token” of
atoken—ing network). Each token hasaparity bit plusacontrol bit whichisused to distinguish
between data and control tokens. In addition to the parity and control bits, data tokens contain
8 bits of data and control tokens have two bitsto indicate the token type (e.g. ‘end of message’).
Thisisillustrated in figure 3.2.

Control bit Data token End of packet token
Parity bit 8 Data bits

l

P. 0 D D D D D D D D/ P 1.0 1

Scope of parity bit in second token

Figure 3.2 Token level protocol

10. NB: This does not correspond with the usual meaning of ‘strobe’, which would be a signal which indicates
every timethat another signal isvalid.

41

The parity bit in any token covers the parity of the data/control flag in the same token, and the
dataor control bitsintheprevioustoken, asshowninfigure3.2. Thisalowsanerrorinany single
bit of atoken, including the token type flag, to be detected even though the tokens are not all the
samelength. Odd parity checkingisused. To ensure theimmediate detection of errors null to-
kens are sent in the absence of other tokens. The coding of the control tokensis shown in table
3.1, in which P indicates the position of the parity bit in the token.

Table3.1 Control token codings

Flow control token FCT P100
End of packet EOP P101
End of message EOM P110
Escape token ESC P111
Null token NUL ESC P100

Note that thetoken level of the protocol isindependent of details of the higher levels, such asthe
amount of datacontained inapacket, or theparticul ar interpretationsof packetsof different types.

Token level flow control

Token level flow control (i.e. control of theflow of tokensbetween devices) isperformedin each
link module, and the additional tokens used are not visible to the higher—evel packet protocol.
The token-evel flow control mechanism prevents a sender from overrunning the input buffer
of areceiving link. Each receiving link input containsabuffer for at |east 8 tokens (more buffer-
ing than thisisin fact provided). Whenever the link input has sufficient buffering available for
afurther 8 tokens, aflow control token (FCT) is transmitted on the associated link output, and
this FCT givesthe sender permission to transmit a further 8 tokens. Once the sender has trans-
mitted a further 8 tokens it waits until it receives another FCT before transmitting any more to-
kens. The provision of morethan 8 tokensof buffering on each link input ensuresthat in practice
the next FCT isreceived before the previous batch of 8 tokens has been fully transmitted, so the
token level flow control does not restrict the maximum bandwidth of thelink. Thisisanalyzed
in detail in chapter 6.

Token level flow control greatly simplifiesthe higher levelsof the protocol, sinceit preventsdata
from being lost dueto buffer overflow and so removesthe need for re-transmission unlesserrors
occur. To the user of the system, the net result is that a connected pair of DS-Links function as
apair of fully handshaken FIFOs, one in each direction.

Note that the [ink module regulates the flow of dataitems without regard to the higher level ob-
jectsthat they may constitute. At any instant the dataitems buffered by alink module may form
part or all of one or more consecutive higher—{evel objects. FCTs do not belong to such objects
and are not buffered.

3.3.3 Packet level protocol

In order to transfer data from one device to another, it is sent as one or more packets (in some
other serial standardsthese might becalled ““frames” or *“ cells’). Thisallowsanumber of simul-
taneousdatatransfersto beinterleaved onthesamelink. It also allowsdatato berouted by packet
switches such as the IMS C104 (described later).

Every packet has aheader defining the destination address followed by zero or more data bytes
and, finally, a‘terminator’ token, which may be either an ‘end of packet’ or an ‘end of message’
token. Seefigure 3.3. Thissimple protocol supportsdatatransfersof any length, even when (for
reasons of smooth system performance) the maximum packet sizeisrestricted; thereceiving de-

42

vice knows when each packet and message ends without needing to keep track of the number of
bytes received.

header data bytes terminator

Figure 3.3 Packet format

3.3.4 Higher level protocols

A variety of higher level protocols can belayered on top of thisbasic system. DS-Link packets
can be used asatransport mechanism for protocol s defined by other standards such asATM, SCI
and FibreChannel. They also provide very efficient support for synchronised channel commu-
nication, as described below.

3.4 Channdel communication

A model of communication which can beimplemented very efficiently by DS-Linksis based on
the ideas of communicating sequential processes. The notion of ‘process’ isvery general, and
applies equally to pieces of hardware and pieces of software. Each process can be regarded as
a‘‘black box” withinternal state, which can communicate with other processes using communi-
cation channels. Each channel isa point—to—point connection between two processes. One pro-
cess aways inputs from the channel and the other always outputsto it. Communication issyn-
chronized: the first process ready to communicate waits until the second is also ready, then the
datais copied from the outputting process to the inputting process and both processes continue.
Becauseachannel isexternal tothe processeswhichuseit, it providesaconnection between them
which hides their location and internal structure from each other. This meansthat the interface
of aprocess can be separated from itsinternal structure (which may involve sub—processes), a-
lowing the easy application of structured engineering principles.

3.4.1 Virtual channes

Each OS-Link of the original transputersimplemented only two channels, onein each direction.
To map aparticular piece of software onto a given hardware configuration the programmer had
to map processes to processors within the constraints of available connectivity. The problemis
illustrated in figure 3.4 where 3 channels are required between two processors, but only asingle
link connection is available.

One response to this problem is the addition of more links. However this does not really solve
the problem, since the number of extralinks that can be added is limited by VLSI technology.
Neither doesthis*solution’ addressthemoregeneral communication problemsin networks, such
as communi cation between non-adjacent processors, or combining networksinasimpleand reg-
ular way.

43

Process
A

Process
B

Process
C

> Process
D

Process

= E

Figure 3.4 Multiple communication channels required between devices

A better solution isto add multiplexing hardware to allow any number of processesto use each
link, so that physical links can be shared transparently. These channels which share alink are

known as ‘virtual channels'.

Process
A

Process
B

Mux/
Demux

Process
D

/

Mux/

Demux

Figure 3.5 Shared DS-Links between devices

Virtual links

Each message sent acrossalink isdividedinto packets. Every packet requiresaheader toidentify
itschannel. Packets from messages on different channels areinterleaved onthelink. Thereare
two important advantages to this:

Channels are, generaly, not busy all the time, so the multiplexing can make better use
of hardware resource by keeping the links busy with messages from different channels.

Messages from different channel s can effectively be sent concurrently —the device does
not have to wait for along message to complete before sending another.

44

Mux/
Demux

vk | W73
/
Packets arriving on link //////////

Figure3.6 Multiple channels sharing alink

In this specific protocol, apacket can contain up to 32 databytes. |If amessageislonger than 32
bytesthenitissplit upinto anumber of packetsall, except thelast, terminated by an‘ end of pack-
et’ token. The last packet of the message, which may contain lessthan afull 32 bytes, istermi-
nated by an ‘end of message’ token. Shorter messages can be sent in asingle packet, containing
0to 32 bytes of data, terminated by the ‘ end of message’ token. Messages are always sent using
the minimum possible number of packets.

Packet acknowledgements are sent as zero length packets terminated with an ‘ end of packet’ to-
ken. Thistype of packet can never occur as part of amessage because azero length data packet
must always be the last, and only, packet of a message, and will therefore be terminated by an
‘end of message’ token. Each packet of a message must be acknowledged by receipt of an ac-
knowledge packet before the next can be sent. Process synchronization is ensured by delaying
the acknowledgement of the first packet of a message until a processis ready to input from the
channel, and delaying continuation of the outputting process until all the packets of the message
have been sent and acknowledged.

Virtual channelsarealwayscreatedin pairstoforma’‘virtual link’. Thismeansitisnot necessary
to include areturn address in packets, since acknowledgements are simply sent back along the
other channel of thevirtual link. The strict acknowledgement protocol meansthat it isnot neces-
sary toinclude sequence numbersinthe packets, evenwhen therouting network isnon-determin-
istic!

The specific formats of packets used in this system areillustrated in figure 3.7.

45

First

header 32 data bytes end of packet packet

°

°

°
header 32 data bytes end of packet

Last
header 1 to 32 data bytes end of message packet
Long message (greater than 32 bytes)

header 0 to 32 data bytes end of message

Short message (0 to 32 data bytes)

header | end of packet

Acknowledge packet

Figure 3.7 High Level protocol packet formats

35 Errorson links

The DS-Links are designed to be highly reliable within a single subsystem and can be operated
in one of two environments, determined by aflag at each end of thelink, called L ocalizeError.

In applicationswhereall connectionsareon asingleboard or withinasinglebox, thecommunica-
tions system can reasonably beregarded as being totally reliable. Inthisenvironment errorsare
considered to beextremely rare, but aretreated asbeing catastrophic should oneoccur. If anerror
occurs it will be detected and reported. Normal practice will then be to reset the subsystem in
whichtheerror hasoccurred and to restart the application. Thisminimizesthe overheadson each
communication, but if an error does occur there will be an interruption in the operation of the
system.

For other applications, for instance when a disconnect or parity error may be expected during
normal operation, a higher level of fault—toleranceisrequired. Thisis supported by localizing
errorsto thelink onwhichthey occur, by setting the L ocalizeError bit of thelinkto 1. If anerror
occurs, packetsin transit at the time of the error will be discarded or truncated, and the link will
bereset automatically. Thisminimizestheinterruption of the operation of asystem, but imposes
an overhead on all communications in order to deal with the possibility that data may be lost.

46

351 Errorsdetected

The DS-Link token protocol alowstwo common types of error to be detected. Firstly the parity
systemwill detect all singlebit errorsat the DS-Link tokenlevel, and secondly, because each out-
put link, once started, continues to transmit an uninterrupted stream of tokens, the physical dis-
connection of alink can be detected.

Disconnection errors

If the links are disconnected for any reason whilst they are running then flow control and token
synchronization may belost. Inorder torestart thelink itistherefore necessary toreset both ends
to aknown flow control and token synchronization point.

Disconnection isdetected if, after atoken has been received, no tokens are seen on theinput link
inany 1.6 microsecond window. Once adisconnection error has been detected the link haltsits
output. Thiswill subsequently be detected as a disconnect error at the other end, and will cause
that link to halt itsoutput also. 1t then resetsitself, and waits 12.8 microseconds before allowing
communication to restart. Thistime is sufficient to ensure that both ends of the link have ob-
served disconnection and cycled through reset back into the waiting state. The connection may
now be restarted.

Parity errors

Following aparity error, both bit—- evel token synchronization and flow control statusarenolong-
er valid, therefore both ends of thelink must bereset. Thisisdoneautonomously by the DS-Link
using an exchange—of—silence protocol.

When aDS-Link detects a parity error onitsinput it haltsits output. Thiswill subsequently be
detected asadisconnect error at the other end, and will causethat link to halt itsoutput also, caus-
ing adisconnect to be detected at thefirst end. Thenormal disconnect behavior described above
will then ensure that both ends are reset (irrespective of line delay) before either is allowed to
restart.

3.6 Networ k communications: the IMS C104

Theuseof DS-Linksfor directly connecting deviceshas already been described. Thelink proto-
col not only simplifies the use of links between devices but a so provides hardware support for
routing messages across a network.

The system described previously packetizes messages to be sent over alink and adds a header
to each packet to identify thevirtual channel. These headers can also be used for routing packets
through acommuni cation system connecting anumber of devicestogether. Thisextendstheidea
of multiple channels on a single hardware link to multiple channels through a communications
system; acommunications channel can be established between any two devices even if they are
not directly connected.

Becausethelink architecture allowsall the virtual channels of adeviceto useasinglelink, com-
plete, system-wide connectivity can be provided by connecting just one link from each device
to the routing network. This can be exploited in a number of ways. For example, two or more
networks can be used in parallel to increase bandwidth, to provide fault—tolerance, or asa‘user’
network running in parallel with a physically separate ‘ system’ network.

TheIMSC104isadevicewith 32 DS-Linkswhich can route packets between every pair of links
with low latency. Animportant benefit of using serial linksisthat it is easy to implement afull
crossbar in VL SI, even with alarge number of links. The use of a crossbar allows packetsto be

47

passing through all links at the same time, making the best possible use of the available band-
width.

If therouting logic can be kept ssimpleit can be provided for al theinput linksintherouter. This
avoidsthe need to share the hardware, which would cause extra delays when several packetsar-
riveat the sametime. Itisalso desirableto avoid the need for the large number of packet buffers
commonly usedinrouting systems. Theuse of small buffersand simplerouting hardwareallows
asingle VLSI chip to provide efficient routing between alarge number of links.

A singleIMS C104 can be used to providefull connectivity between 32 devices. IMS C104scan
also be connected together to build larger switch networks connecting any number of devices.

3.6.1 Wormholerouting

The IMS C104 includes afull 32 x 32 non-blocking crossbar switch, enabling messages to be
routed fromany of itslinksto any other link. Inorder to minimizelatency, theswitch uses‘worm-
hole routing’, in which the connection through the crossbar is set up as soon as the header has
beenread. The header and the rest of the packet can start being transmitted from the output link
immediately. The path through the switch disappearsafter the‘ end of packet/message’ token has
passed through. Thisisillustrated in figure 3.8. This method is simple to implement and pro-
vides very low latency as the entire packet does not have to be read in before the connection is
made.

Minimizing routing delays

The ability to start outputting a packet whileit is still being input can significantly reduce delay,
especialy inlightly loaded networks. Thedelay can befurther minimized by keeping the headers
short and by using fast, smple hardware to determine the link to be used for output. The
IMS C104 uses a simple routing algorithm based on interval labelling (described in section
3.6.3).

Because the route through each IMS C104 disappears as soon as the packet has passed through
and the packetsfrom all the channel sthat passthrough aparticular link areinterleaved, no single
virtual channel can monopolize aroutethrough anetwork. Messageswill not be blocked waiting
for another message to pass through the system, they will only have to wait for one packet.

C104 inputs header and Device C104 Device
selects outgoing link or or
C104 C104

Crossbar connects input to . —Ii .
output; header flows through | Device C104 Device

foll t of packet or or
ollowed by rest of packe c104 c104
Packet terminator closes Device C104 Device
crossbar connection or or
C104 C104

Figure 3.8 Packet passing through IMS C104

48

ThelMS C104sthat the packets passthrough do not need to haveinformation about the complete
route to the destination, only which link each packet should be sent out of at each point. Each
of the IMS C104sin the network is programmed with information that determines which output
link should be used for each header value. In thisway, each IMS C104 can route packets out of
whichever link will send it towards its destination.

3.6.2 Header deletion

An approach that simplifies the construction of networks is to provide two levels of header on
each packet. Thefirst header specifies the destination device (actualy, the output link from the
routing network), and isremoved as the packet |leavesthe routing system. This exposes the sec-
ond header which tellsthe destination device which process (actually, which virtual channel) this
packet isfor. To support this, the IMS C104 can route packets of any length. Any information
after the initial header bytes used by the IMS C104 isjust treated as part of the packet, even if
itisgoingto beinterpreted asaheader elseawhereinthe system. Any output link of theIMSC104
can be set to do header deletion, i.e. to remove the routing header from the front of each packet
after it been used to maketherouting decision. Thefirst part of theremaining dataisthen treated
as a header by the next device that receives the packet.

Header used to select
virtual link in device

:

>
I N % IMS C104 T

N

Header used to select
output link of C104

Figure 3.9 Header deletion

Ascan be seen from figure 3.10, by using separate headersto identify the destination device and
achannel withinthat device, thelabelling of linksinarouting network isseparated fromthelabel -
ling of virtual channels within each device. For instance, if the same 2 byte header were used
to do all the routing in a network, then the virtual channelsin all the devices would have to be
uniquely labelled with avaluein the range 0 to 64K. However, by using two 1 byte headers, all
the devices can use virtual channel numbersin the range 0 to 255. The first byte of the header
will be used by the routing system to ensure that the packets reach the appropriate device before
the virtual channel number is decoded.

49

(a) labelling the system with 2 byte headers

Network of C104s
Virtual
channels: 0-255 256—511 65280—-65535

(b) labelling the system with two 1 byte headers
Network of C104s
0 1 255

Virtual
channels: 0-255 0-255 0—255

Figure 3.10 Using header deletion to label a network

The advantages of using header deletion in a network are:

It separates the headers for virtual channels from those for the routing network.

Thelabelling of the network can be done independently of the application using the net-

work.

Thereis no limit to the number of virtual channels that can be handled by a system.

By keeping the header for routing short, routing latency is minimized.

Any number of headers can be added to the beginning of apacket so that header deletion can also
be used to combine hierarchies of networks as shown in figure 3.11. An extra header is added

to route the message through each network. The header at the front of each packet is deleted as

it leaves each network to enter a sub-network. Thisisjust like the local—national—international
hierarchy of telephonenumbers. Sincetheoperation of theIMS C104 iscompletely independent

of thelength of the packets, thefact that header del etion changesthelength of apacket asit passes

through the network causes no problem at all.

50

\-

I used to route packet
sub—network of C104s through sub—network,

deleted on output.

sub—network of C104s

[| used to route packet
through sub—network,
deleted on output.

\ \
final header used to identi—\

fy virtual channel on device

Figure 3.11 Using header deletion to route through sub-networks

3.6.3 Labdling networks

For each IMS C104 there will be a number of destinations which can be reached via each of its
output links. Therefore, there needsto be amethod of deciding which output link to usefor each
packet that arrives. The addresses that can be reached through any link will depend on the way
the network islabelled. An obviousway of determining which destinations are accessible from
each link, isto have alookup table associated with all the outputs (see figure 3.12). In practice,
thisisdifficult to implement. There must be an upper bound on the lookup table size and it may
require alarge number of comparisons between the header value and the contents of the table.
Thisisinefficient in silicon area and also potentially slow.

Destina}tions reaghable Lookup table required

from this output link
LinkO |+ 40 18, 49 28 Link2 | 49 | Link 0
_ 25 Link1 | 45 ' Link 1
Link 1}~ 25,45,17,6,39 24 Link2 |42 Link3
Lnk2 | pa 22 28 22§ Link 2 4o§ Link 0
34 18 Link0 | 39 ' Link1
Link3 | . 36,42 17 Link1 | 36 Link 3
6 Link1 | 34 Link2

Figure3.12 Labelling a network

51

Destinations reachable

from this output link Interval routing table required

LinkO |~ 25 28 34, 36, 6..18 ..25 ..40 ...50
|
39 — Link 2

Link1| 6,17
Link O

Link2| ~ 40, 42, 45, 49

:

> Link 3
Link 3|~ 18,22,24 = Link 1

:

Figure3.13 Interval labelling

However, alabelling scheme can be chosen for the network such that each output link hasarange
of node addressesthat can bereached throughit. Aslong astherangesfor eachlink arenon-over-
lapping, avery simpletest is possible. The header just has to be tested to see into which range,
or interval, it falls and, hence, which output link to use. For example, in figure 3.13, a header
with address n would be tested against each of the four intervals shown below:

Interval Output link
6<n<18 1
18<n<25 3
25<n<40 0
40 < n<50 2

The advantages of interval labelling are that:

Itis‘complete’ —any network can belabelled so that all packetsreach their destinations.

|t provides an absolute address for each devicein anetwork, so keeping the calculation
of headers simple.

e Itissmpletoimplement in hardware—it requireslittle silicon areawhich meansit can
be provided for alarge number of links as well as keeping costs and power dissipation
down.

» Becauseitissimple, itisalso very fast, keeping routing delays to a minimum.

Figure 3.14 gives an example of interval routing for a network of two IMS C104'sand six IMS
T9000 transputers showing onevirtual link per transputer. The example showssix virtual chan-
nels, oneto each transputer, labeled 0to 5. Theinterval containsthelabelsof al virtual channels
accessibleviathat link. Theinterval notation [3,6) isread as meaning that the header value must
be greater than or equal to 3 and less than 6. If the progress of a packet with the header value
4 isfollowed from IMS T9000; then it is evident that it passes through both IMS C104s before
leaving on the link to IMS T9000;.

52

T9000, T90004
[1, 2) 3, 4
3, 6) 5, 6)
T9000, C104 C104 T9000s5
[0, 1) [0, 3)
2, 3) [4, 5)
T9000, T9000,
C1044 C104,
Intervals: [0,1) [1,2) [2,3) [3.6) [0,3) [3,4) [4,5) [5.6)

Figure 3.14 Interval routing

Itispossibleto label all the major network topol ogies such that packets follow an optimal route
through the network, and such that the network isdeadl ock free. Optimal, deadl ock freelabelings
are available for grids, hypercubes, trees and various multi—stage networks. A few topologies,
such asrings, cannot belabeled in an optimal deadlock freemanner. Althoughthey canbelabeled
so that they are deadlock free, thisis at the expense of not using one or more of the links, so that
thelabeling isnot optimal. Optimal deadlock freelabelingsexist if one or more additional links
are used.

3.6.4 Partitioning

All the parameters determining the routing are programmable on a per link basis. This enables
an IMS C104 to be used as part of two or more different networks. For example, asingle IMS
C104 could be used for access to both a data network and a control network (see figure 3.15).

Partitioning provides economy in small systems, where using an IMS C104 solely for a control
network isnot desired, whilst maintaining absol ute security. By ensuring that no link belonging
to one partition occursin any interval routing table in another partition, it is guaranteed that no
packet can be routed from one partition to another, whatever the value of its header.

Network 1
C104 used in a data network

Network 2
C104 used in a control network

[10, 14)

[0, 9)

<« C104

[9, 10)

C104

Interval table for links 4, 5 and 6

Interval | SelectLink
[10, 14) 4

[9, 10) 5

[0, 9) 6

Interval table for links 0, 1, 2 and 3

T9000
(1,2
[3, 6)
T9000 C104 »T9000
[0, 1)
[2,3)
T9000
Single C104 used between 2 networks
[9, 10)
Network 2
«~ | Linke kS
[0, 9) Linkd [<———>
1 _crla_ | [10, 14)
<« » LinkO
[1,2)
Link1 [>
Link3
[0, 1) ™1 e
Link2
Network 1 [2,3)

Interval | SelectLink
[3, 6) 3
[2,3) 2
[1,2) 0
[0, 1) 1

Figure 3.15 Using partitioning to enable one C104 to be used by two different networks

3.6.5 Grouped adaptive routing

The IMS C104 can implement grouped adaptive routing. Sets of consecutive numbered links
can be configured to be grouped, so that a packet routed to any link in the set would be sent down
any freelink of theset!l. Thisachievesimproved network performancein termsof both latency

and throughput.

Figure 3.16 gives an example of grouped adaptive routing. Consider a message routed from
C1044, viaC104,, to T9000;. On entering C104, the header specifies that the messageisto be
output down Link5 to T9000;. If Link5 isalready in use, the message will automatically be

11. Thisisalso sometimes called a hunt group.

54

routed down Link6, Link7 or Link8, dependent on which link isavailable first. Thelinkscan
be configured in groups by setting abit for each link, which can be set to * Start’ to begin agroup
and ‘ Continue’ to be included in a group.

C1044

Link10 Link9
- LinkO Link8 >

-
C104, Link1 5104, LMK T9000;

- Link2 Link6 >

> Link3 Link5 >
Link4

Settings in Group0—31 bit field for
C104,

Start T9000,
Continue
Continue
Continue
Start
Start
Continue
Continue Grouped
Continue
Start
Continue
Start

Grouped

] Grouped

2 O0oOoONOODMWN=O

- O

Start

w
.

Figure3.16 Grouped adaptive routing

Grouped adaptive routing isalso very effective in multi—stage networks such asthoseillustrated
infigures7.1to 7.4. Since al the centre-stage switches are equivalent, al the links from each
first—stage switch towardsthe centre can be grouped together, allowing ahigh degree of adaption
to dynamic traffic conditions.

3.7 Conclusion

DS-Link technology providesreliable, high—speed serial communicationsat low cost, inasimple
formwhichissuitablefor awiderange of applications. A simple protocol, implemented in hard-
ware, keeps overheads down whilst allowing more complex functionsto be layered on top of it.
It al so permits high—performancerouting devicesto be constructed, from which efficient systems
of any size can be built to provide very high system bandwidth and fault—tolerance.

55

4 Connecting DS-Links

41 Introduction

Digital design engineers are accustomed to signal s that behave as ones and zeros, although they
have to be careful about dissipation and ground inductance, which become increasingly impor-
tant as speedsincrease. Communications engineers, on the other hand, are accustomed to disap-
pearing signals. They design modemsthat send 19200 bits per second down telephone wiresthat
weredesigned 90 yearsagoto carry 3.4KHz voicesignals. Their signalsgo thousandsof kilome-
ters. They are used to multiplexing lots of slow signals down a single fast channel. They use
repeaters, powered by the signal wires.

Digital designersdo not need all these communi cationstechniquesyet. But sending 100Mbits/s
or moredown acable muchlonger than ameter hasimplicationsthat aremoreanalog thandigital,
which must be taken care of just like the dissipation and ground inductance problems, to ensure
that signals still behave as ones and zeros.

Actualy, itiseasy to overestimatethe problemsof thesesignal speeds. Engineersdesigning with
ECL, even fifteen years ago, had to deal with some of the problems of transmitting such signals
reliably, at least through printed circuit boards (PCBs), backplanes, and short cables. One of the
best books on the subject isthe Motorola‘MECL System Design Handbook’ [1] by William R
Blood, Jr., which explains about transmission linesin PCBs and cables. Thisshowswaveforms
of a50MHz signal at the end of 50ft (15m) of twisted pair, and of a 350MHz signal at the end
of 10ft (3m) of twisted pair, both with respectable signals.

This chapter first discusses the signal properties of DS-Links. PCB and cable connections are
then described, followed by a section on error rates. errors are much less frequent on transputer
linksthanisnormal in communications. A longer section introduces some of the characteristics
of optical connectionsincluding optical fibre, which should be suitable for link connections up
to 500m, using an interface chip to convert between the link and the fibre. A pointer is given
towards possible standards for link connections. Appendix A describes aconnector that will as-
sist standardization of transputer link connections. Appendix B shows waveforms of signals
transmitted through cable and fibre. Appendix C gives detailed electrical parameters of DS
Links, and appendix D gives an equivalent circuit for the DS-Link output pads.

4.2 Signal properties of transputer links

Considerable design work has goneinto making the DS-Link signals[4] well behaved. Thebit-
level protocol and theelectrical characteristicsboth contributeto makethelink signalsunusually
easy to use, for serial dataat 100MBits/s.

TheDS-Linkinformationiscarried by apair of wiresineach direction. TheD signal carriesdata
bits, and the S signal is a strobe, which changes level every bit time that the D signal does not
changel?. Thisisillustratedinfigure4.1. Thisbit-level protocol guaranteesthat thereisatransi-
tion on either D or S every bit time. Effectively this provides a Gray code between the D and
Ssignals.

12. Note that this differs from the usual meaning of a‘strobe’, which is a signal which indicates every time the
datasignal isvalid.

56

Data
Strobe :

Figure4.1 DS-Link signals

Oneresult of the DS Gray coding is that the received datais decoded purely from the sequence
of D and Stransitionsrather than depending onany absolutetime. Thismeansthat thelink receiv-
ers ‘autobaud’, receiving data at whatever speed it is sent (so long as the receiver logic is fast
enough).

The Gray coding makesit much easier to designlogic that isfast enough, becausethetiming reso-
lution required isawhole bit time. Alternative codingswould require aclock edgein the centre
of adatabit, and hencerequiretiming resolution of half abit time. Themorerelaxed timing reso-
lution needed by the DS-Links gives major benefits in terms of the performance that can be
achieved in practical systems.

A further advantage of the coding, with only D or S changing at atime, isthat the signal can be
received without a phase-locked loop (PLL) —the clock isjust the Exclusive-OR of the D and
Ssignals. For the C104 routing switch, avoiding the need for 32 PLLsis very valuable, and it
islikely that a 32 way routing switch would not be implementable had the PLL s been required.

Electrical aspects of the design include a controlled output impedance approximately matched
to a100Q transmission linel3. Obviously thereisatolerance on theimpedance, which also may
not be identical for high and low, but the DS-Link has been designed to minimize the effect of
any such mismatch on the signal.

Thelink outputs have al so been designed to give controlled riseand fall times. Thefull electrical
characteristicswill not be known until the devices are fully characterized, but areasonable esti-
mate of the transition timesis 3ns fastest transition and 6ns slowest transition.

The DS coding gives as much tolerance as possible for skew between the D and S signals, and
the outputs and inputs have been designed to have minimal skew at the TTL threshold of 1.5V.

These characteristics of the DS-Link signals make them ideal for connections on PCBs, and for
DC coupled connections on short lengths of cable, up to 10m. Later sectionswill describe such
connections, as well as much longer connections up to 500m using optical methods.

4.3 PCB connections

The following discussion assumes the use of multi-layer PCBs with power and ground planes;
use of DS-Links on double-sided boards without ground planes is not recommended.

A 100Q transmission lineimpedanceisfairly easy to achieve onthesurface of aPCB. PCBshave
been made with long connections of 100Q2 impedance which carry link signals faithfully. The
100Q2 impedance requires a track width between 0.1mm and 0.3mm, depending on the board
13. See appendix C.

57

thickness and where the power planes are located withinit. Figure 4.2 (derived from datagiven
in Blood [1], from SONY [2], and from Coombs [3]) shows the approximate relationship be-

tween these parameters for standard FR4 PCB material with a dielectric constant of 4.7.

Track
width
mm (.001") [| | | | | | | | |
B | | | | | | | | \
o0 1] 1OQQ onsurface o
12) } } } } } } (without solder-
. mask)
E | | | | |
0.2 }77‘77+77‘f j‘ 100Q2 inner
® F | | layer
r_ 111 _/ *
r | | | |
r | | |
041 A —— ==t
L | | | |
@ i } } } | } (approximate, calculated
1 T 1 717 1 fromdatain references)
r | | | | | | | | |
L \\\\\\\‘\ \\‘\\\\‘\\ \‘\\\\‘\\\\‘\\\\‘\\\\‘
0 01 02 03 04 05 06 07 08 09
Height of track above ground or power plane (mm) o -
FR4
L

Figure4.2 Graph showing approximate PCB transmission line impedance for FR4 laminate

Note that when a PCB track is buried in the fiberglass/epoxy laminate, itsimpedance is reduced
by about 20% compared with asurfacetrack. Thisrequirestheinner layer tracksto be narrower
than surface tracks, to minimize differencesin impedance. It isnot possible, within the normal
1.6mm board thickness, to have 100€2 tracks sandwiched between power or ground planes.

If the transmission line impedance could be maintained with high precision, PCB DS-Link con-
nections would be good for several meters, in theory. However in practiceit ishard to maintain
atighter tolerance than +/— 20%. It is therefore advisable to limit the connections on PCBsto
less than 1000mm with standard FR4 PCB material. If the impedance goes outside the range of
80€2 to 12042, it is advisable to limit the connection to 500mm.

Short discontinuities in the impedance are permissible, such as connectors, vias, and short sec-
tions of track of higher or lower impedance; such discontinuities should be kept to less than
50mm. Similarly, if itisnecessary to use some PCB tracks of higher impedance than 1002, and
some lower than 100€2, it isbest if they can be alternated in short sections, rather than having a
400mm length of 1252 track and then a400mm length of 80Q track.

The controlled transition times of the DS-Links minimize crosstalk compared with the sub-nano-
second fall times of some of thefast familiesof ‘ TTL’, but care still needsto be taken over cross-
talk. Tests, simulations, and theory using typical PCB materials and DS-Link outputs suggest
that backwards crosstalk increases as the length of the parallel tracks increase up to 25cm, and

58

doesnot increasefor longer parallel tracks. Track separation of 0.15mm over thislength appears
to give 1 volt of crosstalk, which is above the noise margin. Simulations of track separation of
1.25mm over alength of 20cm give crosstalk figures of less than 100mV.

Thereferences[1], [2], and [3] do not give agreat deal of information about PCB crosstalk, and
theresults above suggest that further work isrequired. Inthe meantime, it must be good practice
to avoid long parallel runs and to space the tracks out asfar as possible. Another techniqueisto
use guard tracks (tracks connected to OV) between link tracks, although the effects of thison
the impedance of the link track may need to be taken into account.

The D and Spair of signals should be approximately the same length, but adifferencein length
of 50mm would only introduce a skew of 250ps, which should be totally acceptable.

4.4 Cable connections

This section looks at existing cable interfaces, comparing them with transputer links, and then
discussestheloss and noisethat occur in acable, and what can be doneto overcometheir effects.

4.4.1 Existing cableinterfaces and rough costs

Ethernet connectionsarenow inexpensive, with acomponent cost well under $50 and an end-user
cost around $150. Transputer linksare even lessexpensivewith alow cost T400 having two OS-
Links each capable of 20Mbits/s full duplex, atotal bandwidth four times that of ethernet.

Token Ring goes alittle faster than Ethernet, but to go substantially faster the next standard is
FDDI at 125 MBits/s (of which 100 Mbits/s are useful data). FDDI isexpensive, not only inits
protocol, but even initscomponents, and just the optical transceiver isnot expected to fall below
$100 even in volume for some time.

Links on the T9000 transputer run at 100 MBits/s, full duplex. The cost per link is considerably
lessthan either the chipset or the transceiver for FDDI. The C104 routing switch, with 32 ports
will giveacost per port well under $10—at | east an order of magnitudelessthan the FDDI compo-
nent cost.

Ethernet, Token Ring, and FDDI are all local area networks, with many portsin a network and
long distances between ports. Transputer links are point-to-point, and are generally expected to
be comparatively short connections. In this respect they are more like the recent parallel inter-
facessuch as SCSI2, IPI and HPPI. HPPI asan example has amaximum length of 25m, and runs
at 800 Mbits/sin onedirection down acablewith 50 twisted pairs. The same speed in both direc-
tions requires two cables, and the speed can be doubled by using two cables in each direction.

FibreChannel isafibre connection with smilar dataratesto HPPI, using laser diodes. Thiswill
allow much longer connections than HPPI, at drastically lower cable costs, but possibly with a
high cost per port.

4.4.2 Vanishing signals (High frequency attenuation)

Copper wire has afinite resistance: 28AWG wire is one of the smallest cross sections in wide-
spread use and has aresistance of 0.23Q2/m, 1Q in 4.3m. If the characteristic impedance of the
cableis 100€2, aresistance of 10 ohmsis not going to affect the signal very much, so this cable
should certainly be usable at 43m. The problem isthat at high frequencies, the signal does not
flow evenly throughout the conductor but concentrates at the outside of the conductor —the skin
effect. So the higher the frequency of the signal, the more the resistance of the cable. Some of
the energy does not flow in the conductor at all, but in the insulation and, if it can, in adjacent

59

conductors causing crosstalk aswell asloss. Some of the energy is sent into the atmosphere to
interfere with radios and other users of the airwaves.

Attenuation
dB/10m
10
5
oo(zs3~
L4 <®
e &
2 Ny I
%\(gb /
Y Zé\@ A
A
1 f r(')%\
||/ V‘Q\ L
N
m gl uoﬁ\gv /(1.
05 v 99& ’\\s\ \)CC@F
\a\ép‘zp 4l Q‘G)%
\ﬁb\ /
0.2 //e\(\é\
A
/‘e
5
RS
0.1
0.05
62.5um fibre @ 820NN
0.02
0.01
1MHz 10MHz 100MHz 1GHz
Frequency

Figure4.3 Cable attenuation against frequency for avariety of cables

60

The sum of these losses of energy which depend on frequency is measured in dB (deciBels) per
unit length. Figure 4.3 plots these losses for a number of cables — some inexpensive, some ex-
tremely expensive. Thedetail isnot important but notethat for all of the electrical cablestheloss
increases with frequency.

The increase of loss with frequency means that the higher the frequency to be passed along the
cableand thelonger the cable, theless‘lossy’ (and probably more expensive) the cablewill have
to be. Above some length of connection, the losses have to be compensated for somehow — as
in Telecommuni cations — and more tricks have to be used, increasing the cost of the circuitry at
the ends of the cable, and possibly adding repeatersin the cable. At some stage, it will become
worth while to use optical fibre, an example of which is shown in figure 4.3.

Theincreased loss at high frequency can be overcome by using acable short enough that theloss
isminimal. At 100MHz, this could mean less than a meter for some of the cables illustrated.
The effect of using alonger cable is distortion of the signal. Figure 4.4 shows the sort of thing
that happensto an NRZ (Non Return to Zero) signal which has suffered a 10dB loss- at the fre-
quency of the square wave. The dotted line represents the DC threshold of the receiver, which
suggests that the signal will not be received correctly, even if there is no noise.

Figure4.4 Cableasalow-passfilter

Figure 4.5 shows a similar effect to figure 4.4, but the received high frequency voltage is now
about 0.6 times the transmitted voltage, representing a loss at this frequency of around 4.5dB.
At 100Mbitg/s, the ‘sinewave’ part of figure 4.5 is 50MHz, and the 28AWG |PI/SCSI2 cablel®
shown in figure 4.3 has aloss of 2.8dB for 10m at 50MHz, so in the absence of noise, and with
a receiver which had sufficient gain and istolerant of small errorsintiming, thiscable might just
work not at 43m but at (4.5/2.8) x 10mor 16m. In practice the maximum length will belessthan
this.

14. The 10dB loss means that the power at the receiver is 1/10 of the power at the transmitter. Aspower isvolts
times amps, both of which are reduced in the same proportion, the received voltage for a 10dB lossis 0.33 times
the transmitted voltage.

15. The 2BAWG and 26AWG Madison cables, shown in figure 4.3, have also been designed to minimize the skew
that can occur between any two pairsin the cable, resulting in askew of 0.04ng/ft, which isan order of magnitude
better than that of cableswhich have not been so designed. Skew isimportant for parallel interfaces such as SCSI
or HIPPI, and is equally important for DS-Links.

61

Figure4.5 Almost enough signal

4.4.3 Boxesarenot at thesamevoltage (Common mode, DC coupled differential signals)

For a cable several meters long between two boxes, there may be crosstalk and it can not be
guaranteed that there will be no difference between the boxes' ground or logic OV levels. Any
difference will be seen as noise.

A good way to remove the effect of the difference in grounds between the two boxesisto send
differential signals. Theseareshowninfigure4.6. Any differenceinground voltagewill be seen
as common mode by areceiving differential buffer.

Figure4.6 DC coupled differential signal

A popular standard differential signalsisRS422, whosereceivershaveacommon modetol erance
of +/—7V. TheRS422 componentsare limited to 10M Bits/sor 20MBits/s, and so are not suitable
for higher bit rate DS-Links. However they have been found to be extremely reliable when used
to connect OS-Links between boxes, which showsthat differential signalling iseffective. DS
Links therefore ssimply require faster differential buffers.

ECL buffers are much faster than the RS422 components. Blood shows 'scope traces of a
350MHz signal after areceiver at theend of 10ft of twisted pair. Unfortunately the ECL common
mode tolerance is much less than R$422, from +1V to -1.8V or -2.5V depending on the device
used.

A family of devicesfrom AT& T (41 seriesof High PerformanceLine Drivers, Receivers, Trans-
ceivers.) offers speed approaching that of ECL together with common modetol erance approach-
ing that of R$422. Thetransmittershave TTL inputsand pseudo-ECL outputs, and thereceivers
convert the pseudo-ECL back to TTL. One range of devices runs up to 100MHz (200MBitg/s),
another to 200MHz (400MBIts/s). Common mode tolerance is from -1.2V to +7.2V, with the
1V signal approximately in the middle of of this range.

62

Tests have been done using these buffers which indicate that a 10m link running at 100 Mbits/s
should work reliably.

The cable used for the tests was 30AWG individually shielded twisted pairs. The shielding and
the use of 30AWG both increase attenuation compared with the 28AWG unshielded cable men-
tioned earlier; the shielding minimizesEM C emissionsfor FCC and other regulations, eliminates
crosstalk, and the 30AWG reduces the size of the cable.

4.4.4 Ground differences morethan a few volts (AC coupling, DC balance)

In the last section, we overcame some problems by using balanced, differential signals. Larger
common mode voltages between two boxes can be overcome by using AC coupling, which re-
quires adifferent sort of balance. Figure 4.7 shows asigna which has a mark-to-space ratio of
4-1: onthereceivesideof the AC coupling, thethresholdisset by averaging thereceived voltage.
Asaresult, the threshold is heavily offset, reducing the noise margin and changing timings.

|

Figure4.7 Effect of DC imbalance

Inorder toprovide DC balance, sothat thethresholdisinthemiddleof thesignal, thedataiscoded
in some way, usually by adding redundant bitsto achieve the desired signal characteristics. One
of the most popular forms of DC balanced coding is Manchester Code, which provides DC bal-
ance over every hit period, at the expense of doubling the bit—rate. An alternative to coding is
to modulate acarrier, in amplitude, in frequency, in phase, or in combinations of these, with dif-
ferent data values being represented by different amplitudes, frequencies or phases; the carrier
isasine wave which isinherently DC balanced.

Even when thereisno DC component in the signal, along period without atransition can cause
the signal to disappear. Codes therefore have a maximum run length to limit this time between
transitions; they al so have aminimum run length, to ensure that two adjacent edges do not cancel
each other out and appear asno edge. Figure 4.8 showsthe effect of along run length: thesignal
droops, reducing the margin between the signal and thethreshold, until it eventually crossesover
the threshold.

63

Figure4.8 Effect of excessive run length

Some of the codes which are currently popular are not in fact completely DC balanced, but for
most data patterns have minimal DC component. Such codesincludethe 2:7 Run Length Limited
code used on disks, and the TAXI/FDDI code which is never worse than 40%/60% balanced.
(The code used by FibreChannel hasthe sameefficiency asthe FDDI code, but iscompletely DC
balanced.) A technique used on ISDN and on SONET isto scramblethedataso that it isapproxi-
mately balanced and very rarely has long run lengths; the scrambling has the advantage that no
extrabits are added to the data.

An extreme form of AC coupling isto differentiate the signal, which providesinherent DC bal-
ance. The pre-compensation circuit used in twisted pair FDDI effectively produces the sum of
thesignal itself, plusadifferentiated version of thesignal. In magneticrecording, suchdifferenti-
ation occurs naturally, but it brings its own problems; any noise such as crosstalk is coupled
through the differentiator, and any AC imbalance in common-mode coupling is translated into
extra noise.

AC coupling can either be provided by transformersor capacitors. Transformers provide excel-
lent common modeisolation and arereadily availableat |ow cost up to afew hundred MHz (Mini-
CircuitsT1-10.15MHz to 400MHz, $3.25inlow volume). Capacitorsdo not providegood com-
mon mode isolation, but can be used for frequencies up to many GHz. Low cost amplifiersare
also available which must be AC coupled, with 7.5dB gain at 1.5GHz.

445 Limiting the frequency range and tuning

The constraints on run length and on the DC bal ance effectively reduce the bandwidth that needs
to bereceived. If the highest frequency needed is50MHz, and thelowest is 10MHz, the 28AWG
cable referred to above loses 2.8dB in 10m at 50MHz and 1.2dB at 10MHz. So we only have
to cope with adifference of 1.6dB per 10m between the frequencies. Instead of the 16m limit
given abovefor thedifferential DC coupled casegiving 4.5dB, we can AC couple, usemoregain,
and should be able to reach (4.5/1.6) x 10m or 28m 16,

Even with a very wide bandwidth, it is possible to use tuning to compensate for the frequency
characteristics of the cable. Aswith’scope probes, itiseasier to doif thetuningisbuilt into the
cable (otherwise it has to cope with a wide range of different cable lengths). As with ’'scope
probes, this can be expensive and liable to misuse.

16. A similar example is Ethernet, which uses Manchester coding, with a limited frequency range, and allows
atotal of 8.5dB loss at its frequency.

64

4.5 Error Rates

Theform of serial communicationsthat most engineersarefamiliar withare LANsand very long
distance (tele-)communications. For these long distance connections, error rates tend to be
around 109 or less, which at 100MBits/sisan error per link every five seconds (counting a link
as bidirectional). Telecomms and LANSs aso need to cope with buffer overflow.

For thesehigh error rates, it isabsolutely necessary to have CRCsfor error detection, and to have
re-try mechanismsfor corrupted or |ost data—whether |ost asaresult of dataerrorsor buffer over-
flow.

Another reason for needing CRCs is that most of the efficient communication codes, such as
FDDI and FibreChannel, alow an erroneous single bit in the received data stream to be decoded
asavalid (but incorrect) whole data symbol; both the FDDI and FibreChannel codes limit such
decoded errors to less than a byte of data, but such error multiplication necessitates the use of
checksums such as CRC.

The situation with transputer linksisrather different: the specified error rates on PCBs are sub-
stantially better than 10720, which is a failure per link every 50 000 years. At such error rates,
it isquite reasonable to consider a system asreliable, and to crash the system if an error occurs.
Alternatively, itispossibleto add softwareto detect therare event and to take someform of recov-
ery action. In practice, at these error rates, hardware errors are much more likely to be caused
by lightening strikes or by mechanical damage than by electrical signal failure.

The parity check on the DS-Linksis such that a single bit error, either in control or data, is de-
tected. Aslong asthe errors are infrequent (one every several thousand years), thisis entirely
adequate. If auser isconcerned about the possibility of an error not being detected, software can
be added to the processesat theend of thelink to perform morerigorousdatachecksand to recov-
er from data or control errors.

These software checks can be performed even if the suspected virtual channel goes through a
routing switch. The suspected link can be configured intherouting switchto goto asingletrans-
puter whichisprogrammed to check the messages, effectively ignoring apossibly corrupted rout-
ing header. If several transputers are programmed to check the messages, the routing switch can
be configured to route the messagesto any of these transputers— but not to another routing switch
or to atransputer that is unable to check the message.

The specifications stated in the transputer data sheets are designed to ensure the very good error
ratesthat are expected betweenlogic devicesonaPCB. Asaresult, the permitted skew specifica-
tion for the T4xx and T8xx transputers is a few nanoseconds. Some users have observed that
OS-Linkswork with larger skews, but with such large skewstheerror ratesaremorelikethe 10-?
of thetelecommunicationsand LANs. AtINMOS, thereisanetwork of transputer links, buffered
with R$422 buffers, with connection lengths of close to 100m — far outside the specification or
recommendations; in practice, the incidence of software failure on this network is substantially
higher than the incidence of hardware errors dueto links.

DS-Links have been specified, therefore, so that they give such infrequent errors that the hard-
warecan beconsideredreliable. Thisdoesnot precludeany user from adding checking software;
nor does it preclude the use of more elaborate checking hardware when connecting links over
longer distances such as with optical fibre interconnections.

65

4.6 Optical interconnections

Included in this section on optical interconnection are optical isolators which retain electrical
connection, but offer large tolerance of common mode noise, and optical fibre, which comesinto
its own for connections much above 10m.

4.6.1 DC coupling with common mode isolation (Optical |solation)

Optical isolatorsappear to offer the best of both worlds, inthat they do not requirethe DC balance
or run length limits that AC coupling needs, but yet offer almost infinite tolerance to common
mode. To makeopto-isolatorsfast, however, most of thecircuitry needsto beincluded that would
beusedinan optical fibreconnection. Asafibre connectionwould cost lessthanthewireconnec-
tion and go much further at agiven speed, it may be preferable to use fibre. Whether thisisthe
reason or not, it has not been possibleto find opto-isolatorsthat are specified torunat 100Mbits/s.

4.6.2 Longdistance, high datarate, infiniteisolation ... but... (Optical Fibre)

The fibre shown on figure 4.3 isinexpensive but is much better in terms of its attenuation than
the best copper cable. Single mode fibre is still better. The problem is not in the attenuation in
the cable, but in the losses (and consequent costs) in converting from electricity to light at one
end and from light to electricity at the other end.

4.6.3 Losses, performance and costs of componentsfor optical fibres

The light is produced by a LED or by a Laser Diode. An example LED outputs (infra-red at
1300nm wavelength) 0.25mW of optical power when driven by 100mA of electrical power. La-
ser diodesare moreefficient, onefor example produces 5mW of optical power for S5OmA of input
current. Thefastest LEDs have an optical rise time of about 2.5ns, and a 1.5dB cutoff at 100 or
150MHz (6dB around 800MHz). The 1300nm laser diodes have sub-nanosecond rise and fall
times: one example has a very sharp cutoff at around 1.5GHz.

Components with wavelengths of 820 or 850nm are in many respects more suitable for 100
MBits/s transputer links. Components from HP and from a number of other companiesinclude
L EDswhich output around 0.1mW (-10dBm) of optical power into thefibrewith optical riseand
fall times of 4ns, for a current of 60mA.

The receivers are PIN1/ photodiodes, very often integrated into a hybrid with a pre-amp, and
sometimes also with a power supply for the diode. The diodes are reverse biased, with afinite
reverse (Dark) current. Oneexamplehasaresponsivity of about 0.5A/W. Assuming no attenua-
tion in the fibre, 100mA into the LED becomes 0.25mW in the fibre which becomes 0.125mA
in the PIN diode; thislossis far more than the electrical cable loss but fibre has the important
advantage that, over short distances at |least, there is much less variation of loss with frequency.

The received current needs to be amplified up to logic levels, and this amount of amplification,
at thesefrequencies, iseasier with AC coupling. So therequirements of bandwidth limiting, DC
balance and run length limiting are present for optical fibre as much asfor electrical wire. The
FDDI transceivers and the HP 820 nm 125MHz receiver module amplify up the current into a
voltage — ECL levels from the FDDI transceivers, 10mV to 1V from the HP receiver.

The costs are radically dependent on the technology used, asillustrated in table 4.1 (al figures
are approximate and for large volumes).

17. PIN = P doped, Insulator, N doped

66

Table4.1 Optical components cost/performance

Wavelength Datarate Light Cost Availability

(nm) source

820 200K Bits/s LED [lessthan $10 per transceiver now

820 125MBits/s LED |[$30 per transceiver now

1300 125to0 350 LED |over $300 per FDDI transceiver now

MBits/s
$100 per FDDI transceiver long term

goal

1300 125MBits/sto | Laser |$1000 to $10000 per transceiver now
2.5GBits/s diode

Noticethat thereisnearly an order of magnitude cost difference between the 820nm and 1300nm
wavelengths, and another order of magnitude between LEDs and lasers. The one exception to
thisisthe 780nm laser diodes used for Compact Disks, which are discussed below.

4.6.4 Expensiveor affordable, long or short distances, 1300 or 820nm?

Most of the work on fibre has have been to make it go long distances, often at very high speed,;
or to make it cheap, where speed and distance do not matter. FDDI seems to come in between
these, in asking for 2km at 125Mbits/s, but they have chosen the more expensive 1300nm. In
fact FDDI connections using lasers are now being developed to go further than the 2km, asMe-
dium or Metropolitan Area Networks (MANS).

The 820nm components are limited in distance to about 500m at 100 or 125 MBits/s, whichis
more than adequate for transputer links.

The laser diodes that are used in compact disks have awavelength of 780nm, which tiesin well
with the HP 820nm receiversfor 100MBits/s, and it is possible that the CD lasers could be used
with faster receiversto provide 400Mbits/s. FibreChannel has specified aCD laser asone of its
options. Theselaser diodesareinexpensivebecausethey aremadein suchlargevolumesfor CDs,
but the laser isnot ideal for use by non-experts, and the laser diodes are not asreliable as LEDs.

At present, the cost, availability, and performance of the 820nm components appear to offer the
preferred choice for DS-Links.

4.6.5 Interfacing between linksand fibre

Thelast few subsectionshavedescribed anumber of characteristicsof thefibre connectionwhich
are not handled directly by the DS-Link:

e Thefibre connectionisasingle fibrein each direction, so both D and S need to be en-
coded onto asingle signal;

e Thissigna needsto include sufficient transitionsthat aclock can be extracted by aPLL
at thereceiver;

e TheLED (or laser) isdriven by acurrent rather than by avoltage, and the receiver needs
to see asignal of possibly only 10mV, certainly no more than ECL ;

e Thefibreallowsconnection up to 500m, whereasthe buffering in the standard link logic
is enough for some distance between 10m and 50m.

67

e Longer distance connections, with the amount of amplification required for the optical
signal, is such that the connection must be considered as lessreliable than normal short
connectionsonaPCB. Infact theindicationsarethat it may be possibleto achieveworst
case error rates of the order of 10-2%, far better than is achieved by normal communica-
tions. It may nevertheless be reasonable to offer additional error checking and possibly
alternative means of handling errors compared with short distance links.

The best way to do these various interfacing functions would be with a link-to-fibre interface
chip, designed for the purpose.

INMOSiscollaborating on projectsin the European ESPRIT program with other partnersdevel-
oping optical fibre connections. Indications suggest that fibre connection over 200m to 500m
will be achievablewith low-cost optical components. The signalling system used for the optical
connection should allow isolated copper connection over 100m, possibly with unshiel ded twisted
pair cable.

47 Standards

A number of users have asked that standards for interconnections between equipments be pro-
posed, so that different manufacturers equipments can be connected by their transputer links.
In some respects this provides a‘ small area network’ of transputer or link based systems.

Theproposal for electrical cable connectionisto use DC coupling withthe41 seriesbuffersmen-
tioned earlier. Earlier in this chapter, it was suggested that these cable connections should work
well upto 16m, and although testshave given goodresultsat 30m, for areliablelink itisnecessary
to limit thisto 10m using the 30 AWG shielded twisted pair cable suggested.

If isolation is required the proposal isthat it should be done with low cost optical fibre.

In drafting early versions of the proposed standard, it was found to be necessary to specify four
different typesof connector for different applications. Therewasno single connector which pro-
vided separate cablesfor each link, while meeting the other requirements, so INMOS produced
an outline specification of a single connector which would satisfy all the various requirements.
This connector has been developed by AMP, Harting and Fujitsu, in cooperation with INMOS/
SGS-Thomson. Plugsand intermateabl e sockets have been manufactured by Fujitsuand Harting,
and the connector closely follows an IEC standard which was originally put forward by AMP,
It is shielded, polarized, latched and robust, and has aleading pin for OV for reliable hot-swap.
An outline description of this connector isincluded as an appendix.

Thefour connectors specified in the draft standard were 9-way D type, LEMO, SCSI2, and ME-
TRAL. Pinoutswill be defined for these, for the MiniDIN, and for the new connector.

Proposed standards for optical fibre connection are based on afibre interface chip, with the low
cost 820nm optical components, 62.5um fibre (whichisbeinginstalled into buildingsfor FDDI)
and SC connectors (which appear to give agood combination of repeatability, density, and ease
of use for the end-user).

Theelectrical and optical issues covered by this chapter, the protocols of Chapter 3, and the con-
nector of Appendix A are combined in a draft |IEEE standard, P1355.

68

PCB
DS-Link DS-Link
device device
Up to 1Im
Cable
| ~ / |
DS-Link DS-Link
device » device
/ >
Buffers Up to 10m Buffers
Optical fibre
. [Fibre ——/——> Fibre .
%S'L.'nk interface // interface DS-Link
evice chip // chip device
Up to 500m
(100m with STP)

Figure4.9 Distancesthat can be covered by DS-Links

48 Conclusions

DS-Links have been optimized for short connections on printed circuit boards, for which they
areideal. TheGray coding meansthat thereceiver doesnot needaPLL, that thereisawidetoler-
ance of skew, and that the receiverscan ‘autobaud’ without requiring a status register to set their
speed. The comparatively slow edges— at least for 100 MBits/s — minimize crosstalk.

Link specificationsare designed to ensurethat errors are sufficiently infrequent that connections
can be treated as logic connections rather than as telecommunications or LAN connections. |f
usersviolatethese specificationsfor links, systemswill oftenwork, but with error ratesapproach-
ing the error rates seen by LANS. For these error rates, it is necessary to add software to handle
the more frequent errors. Such software is not required when the specifications are met.

For PCB connections up to 20cm, the characteristic impedance of the PCB track is not critical.
Up to 1m the impedance should be kept within areasonable tolerance, between 80Q2 and 1202..
Some care should be taken to avoid crosstalk. Beyond 1m, PCB connections may be possible,
but the characteristic impedance should be more tightly controlled.

INMOS will be proposing link standards for long distance connections. Such standardswill en-
able different manufacturers’ equipments to interconnect and, with cooperation on software, to
inter-operate.

The proposal for short cable connections up to 10m is to use the fast 41—series buffers from
AT& T, which have good common mode performance, in aDC coupled arrangement. For longer
connections, up to 200 or 500m, or for electrical isolation, it seems best to use low cost optical
fibre components, with a purpose designed interface chip.

69

Standardsremovefrom the user some of the need to understand fully the principlesonwhichthey
are based. At 100 MBiItg/s, over the distances suggested here, the problems are not especially
severe, but thefaster thesignalsand systemsgo, the morenecessary it isto engineer themto avoid
problems such as attenuation in the connection. It is hoped that this chapter is of assistancein
understanding these issues.

49 References

1 MECL System Design Handbook, William R Blood, Jr, Motorola.
Thisisan excellent book on the subject of high frequency digital logic signals on PCBs
and cables. It also shows that the ECL system builders needed careful thermal design
some years ago.

2 SONY data book of SPECL,1990 edition.
This has a short application note with some comprehensive graphs of transmission line
impedance, capacitance, and delay.

3 Printed Circuit Handbook, third edition, edited by Clyde F Coombs, Jr, McGraw-Hill,
New York, 1988 ISBN 0-07-012609-7.
This book covers all aspects of printed circuits.

4 The T9000 Transputer Products Overview Manual, INMOS/SGS-THOMSON, 1991,
order code DBTRANSPST/1.

Therearemany textbooks on communications but one of the most useful, which explainsthe con-
cepts for a non-specialist and without excessive mathematics, is the Open University course
‘T322: Digital Telecommunications'; thiscomprisesanumber of books, which areavailable sep-
arately or asaset from Open University Educational Enterprisesin Milton Keynes, England. The
threemost useful inthe courseare Blocks4, 5, and 6: Digital Signals; Noise; Coding and Modula-
tion.

More mathematical, and covering more ground, is ‘ Digital Communication’ by Edward A Lee
and David G Messerschmitt, ISBN 0-89838-295-5, reprinted 1990 and published by Kluwer
Academic Publishers, Boston.

Remember, when reading these texts on communications, that (while the principles involved
need to be understood) the distances required and the error rates obtained make transputer links
much easier than telecomms.

A great deal of development is taking place in fibre connections, and probably the easiest way
to keep intouch with the devel opmentsisby taking magazines, such asLightwaveor Laser Focus
World, both from PennWell. More technical is |EEE Lightwave Communication Systems.

A good introduction to fast, low cost, optical fibre connectionsisgivenin HP's Application Bul-
letin 78, document 5954-8478 (3/88).

A number of standardsare mentioned inthischapter, including SCSI and HPPI which areparallel
interfaces, RS232, Ethernet, and Token Ring which are copper cable based LANSs, and FDDI,
FibreChannel and SONET which are optical fibre standards for LAN, computer interface, and
long-distance telecomms respectively. After these standards are formally issued, they may be
obtained from the standardsauthoritiessuch asANSI and |EEE. Obtaining draftsbeforethestan-
dardsare published isnot always easy, and may require contact with theworking group responsi-
ble for the particular standard.

70

4.10 Manufacturersand productsreferred to
AT&T: 41 series of high performance line drivers, receivers, and transceivers,
Hewlett Packard: 820nm low cost 150M Bits/s fiber optic LED and receiver modules;
Honeywell: 820nm low cost 150MBits/s fiber optic LED and receiver modules,
Madison Cable: ‘ SCSI’ type cable with specified and low skew.

71

5 Using Links for System Control

51 I ntroduction

The T9000 family of devicesincludes processors and routers which have subsystems and inter-
faceswhicharehighly flexibleto match therequirementsof awiderange of applications. Inaddi-
tion to the static configuration requirements of subsystems such as the memory interface of the
T9000, the more dynamic aspects of anetwork of devices must be configured before application
software isloaded. These more dynamic itemsinclude:

e cache organization;
¢ datalink bit—rates;
e virtua link control blocks;

If T9000 processors are configured as stand-al one devices, the configurable subsystems will be
initialized by instructions contained in alocal ROM. When the devices are integrated as part of
anetwork with a static configuration every processor in the network could also initialize these
subsystemsindependently by executing code containedinalocal ROM. Typically, however, net-
works of T9000 family devices contain routers as well as processors and executing code from
aROM isnot an option for arouting device. Asaconsequence, routing devices must be config-
ured under external control. During system development or for systemswhich are used for multi-
ple applications a flexible configuration mechanism for processorsis also required.

Debugging of software and hardware on networks consisting of many devices is not a simple
problem. Themajor difficulty isin monitoring the behavior of the system asan integrated whole
rather than observing theindividual behavior of the separate components. A flexible mechanism
which allowsmonitoring tool sto observe and manage every devicein anetwork inasimple man-
ner is essential in designing a system-wide debugging environment.

5.1.1 Virtual channds

Connecting processorstogether with point-to-point serial links overcomes many of the problems
of shared memory multi-processor systems. Point-to-point links, however, introduce adifferent
set of problems. Of these problems, two of the most critical for system design are, firstly, the
difficulty of mapping a software structure on to an arbitrary hardware topology and, secondly,
routing messages between processes running on processors which are not adjacent. A great deal
of effort has gonein to seeking solutionsto these problems and the most flexible and readily im-
plementabl e technique for overcoming the difficulties is the concept of virtual links. Processes
in a network communicate via channels and so the collection of processes and channels define
the softwaretopol ogy of asystem. ThelMST9000 has multiplexing hardware (the Virtual Chan-
nel Processor) which allows any number of channelsto sharetheavailable physical linksin such
amanner that processes communicating via the channels are unaware of the sharing. Virtua
channels are naturally paired to form virtual links, as described in chapter 2. The use of virtual
channelsallowsthe software structure of asystem to be devel oped independently from the hard-
ware on which it isto be executed.

Control virtual channels

An ideal way of configuring and monitoring a network of T9000 family devices would be to
create a control network in which a master control process running on a host is connected to a

72

client control process on every configurable devicein the network. Using virtual linksto imple-
ment this control network gives exactly thelevel of control and flexibility required. Theremote
end of the control virtual link must be managed by an autonomous process which is active and
ableto obey theinstructions of the control processevenif thedeviceitself isinacompletely un-
configured or stopped state. To achievethis, thisprocessisimplemented by anindependent hard-
ware module called a control unit.

Figure 5.1 illustrates how control virtual channels appear to the control processesinvolved.

olling process

ontrolled
rocess

Figure5.1 Control virtual channels
Providing al device types with an identical control unit allows:

» host system control software to be consistent for every member of the product family;

» the control network on a mixture of devices to be explored and the device types deter-
mined;

» processor—free routing networks to beinitialized and monitored for error;

A virtual channel from a system control process to every device in a network means that each
device can be controlled and monitored asif it were the only device in the network. The ability
to control and monitor routing devicesisanimportant capability especially in networks contain-
ing no processing devices. Facilities provided by the control system must include the ability to:

» start the device;

* stop the device;

* reset the device;

e identify the device;

e configure the device;

e examine and modify memory (if any);

» |oad boot code (if the device uses |oadable code);

» monitor the device for error;

e re-initialize the control system after an error.
Control links

Because of the critical function of the control system in system initialization and error recovery
itisvital that is highly reliable. To guarantee the integrity and reliability of the control system

73

itisessential that it existsin an entirely different domain from the normal operation of the com-
munication system. This separation is achieved by providing each device in the T9000 family
with two dedicated control links (CLi nk0O and CLi nk1, alsocaledthe‘up’ and‘down’ links)
and adedicated control unit. Implementing the control linkswith adatalink isnot desirable be-
causeit adds complexity to theimplementation (by mixing functionswhich can otherwise beim-
plemented separately) and reduces security, sincefor examplean error in the data network might
be impossible to report.

Thecontrol linksof every deviceinanetwork are connected to form acontrol network. Thecom-
munication links of the devices will be connected to form a data network. The control network
iskept completely separate from the data network and isintended for use by the control system
exclusively. Itisanimportant featurethat the control linksare not accessibleto software running
on a T9000 processor; the control system is a mechanism designed exclusively for initializing
and monitoring the various hardware subsystems of the T9000 family of devices. The type of
error which would bereported viathe control systemincludessystem crashessuch aslink failure.
The control system could not be used for run-time system messages to report failure of a user
application. Inthelatter case the failure messageswould be routed via established virtual chan-
nelsacrossthe datanetwork but intheformer casethese channelsmay nolonger bereliable. The
control network may be run at alower speed or use different interconnect technology from the
data network for increased reliability if necessary.

5.2 Control networks

In anetwork of T9000 family devices, the control system of each devicewill have avirtual link
to aprocess running on the processor being used to manage the initialization and monitoring of
the system (typically a host). The managing processor, referred to as the control processor, is
connected to the network viathe control port, which consists entirely of one or more standard
DS-Links. If the control processor isaT9000, one of itsserial links could be used as the control
port and the Virtual Channel Processor would then implement the virtual channels to the con-
trolled devices. If the control processor isnot a T9000, the control port would need to beimple-
mented by a device such as a DS-Link adapter and the virtual channel handling would need to
be implemented by software.

Within the control network every control unit obeys asimple protocol onitsvirtual link. Each
message from the control process to adevice is acknowledged by a handshake message back to
the control process. Each unsolicited message from adevice to the control process is acknowl-
edged by a handshake message from the control process to the device as shown in figure 5.2.

command messages

controlling |e----=--===--====¥-=- control

process system

Figure5.3 Communication between control process and control system

This strict exchange of ahandshake message for each command or error message meansthat the
controlling process can be implemented entirely sequentially without danger of deadlock. Even
if the control system sends an error message at the same time as the controlling process sends a

74

command, the controlling process subsequently performsan input in any casein order to receive
the handshakefor itscommand. Whenit receivesan error messageinstead it knowsthat afurther
pair of messages must be exchanged.

The messages received by acontrol unit have the form of acommand byte followed by parame-
ters specific to that command. Of the thirteen commands in the protocol some are common to
all device types and some are specific to particular device types. The physical implementation
of the part of the control unit which handlesthe common commandsisgenerictoall devicetypes.
The commands common to all device types are those to start, reset, and identify the device, and
to recover from an error in the control network. Other commands are specific to particular de-
vices. The meaning of the commandsis detailed in section 5.8.

52.1 Implementation

After hard (power-on) reset the virtual links between the control process and the control unit of
all the devicesin the network must be established. Thevirtual link to adeviceis established by
the first message received by the network device on CLi nkO; this must be a Start command.
The Start command will be used to set the device ‘label’ aswell asthe return header used by the
device on every packet sent back to the control process. Thelabel isthe header which identifies
the virtual link to this device; all packets received from CLi nkO with thislabel are directed to
thedevicecontrol unitand all thosewith adifferent label arepassedto CLi nk 1. Packetsreceived
on CLi nk1 arepassed directly to CLi nkQ. By connecting the control links of all devicesinto
the control network and establishing avirtual link to every device, the control processcaninitial-
ize and monitor every processor and router in the network independently of the behavior and
topology of the data network.

Each device hasasingle control link pair so in anetwork consisting entirely of processorsthese
must be daisy-chained as shown in figure 5.4.

Control Control

port processor

— = Control network

........... Data network

Figure 5.4 Daisy chained control links

For large networks containing IMS C104 devices dai sy-chaining is undesirabl e because of com-
mand | atency and possible physical routing constraints. Inthese networksit isbetter to routethe
control network via C104s as shown in figure 5.5.

75

Control Control
port processor

Control network
—_—

1
1
1
1
1
Data network :
:
1
1
1

Figure5.5 Routing control links through an IMS C104

Itispossibleto use C104sfor control network routing because control links use the same el ectri-
cal and packet—evel protocols as the standard data links. When data links on a C104 are used
toroutethe control network, itsdown control link, CLi nk1, can be connectedinto oneof itsown
data links and thus the control network can fan out in a similar manner to the data network. It
isstrongly recommended that C104 deviceswhich are part of the control network are used exclu-
sively for thecontrol network and arenot part of the datanetwork. If itisunavoidablethat aC104
ispart of thedatanetwork aswell aspart of the control network it must be partitioned into separate
logical devices so that no link can be in both networks (as described in section 3.6.4 of chapter
3). Inthiscase specia actions must be taken during reset sequences to avoid losing the control
network when resetting the data network. When the control network includes C104 devicesthe
routing tables of the C104 must beinitialized using CPoke commands beforethe control network
can be fully established.

CLi nkO isstarted automatically by thearrival of thefirst token. CLi nk1 must bestarted explic-
itly viaaCPoke command received by the control process. If amessageisreceived for downward
transmission and CLi nk1 has not been started a protocol error will be reported.

5.3 System initialization

System initialization is the sequence of actions from receipt of ahard reset (i.e. assertion of the
reset pin) until the devicesinthe system areready to perform the applicationfor whichthe system
isintended. In a network containing processors, the application may be an operating system
ready to run user software or an embedded application ready to start receiving its control data.
In anetwork consisting entirely of routersthe systemisfully initialized when all of the routing
information of the network isestablished. A possible sequence of actionsfor anetwork contain-
ing processors and a host, referred to as levels of reset and shown in figure 5.6, is as follows:

« Label the control network (including configuring any C104sin the control network) - the
network isnow at level 1.

 Configure the devices in the network using the control network - level 2.

76

* Set upvirtua linksover whichtoload the network and then run boot codein each processor
-level 3.

» L oad the network with the application and then set up the virtual linksrequired by the ap-
plication software -level 4;

» Start the application on the network and a server on the control process - level 5.

Soft reset Controller Control port Network
Level 5:
Server Application running Application
running
Data link Set up host Load application Level 4:
process virtual links Set up virtual links Application loaded
Y Run application and started
Control link Set up virtual links for loading| Level 3:
process Load and run bootstraps Ready for
loadin
Y 9
Control link Configure network devices Level 2:
process Configured
Y
Hard reset | Control link | Set up control | Label control network Level 1:
process virtual links Control network
labelled
Level O:
Devices powered up and reset

Figure5.6 Levelsof reset

The sequence can be performed one device at atime or network wide one level at atime. For
aprocessor some of the configuration actions can be performed either acrossthe control network
or by local software. Because aricher protocol with higher data transfer rates and (possibly)
shorter paths can be implemented across the data network than exists on the control network it
isgenerally desirableto establish the datanetwork as early aspossiblein theinitiaization cycle.

Using the sequence outlined, application software isloaded onto processors in the network via
virtual channel sestablished withinthe datanetwork. A loader must first beloaded and connected
tothevirtual channelstoload the application at the desired locations. Thisloader must be loaded
and started using the control network and the control channel protocol contains the commands
Boot, BootData and Run to facilitate this. The Run command provides aworkspace pointer and
aninstruction pointer to start the T9000 CPU. The Run command and the Sop command arethe
two commands by which the control system can modify the behavior of the T9000 CPU.

The control network can only be re-labelled after ahard reset so no packet corruption can result
in control messagesre-configuring the control network. The control process can, however, issue
a Reset command to any device in the network. The Reset command directs the device to reset
tolevel 1, 2 or 3 so the control process can restore individual processorsto aknown state ready
for re-loading an application or, perhaps, to load a debugging kernel.

Some or all of the processorsin anetwork may be set to boot from ROM. Boot-from-ROM de-
vices might be used simply to the configure thelocal environment or, aternatively, in embedded
applications they can be used to configure and then load the whole system.

53.1 Local ROM

In many networks it is desirable to localize configuration information. For exampleit is often
useful to program the memory interfacelocally with the the characteristics of thememory system

77

connected to that processor. Suppliers of special purposeinterface boards can buildaROM onto
the board which setsup all of the specific characteristics without having to worry about the envi-
ronment in which the board is going to be used. While a network processor is executing code
fromitslocal ROM it isimportant that the control process does not attempt to load and configure
the device. A simple convention to prevent this from happening is for the code in the ROM to
set error when it has completed itslocal configuration, and thereby cause the processor to halt
and transmit an Error message. Thereceipt of the Error message then signalsto the control pro-
cess that the device is now ready to receive the rest of the initialization sequence.

Thelocal ROM could contain codeto takethe deviceto ahigher reset level. It might bedesirable
to bootstrap the device to level 3 ready for the application to be loaded. The same convention
as above could be adopted to indicate to the control processthat the ROM has completed itsini-
tialization sequence.

Boot-from-ROM will only occur automatically after ahard reset. The control process can, how-
ever, instruct a T9000 to boot from ROM by sending a Reboot message. This allowsthe control
process to be in complete control of the system initialization sequence.

53.2 System ROM

A T9000 network may be configured to boot from ROM. The processor whichistheroot of the
network will have accessto the system ROM, and will be connected so that one of itsdatalinks
isthe control port at the‘top’ of the control network. Itsown control linkswill not be connected
aspart of that same network. This processor will bethe control processor aswell astheroot pro-
cessor for the system initialization. Configuration information, bootstraps and application code
will be drawn from the system ROM rather than from alocal file store which would typically be
the caseif the network was booting from link. After booting the network, the root processor can
execute its own application from RAM or continue executing from the ROM. All processorsin
the network, other than the root processor, are initialized and configured across the control net-
work asshowninfigure5.7. These processors could boot from local ROMsfor local configura-
tion if necessary.

Control network
—>

Data network

Figure5.7 Booting from system ROM

78

A similar mechanism could be employed for a network consisting entirely of routing devices; a
single (cheap) processor could initialize the routing tablesfor the whole network. The processor
could then monitor the control system for errorstaking appropriate recovery actionsand logging
information for later analysis.

54 Debugging

Thenormal mechanism for dealing with errors on aworking T9000 processor iSsto execute atrap
handler which takes recovery and repair actions to restore the processor to a known valid state.
Thetrap handler may report itsactionsviathedatanetwork to asupervisory processinthesystem.
During devel opment of softwareand hardware, however, it may be desirableto halt the processor
which has caused the error and examine the system state in some detail.

Errors generated by a T9000 subsystem (other than those detected in the CPU and caught by a
trap handler) will result in an Error message being generated on the virtual channel back to the
controlling process and the CPU being halted. The control process can then bring thewhole sys-
tem to a quiescent state by sending a Stop command to every T9000 in the network. The Stop
command stopsthe processor cleanly, preserving register valuesand allowing adebugging kernel
toretrieveprocessor stateand thustracethe cause of theerror. 1f aprocessor initiated thesituation
because of an error, that processor will have halted at the point of error. On all other processors
the CPU will continue until the next deschedule point or timeslice. Thelinksare unaffected, and
thetimerscontinueto run until aReset3 commandisreceived, but no processeswill be scheduled.

After the control process has received handshakesfor all of its Sop messagesit must allow time
for the system to become quiescent and then issue a Reset3 command to every T9000. When
every device has received a Reset3 command, all of the CPUs will be halted and the system is
guaranteed to be static. At this stage the control process can make certain that the configuration
Is correct by using configuration ‘ peek’ and ‘ poke’ (CPeek and CPoke) commands.

If adebugging kernel isto beloaded into the network it may be necessary to save the areawhere
it isto beloaded to guarantee that no processor stateislost to the analysistools. This space can
beretrieved acrossthe control network using the Peek command and stored on the host processor.
The debugging kernel can be loaded and started using a BootData and Run sequence which will
not interfere with the preserved state of the data network.

The debugging kernel now has accessto all of the previous processor state and can be directed
by the debugging toolsrunning on the control processor to retrieveinformation on all of the pro-
cessor’s subsystems. The network is thus a distributed data base containing the memory state,
register contents and call history of the whole system rather than of just asingle processor. The
debugging tools can piece together the cause of the system failure and observe the interaction
between the different processes and processors. The combination of accessto the state of every
processor, accessto the sourcesfrom which the systemwasbuilt and knowledge of thecompiling,
linking and loading strategi es enables debugging tool sto produce an integrated picture of the be-
havior of the whole system at a symbolic level rather than at an instruction stream level. Once
the debugging kernel isloaded onto the network, the debugging toolswould, typically, establish
virtual channels across the data network to communicate with the individual kernels.

The mechanism described above is called post-mortem debugging. Interactive debugging can
be accomplished by running adebugging kernel on every processor inthe systemin parallel with
theapplication. Inthisway breakpoints, watchpoints, single stepping and many of the other faci-
lities delivered by ICE systems are provided without using expensive and intrusive additional
hardware. Anadditional benefit of using linksto assist in debugging isthe ability to monitor the
behavior of a complete multi-processor system observing the interactions across processor

79

boundaries at source level. The debugger running on the control processor communicates with
the debugging kernels through virtual channels additional to those established for the data net-
work so that the applications are entirely unaware of the presence of the debugging system.

Much of what has been described in this section is familiar to devel opers of software for multi-
processor systems. The T9000 family of devices introduce many features to decouple software
and hardware development and as a consequence access to the state of routing devicesisavita
requirement in system debugging. Accessto thestate of routing devicesisparticularly important
for networks which contain no processors. The post-mortem mechanisms described earlier are
equally relevant for routers. A control process can examinethe configuration of arouting device
and proceed to access the state of every serial link and thus locate the point of failure and deter-
minewhat recovery action must betaken. When adatalink disconnect error isdetected on arout-
er it will cause an error message to be generated on thevirtual link to the monitoring processrun-
ning onthe system control processor. Asaconsequencenetworksof routersdo not require special
hardware monitoring devices, a significant amount of fault detection and isolation can be built
into the system by the addition of a single monitoring device.

55 Errors

Thecontrol system providesanerror reporting mechanismfor all errors, other than those detected
by aCPU and caught by trap handlers. Thereporting of errorsby thecontrol systemtothe control
processisthe only timethat the controlled deviceistheinitiator of acommunication on the con-
trol network. Thecontrolling process must acknowledgereceipt of the Error message by sending
an ErrorHandShake message back to the device generating the Error message. The Error mes-
sageincludesafield to indicate the source of theerror. The control system will not send an error
message if a handshake has not yet been received for a previously sent error message.

The control system handles three distinct classes of error, as listed below.
1. Errorson the control links, which include:
O parity/disconnect on CLi nk1;
O unexpected acknowledge;
O invalid messages,
O handshake protocaol error;
2. System errors - errors from one of the subsystems when stand alone mode is not set.
3. Stand alone mode errors

The effects of the errorsare given intable 5.1. TheEr r or Si nceReset flagisaflaginthe
IMS T9000 which is provided to assist self—-analysis of stand—alone systems.

80

Table5.1 Error effects

Error class Result of error
Stops CPU ErrorSinceReset Error message
flag set sent on CLink0
Control link error No No Yes
System error Yes Yes Yes
Stand alone mode Yes Yes No
error

Thecontrol unitwill record asingleerror whichiscleared by theerror handshakefromthecontrol
process. A hardreset, reset 1 or reset 2 will causetherecord of untransmitted errorsto becleared.

55.1 Control link errors

The basic reliability of DS-Links used within their specifications, as discussed in chapter 4, is
very high, and thisreliability can be further enhanced for the purposes of the control network by
reduced the operating speed somewhat and by paying particular attention to the connection of
links. However since an error — however unlikely — in the control network is potentially very
seriousfor thewhole system, extramechanismsare provided to report and recover from such er-
rors.

A parity or disconnect error on CLi nk 1 will bereported by the control system to the control pro-
cessviaCLi nkO. A parity or disconnect error on CLi nkO will causethelink to halt. Thishalt
will be detected by the device connected to the other end of the link which will in turn report the
error.

After an error has occurred some virtual linksin the control network may bein aninvalid state.
The controlling process ends of the virtual links must be reset and then the process can restore
the control network to avalid state by sending Recover Error commands (which can be sent in
violation of the normal protocol). A RecoverError command will reset the remote end of acon-
trol virtual link and cause any un-handshaken error message (which may have been lost) to be
resent. A sequence of Recover Error messages sent by the control processto each of the devices
inturn can thus systematically restore the control network and at the sametimerecover informa-
tion which may help to determine the cause of the failure.

55.2 Stand alone mode

When a T9000 processor is operating in stand-alone mode, errors are handled in adistinct way.
If an unmasked/untrapped error occursthe control system will reset all of the subsystems on the
T9000 and then cause aboot from ROM. TheEr r or Si nceReset flag will be set so that the
ROM code can determine that an error has occurred.

81

5.6 Embedded applications

Theroot processor in an embedded application which has booted from ROM takes over therole
of thecontrol processor on asystem which hasbooted fromahost. The control processcan moni-
tor and log errors, restarting and re-configuring processors after failure and recovering from er-
rorsin the control system. As described in section 5.5.2 above, errors in the control processor
result in the processor rebooting. The control process can determinethat an error occurred since
thelast reset and can recover and log information from the previous processor statefor later anal-
ysiS.

5.7 Control system

The control system of each device consists of a pair of control links, a packet handler, a control
unit and system servicesas showninfigure5.8. Thefunctionality within each unit of the control
system is described in more detail below.

CLink0 CLink1

Packet handler

7

Command
FIFO

Command utonomous

System
handler control

services

Figure5.8 Control system components

571 Control links

A network of devicesis controlled by aset of virtual links, onefor every device in the network.
A simple physical implementation of these virtual links can be achieved by connecting together
the control links of anumber of devicesinto apipeline. Thevirtual links are multiplexed down
thiscontrol link pipelinesothat, asfar asthenetwork isconcerned, each devicehasasinglevirtua
link to the control processwhichiscarriedby CLi nkO. CLi nk1 carriesvirtual linksfor devices
further down the pipeline.

Thevirtua link is established by the first message received on CLi nkO after ahard reset. The
physical management of the virtual links by routing packets received on CLi nkO to the correct
destination is performed by the packet handler.

5.7.2 Packet handler

The packet handler manages the packet stream performing the following functions.

82

¢ Records the first header received on CLi nkO after hard reset as the device label.
¢ Records the return header from areceived Sart command.

e Checksincoming CLi nkO packet headers. Any with adifferent label from the one re-
corded after reset are forwarded to CLi nk 1.

e Addsthe return header to outgoing CLi nkO packets.
e Forwardsincoming CLi nk1 packetsto CLi nkO.
» Detects and handles acknowledge packets received on CLi nkO.

» Validates that commands are correctly formed and forwards correctly formed commands
to the control unit.

» Detects the commands Reset, RecoverError and ErrorHandshake.
* Regjects acommand, other than the previous three, if another is already in progress.

. Theformat of the packetsis shown in figure 5.9.

Byte0 Byte1 Byte2 Bytes3..

Device label Command Command parameters ... End of
message

Figure5.9 Command packet structure

5.7.3 Control unit

The control unit includes acommand handler for acting on messages received from the control
network and an autonomous control block which controls the behavior of the device when itis
operating independently of a control network.

Command handler

The command handler:

e captures errors from error inputs and forwards them to the control processvia CLi nkO;
e responds to errors with appropriate stop/halt to sub-systems,

* arbitrates between command responses and errors, and forwardsviaCLi nkO to the con-
trol process,

e filtersillegal and inappropriate commands as errors;
e Controls sub-system reset after receipt of a Reset command,
» handles access to the configuration bus after receipt of CPeek, and CPoke commands;

» handlesaccessto the memory system after receipt of Peek, Poke, Boot and BootData com-
mands;

* stops the processor cleanly after receipt of a Sop command,;

» starts the processor with with a given workspace and instruction pointer after receipt of
a Run command;

83

» startsthe processor with with aworkspace and instruction pointer read from aROM after
receipt of a Reboot command.

574 System services

The system servicesisablock of registersin the configuration space containing control and gen-
eral device information.

58 Commands

The commands to which the control unit responds are as follows.

581 Commandsapplicableto avariety of devices
Start

Thismust be the first command received by adevice after ahard reset. It isused to program the
return header of the device. After ahard reset it will also set the label of the device.

I dentify

The Identify command causes the device to respond with a handshake containing an identifier
unique to that device type.

CPeek

CPeek commands are used to examineregistersin the configuration space. The handshake mes-
sage contains the contents of the selected register.

CPoke
CPoke commands are used to initialize registersin the configuration space.
Reset

Reset is used to reset the device to a chosen state specified by a parameter. The parameter can
typically have thevalues 1, 2 or 3.

1. Equivalent to hard reset but the control system is unaffected.
2. Resetsall subsystemsexcept thecontrol system, and leavesthe configuration unchanged.
3. Just halts the processor.

RecoverError

RecoverError is used to restore the protocol after alink error in the control link system.

5.8.2 Commands applicableto processors
Peek

Peek commands are used to read the normal address space of a T9000. The handshake message
contains the contents of the selected address.

Poke

Poke commands are used to write data to memory locations in the normal address space of the
T9000.

84

Boot

This command initiates a booting sequence. Parameters to the command specify the length of
code to be loaded and where it isto be loaded in memory. The Boot and BootData allow code
to be loaded much more efficiently than it would be by using a sequence of Poke commands.

BootData

A sequence of BootData commands follow a Boot command. Each BootData command will
contain 16 bytesof codewhichwill beloaded into consecutivelocationsstarting from theaddress
specified inthe Boot command until thelength specified by the Boot command has been reached.

Run

The Run command specifies aworkspace pointer and an instruction pointer and causes the pro-
cessor to start executing with these values.

Stop
This command causes the processor to cometo a“clean’ stop ready for post-mortem debugging.
ReBoot

The ReBoot command re-initiates a boot-from-ROM sequence.

59 Conclusions

Using the same el ectrical and packet protocolsfor system control asfor datatransfer allowslarge
concurrent systems to be programmed, monitored and debugged in avery straightforward way
using virtual links. A small set of commands, supported directly in hardware, provides precise
control over individual devicesand thewholesystem. A simplehandshaking protocol at themes-
sage level ensures that a simple, sequential control process can be used without any difficulty.
Using aseparate network for system functionsimprovesthereliability and security of the system.

The provision of atwo links and a basi ¢ through—routing function on each device allows alow—
cost dai sy—chain topol ogy to be used for small systems. Larger systemscan employ C104 routers
in the control network to improve fan—out.

Facilities have been added to recover use of the control network even after thetemporary discon-
nection of one of itslinks. The Recover Error command providesa ' remote channel reset’ func-
tion to enable the control virtual links to be restored to a known state. Error information which
might have been lost is re-transmitted.

85

6 Modedls of DS-Link Performance

This chapter contains analytic studies of the performance of DS-Links, the IMS T9000 virtual
channel processor and the IMS C104 packet routing switch.

Thefirst section considersthe overheadsimposed by the variouslayers of the DS-Link protocol
on the raw bit—rate. Results are presented for the limiting bandwidth as a function of message
size, which show that the overheads are very moderate for all but the smallest messages (for
which the cost of initiating and receiving a message will dominate in any case).

The next section anal yses the diminution of bandwidth caused by latency at both the token flow—
control and packet—acknowledgelayersof theprotocol. Thelossesdueto stallsat the packet level
of the protocol when only asinglevirtual channel isactive are plotted in thelatter part of the sec-
tion.

The final section considers the performance of the C104 routing switch under heavy load, both
in the average and the worst case.

6.1 Performance of the DS-Link Protocol

Thissectionlooksat the maximum throughput of user dataon aDS-Link implementing thevirtu-
al channel protocol (described in chapter 3) for agiven message size. Two valuesare calculated,
for unidirectional and bidirectional link use. These give bounds on the data transfer rate for a
given message size. The DS-Link protocol requires use of flow—control tokens, packet headers
and termination tokens. The analysis calculates how many bits have to be transmitted along a
DS-Link in order to transfer a message, taking all of these overheads into account.

It is useful to define the ceiling function [x] := (least integer greater than or equal to x).

6.1.1 Unidirectional data transfer

Assume that we have a message of sizem bytes. Thiswill be transmitted asn, packets. If the
messageissent asasinglelarge packet, n, = 1. If the messageissplit into packets of amaximum

size 32 bytes,
m
v = [3]

Let s be the header size, in bytes. The number of bits transmitted for the message is
by = 10m + (10s + 4)np

sincethere are 10 bitsfor every byte of data, and a header-terminator overhead per packet. This
overhead is 10 bits for each byte of header, and 4 bits for the terminator.

In the synchroni sed message—passing protocol used by the IMS T9000, each packet of amessage
must be acknowledged by an acknowledge packet, which we assume usestheinboundlink. Since
therewill be one acknowledgefor every outbound packet of data, thewhole messagewill require

inbound acknowledge packets. Theinbound acknowledge packetsrequireoutbound flow con-
trol tokens. Thereares datatokensin the header of each acknowledge packet, and one datatoken
in the terminator of each acknowledge packet. The total number of inbound data tokens for the
acknowledge packetsis

86

Ng = (s + 1)np

For every eight inbound data tokens, there is an outbound flow control token. The number of
flow control tokensis rounded up to the nearest integer for the purposes of the model

St

A flow control tokenis4 bits. Thetotal number of outbound bits, B, required to transmit ames-
sage is the sum of the data bits and the flow control bits.

The number of bits in the message transferred is 8m, and this requires B bits to be transmitted
on the 100 MBit/slink. Thus the datarate on thelink, D, is given by:

D =80 x 100 Mbits/s

6.1.2 Bidirectional data transfer

Themessageto betransferred hasm bytes of data, and the number of packetsrequired to transfer
this data, n, is, asin the unidirectional case, given by

v [3]

The datarate will differ from the unidirectional case because the outbound will have to carry a
greater number of flow—control tokens corresponding to the increased amount of data on thein-
bound link, and al so acknowledge packetsfor the message packets received on theinbound link.

Without loss of generality, the message analyzed is assumed to be on the outbound link. Thein-
bound link is assumed to carry the same amount of data as the outbound link.

Theoutbound link will carry the datapacketsfor the outbound message, the acknowledge packets
for the inbound message, and the flow control tokens for all packets on the inbound link. The
number of outbound data packetsisn,. The number of outbound acknowledge packets equals
the number of inbound data packets, which in turn equals the number of outbound data packets
(since the inbound link is assumed to carry the same amount of data as the outbound link). The
number of acknowledge packets is therefore also i,. Each acknowledge packet is transmitted
as (10 s + 4) bits. The number of bits transmitted for the outbound message and the outbound
acknowledgement packetsis

by = (10m + (10s + 4)n,) + (10s + 4)n,

Now consider the flow control requirements. The outbound link will carry the flow control to-
kens for the packets received on the inbound link. The data tokens on the inbound link will be
the sum of the number of datatokensfor theinbound datatransfer, and the number of datatokens
for the inbound acknowledge packets. Recall that the inbound link carries the same amount of
data as the outbound link. The number of data tokens on the inbound link is

Ng = M+ (s + ny) + (s + ng

87

The number of flow control tokensrequired on the outbound link is (rounded up for the purposes

of the model)
=[]

The total number of outbound bits for the message transfer is given by the sum

and the outbound link data bandwidth is, as before,

D =80 x 100 Mbits/s

Note that the bandwidth on the inbound link is the same, by assumption.

6.1.3 Asymptotic Results

Consider first the case where the message is split into packets of maximum size 32 bytes. For
large messages, the overhead of thefinal, possibly not full size, packets will become negligible.
In this case, the asymptotic values for throughput may be cal cul ated.

Unidirectional link use

From the previous derivations, assuming that only 32—byte packets are used, we have
m

32

bg = (10m + (10s + 4)n,) = 10m + (10s + 4)3%1

np=

Ng = (S + np =(s+1)3—r2
N _ N _ (s+ I)m
t= '8 = 8x 32
(s + Dm

B = 10m + (105 + 4)g5 +4 -5~ —>

collecting terms,

_ 649 + 21s
B = m(1)

giving D interms of s,

Bidirectional Link use

The bandwidth for the bidirectional case is calculated similarly, giving the asymptote

_ 25600 -
D = 35+ z1s MPItS/s

88

6.1.4 Resaults

The model isused to calculate data throughput for varying message size. Thisisthe throughput
inthe outbound direction only, for both unidirectional and bidirectional link usage. Thisiscalcu-
lated for both 1-byte and 2-byte header sizes. The graphs show data throughput, in Mbytes per
second, for varying message size, header size and link usage. The asymptotic values are calcu-
lated below. The graphsalso show the bandwidth that would result from sending the entire mes-
sageasasinglepacket. Thisillustratestherelatively small cost of dividing messagesinto packets,
which has considerabl e advantagesin terms of fine—grain multiplexing and small buffer require-
ments.

Consider figure 6.1. 1t showsthe datathroughput for unidirectional and bidirectional link usage,
with 1-byte headers, for messages up to 128 bytes. The larger discontinuity in the throughput
curve occurs when an extra packet is required to transmit a message, for the maximum packet
size of 32 bytes. Thesmall discontinuitiesare dueto the requirement to send an additional flow—
control token. Thisismorepronounced inthebidirectional case. Theoverhead of the extrapack-
et has less effect on throughput for the larger messages. Note that the knee in the graph occurs
for very small messages. Only messages of 10 bytesor |ess cause appreciable degradation in the
throughput rate.

—~10.00 +—

rea] N N Y]
R e T .-
1
RN R

. * s nom e - s
.. . " .
PR EREEEE T s oom

8.00 1

— unidirectional

- == unidirectional, no max packet size
« bidirectional

== bidirectional, no max packet size

6.00 -

data throughput (Mbytes/s

4.00 =

2.00 1—

0.00 | | | | | |
0 20 40 60 80 100 120
message size (bytes)

Figure 6.1 Outbound link throughput for small messages (1 byte headers)

The second graph, figure 6.2, shows the throughput for larger messages. Again a 1-byte header
isassumed. Throughput is calculated for messages of size 32 x i and for size (32 x i) +1 for
integer valuesi.

89

—

o

o

s}
I

8.00 1

|
-

6.00

data throughput (Mbytes/s)

4.00 -

2.00 +

— unidirectional

- == unidirectional, no max packet size

» bidirectional
== bidirectional, no max packet size

0.00

300 600 900 1200 1500 1800
message size (bytes)

Figure 6.2 Outbound link throughput for large messages (1 byte headers)

Theuse of atwo-byte header increasesthe overhead of each extrapacket needed for the message.

In figure 6.3, the data throughput for small messages with 2-byte headers, the overhead shows

asalarger “dip”’ inthe curve when an extra packet isused for the 32 byte maximum packet size.

Figure 6.4 shows't

he use of 2-byte headers with larger message sizes.

— 10.00 —
v
n
Q
=
o]
S 8001
= ,
s / — unidirectional
[=)) , . . .
3 ’ - == unidirectional, no max packet size
= 6.004+f , T
£ 2 » - bidirectional
] ‘ --= bidirectional, no max packet size
g |l

4.00 +i

!
[}
1
2.00 +
0.00 | | | | | |
0 20 40 60 80 100 120

message size (bytes)

Figure 6.3 Outbound link throughput for small messages (2 byte headers)

90

10.00 = . oemmm e e e e e e n-

.
800 PSR S R R I L
155
. v

— unidirectional

- == unidirectional, no max packet size
= bidirectional

== bidirectional, no max packet size

6.00 -

data throughput (Mbytes/s

4.00

2.00 +

0.00 | | | | | |
0 300 600 900 1200 1500 1800

message size (bytes)

Figure 6.4 Outbound link throughput for large messages (2 byte headers)

6.1.5 Asymptotic Results

Thevaluess=1 and s=2 are substituted into the limiting expressionsfor D given earlier. There-
sultsfor the 32 byte maximum packet sizeareshownintable6.1. Thefiguresgivenarein Mbytes
per second. Note that these figures are the asymptotes of the graphs.

Table 6.1 Effect of header size and usage on link throughput

s Unidirectional | Bidirectional
9.55 8.74
9.26 8.27

Effect of maximum packet size

If the message is not split into packets then, for unidirectional data transfer the expressions for
throughput derived above give

_ 8m - :
D = oM+ 10s £ 8 X 100 80 Mbits/s

For bidirectional datatransfer, thereisasdlightly larger overhead dueto theflow control informa-
tion. Again from the previous derivations,

- 8m N :
D = 05m + 25 £ 9 X 100 76.19 Mbits/s

91

6.2 Bandwidth Effects of L atency

In practice the bandwidth achieved at the user level is sometimes | ess than the theoretical peak
calculated in the previous section, because latenciesin the system cause the link to becomeidle
for part of thetime. Inthissectionwefirst of all consider the effect of device-to—devicelatencies
onthetoken-level protocol, and then consider the effect of end—to—end latency onthe upper levels
of the virtual channel protocol.

6.2.1 Bandwidth of Long Link Connections

Signals propagate through wires with afinite speed, and so long lengths of wire are themselves
asource of latency, which can be significant at the speed of DS-Links,. What followsisaformal
model of the flow—control mechanism of the DS-Links, which isused to cal culate the maximum
tolerable device-to—device latency before alink is forced to becomeidle.

Specification of DS-Link Flow—control

We consider apair of links connected together. Each link isconnected to both asourceand asink
of data. Transmission/buffering delay between thelinksismodelled by apair of buffersbetween
them. The pictureis shownin figure 6.5.

0.s0 0. ot .| 0.ti] 0.id ,
source output ‘ transit input ‘ drain
drain — input ‘ - transit — output ‘ source
1.id 1.ti 1. ot 1.so
Couek Link

Figure 6.5 Token streamsin abi—directional DS-Link connection

Formally, we regard each labelled channel asatrace, i.e. asequence of tokens transmitted upto
the current time.

There are 256 different data tokens, an end-of-packet token (EOP), an end-of-message token

(EOM), the flow-control token (FCT) and anull token. The set of tokensisthus 7= DUFUS
where D ={data, EOP, EOM}, F = {FCT} and S isthe null token. Weindicate the restriction
of atrace to asub-alphabet by [, and the length of atrace by #. <> istheempty trace. a <b
meansthat thetraceaisaninitial subsequence of thetraceb (so b can bethought of asa‘ continua-
tion’ of a).

Almost all relations are given in one direction only; an exactly equivalent set hold with ‘0" and
‘1" interchanged.

Firstly, notethat the streamsfrom the source and to the drain contain only data, EOPsand EOMs,
thereare no flow—control or null tokens other than between the two link interfaces, so therestric-

tion of the other tracesto the set F U Sis empty:
0s0[(FUS) =0id[] (FUYS

1o[(FUS) = Lid[(FUS = <>

The sequence of tokensis preserved, so the trace of data tokens received by the drainisastrict
initial subsequence of the trace of datatokens sent by the source (the difference being those still
intransit):

92

0id <O0ti[D =< Oot[D =< 0s0
O.ti = O.ot

The number of tokens held in each box isthe difference between the number of tokensinput and
the number output. All the boxes (except the sources and drains) have finite capacities, thus:
0 =< #0.s0o — #(0.0t [D) < output.cap.0
0 #0.ot — #0ti < tdeay
0 #(0ti [D) — #0.id < input.cap.0

<
<
Thetotal credit received isthe number of FCTsreceived timesthe flow-control batch—size bsize.
The output credit remaining for that link is the difference between this and the number of data
tokens sent. Thetotal credit sent isthe number of FCTs sent times the flow-control batch-size;
theinput credit remaining isthedifference between thisand the number of datatokensreceived?,
Sincewe have a’credit’ based system all of them must be positive, and from the sequence rela-
tions above we can deduce:

input.credit.0 = #(l.ot [F) X bsize — #(0.ti[D) = output.credit.0
output.credit.0 = #(1.ti [F) X bsize — #0.0ot [D) = 0

The input credit must never exceed the buffer space available, which is the difference between
the size of the buffer and the number of tokens held. Thuswe require:

input.cap.0 — #0.ti [D) + #0.id = input.credit.0

Combining the above gives the ssimple relation:
input.cap.0 + #0.id = #(l.ot [F) X bsize

This shows that the total credit issued must not exceed the buffer capacity of the input plus the
amount sent to the drain.

Initialy all the traces have zero length. The condition for actual transfer of dataisthat at least
one of the tracesinto the drains (e.g. 0.id) must become non-empty. By the above thisimplies
that #(0.ot [D) becomes non-zero. Now for this to happen #(1.ti [F) X bsize must become non-
zero, thisis bounded from above by input.cap .0, since at the start #0.id = 0. Since the length of
tracesisintegral, thisshowsthat no datacan ever betransferred unlessinput.cap.0 = bsize. Thus
this form of flow—control requires an input buffer at least as large as the flow—control
batch—size.

6.2.2 Effect of Inter—Link Delay

Now consider the consequencesof thetransit delay. If thedelay isconstant, it behavesasafixed-
size buffer which can only output when it isfull. This meansthat in the steady-state thereisal-
ways afixed difference in the lengths of itsinput and output streams, i.e.

#0.0ot = #0ti + t.delay.0

Thus, for any set A:
#(0.0t[A) = #(O.ti[A) + t.delay.0

Equality only occursif all thetokensheldintransit belongtoA. If we assume (for the moment)
that data flows only on the O channels and transmission is continuous (i.e. no tokensfrom S are
interspersed) this means:

18. The difference between the input and output credits is due to tokensin transit.

93

#0.0t[D) = #04[D) + tdeay.0

Onthe 1 channels, to maintain the steady state we must send an FCT for every bsize tokenstrans-
mitted on the O channels (since these are, by assumption, all tokensfrom D). Thus, on average,

#(1l.ot[F)bsize = #(1.ti[F) X bsize + t.delay.1

Thus,
input.credit.0 = #(1l.ot[F) X bsize — #(0.ti[D)

= #(1ti[F) X bsize + t.delay.1 — #(0.0t[D) + t.delay.0
Thus:
input.cap.0 = input.credit.0 + #(0.ti[D) X bsize + #0.id
= (t.delay.0 + tdelay.l) + (#(1.ti[F) x bsize — #0.0t[D) + (#(0.ti[D) + #0.id)

By the above, the third term of the last equation is > 0.

in.cap.0 J
, X e
The second term is output credit.0, which can attain |_ bsize when #(0.ot [D)=0
and #(1.4i [F) isequal to the maximum number of flow-control tokens that can be sent.

Fromthe starting condition we can writeinput.cap.0 = bsize + extra (whereextra isnon-negative)
so that the previous expression is ssimply extra.

Thus we deduce:

extra = t.delay.0 + t.delay.1

So we see that the input buffer must have aminimum capacity of bsize for transmission to start,
but to maintain continuous transmission of data through a delay, there must aso be some some
‘dack’ to deal with tokensin transit, which depends on the latency of the connection.

If we assume that dataflows on both sets of channels, by asimilar argument we obtain theresult:

bsize
etra = (tdday.0 + tdeay.l) x (m)

Inverting this equation gives arestriction on the maximum delay through which full bandwidth
can be sustained:
bsize

t.delay.0 + tdelay.l < extra x (1+ bsze bsize)

Thus for the DS-Link, for which bsize = 8, a total buffer capacity of 20 tokens means that
extra=12, so the maximum delay which can be endured without loss of bandwidth is:

mex.delay = 12 x (g) = 135

wherethe unit of timeisthe averagetimeto transmit onetoken. Thisdependson theratio of data
tokensto EOP/M tokens, the worst case being 1:1. This makes the average token length 7 bits,

94

soat 100 MBits/stheaveragetokentransmissiontimeis70ns. Thusthemaximumdelay is945ns.
In practice there is some latency associated with the front-end circuitry of the DS-Link, buffers
etc.. Thiscould be added explicitly to the model by introducing more buffer processes, but the
effect will simply beto reducethelatency budget for thewires. Latenciesin thelink account for
approximately 400ns, so a conservative estimate would allow 500ns for the round-trip wire
delay, which correspondsto adistance of about 80m. Allowingfor delaysin buffersleadsto the
conclusion that 50m would be a suitably conservative figure.

6.2.3 Bandwidth of a Single Virtual Channel

The T9000 VCP is pipelined in order to sustain the high rate of packet processing required by
the virtual channel protocol, just asthe DS-Link is pipelined internally to achieve a high band-
width. When many virtual channels are active simultaneously on alink, the VCP ensures that
thelink isnever idleso that itsfull bandwidth isexploited. Thedisadvantage of pipelining isthat
it introduces latency, which can become a limiting factor on bandwidth when only one virtual
channel is active on alink.

The reason that latency can limit bandwidth is because of the requirement that each data packet
must be acknowledged before the next may be sent. Although the V CP sends the acknowledge
packet as soon as possible, so that itstransmission can overlap that of the bulk of the data packet,
if the data packet is short and/or the latency of the systemislarge, it ispossible for the acknowl-
edgeto arrivetoo lateto prevent astall in datatransmission. When the VV CP has packetsto send
for other channelsthis does not matter, but if only asingle channel is active, the bandwidth may
be reduced by the system latency.

Analysis

We consider the particular case of two processes communicating over asingle virtual channel.
This can be represented in occam by:

CHAN OF [nessage. si ze] BYTE channe
PLACED PAR

[ressage. si ze] BYTE nessage
SEQ
channel ! message

(repeat n tines)
channel ! message

[ressage. si ze] BYTE nessage
SEQ
channel ? nessage

(repeat n tines)

channel ? nessage

We ask: what is the bandwidth that this pair of processes observes, as afunction of the message
size? The bandwidth is defined as the total amount of message data transferred divided by the
total time taken (as measured by the outputting process). Whenever the time is limited by the
latency of the system, the bandwidth is proportional to the length of the message, since thetime
Is constant. When the time to transmit the data exceeds the round-trip latency it is this which
limits the bandwidth. In this case the time to transmit the header is significant, and so thereis
a difference in bandwidth depending on the size of header used.

We assumethat all dataisin the cache, theinputting processisinitially ready, and that only one
process is using each machine. Communication isthus mainly unidirectional, and so we ignore

95

the effects of token level flow-control, since this has been analyzed in the previous section. We
assume that the two T9000s are directly connected by short wires.

)
g © o
(=3 [= o
e S e
I | |

Bandwidth (MBytes/s
1

5.00'—:-:: " — Header length = 1
2 Header length = 2

4.007
3.007
2.007

1.007

0 16 32 48 6s 80 9 112 128 144 160 176 192 208 224 240 256 272 288 304 320

Message Length (Bytes)

Figure 6.6 Single channel bandwidth vs. message size

Theresultsareillustratedinfigure6.6. It can beseenthat for messagesof |essthan about 20 bytes,
latency dominates. Packet transmission time becomes limiting until the message size exceeds
32 bytes, when a second packet is required. The time to acknowledge the second packet then
becomes limiting until the message size reaches about 50 bytes. This pattern isrepeated at each
multiple of 32 bytes, but as the message size increases the effect of latency on the final packet
becomes proportionately lesssignificant, and so thedipsin the graph becomesmaller. Theenve-
lope of thecurveisthat derivedinsection 6.1. If thelength of theindividual connectionsisgreat-
er, and/or the message is routed via one or more C104 routers, the latency is larger, and so the
dipsinthe curve become both wider and deeper. Latency can be hidden by having more channels
active at once, sincein this case an acknowledge does not have to be received until a packet has
been sent for each active channel.

6.3 A model of Contention in a Single C104

In this section we develop a statistical model of contention for the C104. The model allows a
number of C104 input linksto be trying to route packetsto anumber of C104 output links. The
C104 will allow one packet which requestsan output link to succeed, for each output link1®. Each
packet has a header, which isone or two bytes, and aterminator. A byte of information istrans-
mitted as 10 bits on the link, and the packet terminator is transmitted as 4 bits.

The model allocatestimein slots. Conceptually, at the start of thetime slot all of theinput links

attempt to route a packet to their selected destination link. A subset of these transmissions will

succeed, and the other packets are discarded — notethat thisisnot what occursin theimplementa-

tion. Themodel devel oped here assumesthat the destination links are chosen at random, and this

assumption is appropriate for the the actual behavior of stalling and buffering of unsuccessful
19. Grouped adaptive routing is not considered in this model.

96

packetsfor the next time slot, because the destinations of all the packetsinthenext slot will again
be independent and random. The model describes the probability that a packet is successfully
transmitted from its chosen outbound link.

6.3.1 Timedots

Thesizeof atimedot isthetimefor which apacket occupiestheinput/output pair of links, given
that it is successfully routed. Thisisthe sum of the header routing time and the time taken for
the following bits to cross the switch.

L et 4 denote the header delay, and b denote the bit delay. Thenthe slot time, S, for k-bit packets
isS =h +k’b, wherek isthe number of bitstransferred after the header. For one-byte headers,
thisisk + 4 sincethebitstransferred are the databitsand the 4 terminator bits. Two-byte headers
may be modelled by setting k= k + 10 + 4, where the extra 10 bits correspond to the extra byte
of header to be transferred.

6.3.2 The Contention M ode€l

At the start of atime dlot, each input link submits a packet. If there is contention for the output
links, then one packet for each output link is successful.

L et the number of input linksin use bein, and the number of output linksin use be out, with the
ratior = outlin. Then the probability that an output link is not used by any of the inputsisgiven

by
(free) = (1 — L |
P out

The probability that an output link is used is therefore

p(use) = 1 — p(free) = 1 — (1_ ﬁ)in

The data throughput, T, of an input link is given in bits/s by

1

= Jortme X p(use) X rk

Substituting in the above expressions gives

1— (1 — gpin
S

T= X rk

6.3.3 Averagedeay

Themodel sofar describesthe expected throughput of each input link. Thismay beusedto calcu-
late the expected number of timedlotsit will takefor asubmitted packet to crossthe switch. This
timeisthe delay due to the contention within the switch. In order to ook at system delays, the
time taken to reach the front of the input queue also needs to be taken into account.

The expected delay of a packet, in terms of time dots, is given by

L i % p(i)

1

I
I V] 8

97

where isthe time slot number. Now p(i) is the probability of an input success on the it trial,
so that p(i) = p(failure)i—1 X p(success). Substituting into the expression for L and taking the
common factor outside of the summation we get:

o0
L = PSS i X pfailure)’ ~ 2
i =1
summing the series, this gives
_1 1
FTT X s

The absolute expected delay, D, isthe value L multiplied by the length of the time dlot,
D =L X (slot time). Substituting,

D=1 x S
1— (1 —gpn

6.34 Summary of model

The throughput per terminal link, in units data bits per second is

1 -1 — g
S X rk

T =

Thetotal bandwidth of thesystemis B=in x T.

The expected delay of a packet, in seconds, is

D=1 x S
1— (1 -2

wheretheslot—timeS =k + kb, for k bit packetswherekis the number of bitstransferred after
the header, and

*h isthe time taken to route a header, in seconds
*b isthe time taken to transmit a bit, in seconds
ek isthe number of bitsin the packet

ein isthe number of input links used, in < 32
eout isthe number of output links used, out < 32

or istheratior = outlin

6.3.5 Asymptotes of the model

X n
Theexpression (1 - ﬁ) tendstothevaluee ~*asn — co. Asbothin andout grow, theasymptot-
ic throughput and delay for a particular set of switch parameters may be calculated. The limit
of the expressionsis

98

out r X in
— 1
1 S
Dlim r x 1 — e—]_/r

In the special case wherer =1, i.e. the numbers of input and output links in use are the same,

0.632 x k
Tim=""19g
D, = 15825

6.3.6 Resaults

The IMS C104 chip has a header routing time, 4 of approximately 500ns, and a bit delay, b of
10ns (assuming links operating at 100Mbits/s). The throughput of each input link is calcul ated
as afunction of the number of links in use, and of the packet size (in data bits).

The model isfirst used to describe the throughput of the chip when the number of input linksin
use is the same as the number of output linksin use. In the equations, thisis setting in=out, or
r=1. Figures6.7 and 6.8 show theresulting throughput and del ay respectively for one-byte pack-
et headers. All of themessageissent in asingle packet, with one header and oneterminator. The
valueof SisS =h + (1.25k + 4) X b. Note that the curves for both the throughput and delay
quickly flatten.

T - + 4 byte message

(]

L --- 8 byte message

S - = 16 byte message

¥ es5l == 32 byte message

= — 64 byte message

g

5

2 s00l —_—

(@] kLL TIPS

5 -

O

= Ot T

£ 3301 ..

D --

el T
0.0 | | | | | | | !
0 4 8 12 16 20 24 28 32

Number of links used

Figure 6.7 Throughput per link vs. packet size

99

w 1227

e

c

(®]

(&

% —

g 9.8 - - - 4 byte message

€ --- 8 byte message

é == 16 byte message

s 4,3+ == 32 byte message

O — 64 byte message

B | —————————— -

O | memmimm

2 -

e 494

°

o

O | et e

S | e

3

W 24T o oceia-s-c--ssssssssssssssssssssssssmsEms=======-
0.0 | | | | | | | !

0 4 8 12 16 20 24 28 32
Number of links used

Figure 6.8 Mean packet delay vs. packet size

Themodel isnow used toillustrate the case whenin # out. The number of input linksisvaried,
with the number of output linksheld constant at 32. The message sizeisvaried. Thethroughput
for each input link isshown in figure 6.9, and the corresponding expected packet delay isshown
in figure 6.10.

o - - = 4 byte message
% --- 8 byte message
s == 16 byte message
E 655 1+ . == 32 byte message
= IO — 64 byte message
3 S
£ Sl T
@ 50.0 1 e, — T
= .. St T,
o | TtEeaaL L T
< 1 TT=e=aall LT
[L L -
> -~ 0 TEm=aa..
e 38L8oOT e
= e
0 7 L R
g
165
0.0 | | | | | | | |
0 4 8 12 16 20 24 28 32
Number of input links in use

Figure6.9 Throughput per link vs. no inputs used (32 outputs)

100

2 12.2 +— + 4 byte message
: --- 8 byte message
: --- 16 byte message
S 98 L == 32 byte message
E — 64 byte message
>
K
3 73t
()
(@)
]
.
2 —
S ouol e
e
2 -
- R L e
< T —
S
T S U
0.0 ! ! ! | ! | | |
0 4 8 12 16 50 o - 4
Number of input links in use

Figure6.10 Mean delay vs. no inputs used (32 outputs)

The asymptotic results for the case in 7 out describes the expected behaviour. The number of
output linksisheld constant, first at out = 32, then at out=8. The number of input linksisvaried,
for 32 bytemessages. Thethroughput and delay are compared to theasymptotic curvesinfigures
6.11 and 6.12 with 32 output linksin use. Figures 6.13 and 6.14 show 8 output linksin use.

® _
)
=
=
x‘ - —
£ 655
o)
o
5
£ 500+
(@]
-
o
£
O]
T 33071 — asymptote
) - model
16.5
0.0 | | | | | | | |
0 4 8 12 16 20 24 28 32
Number of input links used

Figure6.11 Throughput per link vs. no inputs used (32 outputs)

101

Expected message delay, microseconds

5.9

5.1

4.4

3.71

291

2.27

15

0.7

— asymptote
L - = model

0 4 8 12 16 20 24 28 32

Number of input links used

Figure6.12 Mean delay vs. no inputs used (32 outputs)

Data throughput per input link, Mbits/s

52.5 |

45.9 -

39.4 1

32.8 |

26.2 |

19.7

13.1 1

6.6 |

0.0

— asymptote
* model

0 4 8 12 16 20 24 28 32

Number of input links used

Figure 6.13 Throughput per link vs. no inputs used (8 outputs)

102

[)]
2171 |
s 17.
(&)
(]
[D]
2 146
Qo
S
T 122 T
()]
©
S 98+
©
[)]
[)]
()
E 73 1
e}
o
3 1
Q 49
h — asymptote
24 4+ - - model
0.0 | | | | | | | |
0 4 8 12 16 20 24 28 32
Number of input links used

Figure6.14 Mean delay vs. no inputs used (8 outputs)

These graphs show that the limits of the expressions are actually avery good approximation to
the exact model aslong asthere are more than afew linksin use for both input and output. The

factor common to the expression for link throughput, and delay, is r(l —e Y r). Thisisplotted
infigure 6.15.

-

o

S
|

0.80 1

Value of multiplier

0.60 1

0.40 -

0.20 -

0.00 | | | | | |
0.12 0.25 0.50 1.00 2.00 4.00 8.00

Ratio of output links to input links

Figure6.15 Variation of r(1— e ") with

The approximation is dependent upon theratio of output linksto input links, and not the absol ute
number of input linksand output linksinuse. Thissuggeststhat thethroughput for each of 8 input
links, choosing among 16 output links, will be about the same as the throughput of each of 16
input links, choosing between 32 output links.

103

In the expression for throughput, the value k/S describes the amount of datain time S: the data

throughput rate. Thefactor r(l —e Y r) describesthe proportion of output linkswhich areused.
1

The expression for delay dependson S, with the factor (1 — €~ /") determining the number of
slot times which the packet takes to get across the switch.

6.3.7 Maximum Routing Delay

Finally we consider the effect of the very worst case contention on the transit time of a packet
through a C104. This means the time between the header arriving on an input link of the C104
to the time that the header is transmitted from the chosen output link.

In the worst case, 32 inputs contend for the same output29, so the unlucky packet must wait for
31 othersto be routed before it can proceed. The very worst case iswhen all 32 packets arrive
simultaneously; in all other cases some of the routing of the first packet will have been done by
the time the unlucky packet arrives.

Although every packet header must be received and the corresponding routing decisions taken,
this occurs concurrently for all 32 packets. So the unlucky packet is delayed only by the time
taken to receive its own header and perform the corresponding routing decision. Theworst case
is with two-byte headers, which take 2 X 100ns + (link input latency) to receive. Making the
routing decision and performing the arbitration takes about 60ns; the first packet can then start
to betransferred acrossthe crossbar. Each successive packet will start to be transferred immedi-
atel)é 1after the previous one finishes; the whole process will be limited by the speed of the output
link<+,

Thusatotal packet transfer time of 31 X Lyucker X 100nsisrequired before the unlucky packet
getsacrossthe crossbar; it then hasto reach the outside world through a FIFO and the link output
circuitry. The delay through the FIFO isminimal, but the link output latency should be consid-
ered.

Thusthetotal is: (Lpeader + 31 X Lpacker) X 100ns+4 X 20ns+ (total link [atency). InaT9000
system packets (in the worst case) are 32 bytes plus aterminator plus arouting header of length
Lpeader Plus(usually) avirtual channel header (typically another two bytes), so Lpacket iStypically
at most 37. Thelink latency is small compared to the other terms, so this gives atotal of about
115ps.

Notethat thisanalysisassumesthat the congested output link transfersdataat full speed thewhole
time. If thisisnot the case (for exampleif it isconnected to another C104, wherethereisconten-
tion for an output link...) then the time must be increased. Note however that the effect of this
multiplication is minimized by using large fan-out routers such as the C104.

6.4 Summary

A variety of model shave been devel oped to describedatathroughput onthe DS-Link and through
the C104 router. Thefirst takesinto account the overhead of acknowledge packets and flow con-
trol, use of one or two byte headers, and unidirectional or bidirectional link use. Thismodel has
been used to give the asymptotic throughput of the DS-Link, asthe message size getsvery large.
For large messages and a maximum packet size of 32 bytes, the lowest throughput value of the
link is8.27 Mbytes per second. Thisoccurswhen two-byte headersare used along with bidirec-

20. Note that thisincludes the unusual - but not impossible - case that one packet is being routed directly back
out of thelink on which it arrived.

21. All the links are assumed to run at the same speed.

104

tional link use. Further models consider the effect of latency on bandwidth given the particular
protocols used, both at the token and the message levels of the protocol. The final models show
the effect of output contention in asingle C104, both in an average and aworst case.

105

7 Performance of C104 Networks

The use of VLSI technology for specialised routing chips makes the construction of high-band-
width, low-latency networks possible. One such chip isthe IMS C104 packet routing chip, de-
scribed in chapter 3. This can be used to build a variety of communication networks.

In this chapter, interconnection networks are characterized by their throughput and delay. Three
families of topology are investigated, and the throughput and delay are examined as the size of
the network varies. Using deterministic routing (in which the samerouteisawaysused between
source and destination), random traffic patterns and systematic traffic patterns are investigated
oneach of thenetworks. Theresultsshow that on each of thefamiliesexamined, thereisasystem-
atictraffic pattern which severely affectsthethroughput of the network, and that thisdegradation
ismore severefor thelarger networks. Theuseof universal routing, where an amount of random
behavior isintroduced, overcomes this problem and provides the scalability inherent to the net-
work structure. Thisis also shown to be an efficient use of the available network links.

An important factor in network performanceisthe predictability of thetimeit will take a packet
toreachitsdestination. Deterministic routingisshownto givewidely varying packet completion
times with variation of the traffic pattern in the network. Universal routing is shown to remove
this effect, with the time taken for a packet to reach its destination being stabilized.

In the following investigation, we have separated issues of protocol overhead, such asflow con-
trol, from issues of network performance.

7.1 TheC104 switch

The C104 is a packet routing chip. The use of VLS to create such achip means that routing is
fast, andtheflexibility of the C104 ensuresthat the chip can be used in many situations. TheC104
contains a 32-way crossbar switch, in which al of the 32 inputs can be routed simultaneously to
the 32 outputs. Routing delaysare minimized by the use of wormhole routing, in which a packet
can start to be output from a switch whilst it is still being input. The C104 is described in more
detail in Chapter 3.

A packet arriving at a switch is routed according to its header. If the required outbound link is
available, the packet utilizesthelink. However, if thelink requirediscurrently in use, the packet
will beblocked. Thetail of the packet may now start to catch up with thehead. If thereisenough
buffering, the whole packet may betaken into abuffer, waiting to have accessto itsrequired out-
put. Thereforeif the network isvery busy, the performancewill approximateto the performance
of a store-and-forward network. The C104 provides roughly one packet of inbound buffering,
and one packet of outbound buffering on each link, for packets of a small average size, such as
those used by the virtual channel protocol. The simulations reported in the chapter use a model
with precisely one packet of buffering on each input and one on each outpui.

The C104 supportsuniversal routing, which requires each packet to be sent to arandomly chosen
intermediate node before it travelsto itsreal destination. Any of the links on the C104 can be
set to create arandom header for each inbound packet onthat link. At therandomly choseninter-
mediate node, this random header is deleted, leaving the original header to route the messageto
itsreal destination.

All routing, header creation and deletion is performed on aper link basis. Thereisno shared re-
source within the C104. This has the effect of making the links of the network the shared re-
sources, rather than the nodes of the network.

106

7.2 Networksand Routing Algorithms

In a communication network connecting p terminals, we can realistically expect the distance a
packet will travel to increase with log(p). Consequently, if we wish to maintain throughput per
terminal, the number of packetsin flight from each terminal will scale with log(p). Therefore
network capacity required for each terminal will scale with log(p). Thetotal capacity of a net-
work with p terminals must therefore scale asp X log(p). One structure which achieves thisis
the hypercube or binary n—cube. Another structureisthe (indirect) butterfly network, which has
constant degree. Conversely, thetwo—dimensional grid and indirect multistage networks do not
maintain throughput per node as the network scales.

Threetopologies are considered. The first structure isthe binary n-cube. The second structure
isthetwo-dimensional grid, whichisappealing practically. Thelast structureistheindirect mul-
tistage network.

In a binary n-cube, node i is connected to nodej in dimension k if the binary representation of
i andj differ only in the k* bit. The n-dimensional cube has N=2" nodes, diameter n and uses
n links per network node for network connections.

A gridisa2-dimensional array of routing chips. If the network isdrawn onto integer axes, there
isarouter at each of the intersections, and links in both thex and they directions. Only links
internal to the grid are used, since, athough it is possible to construct toroidal networks using
the C104, the number of links used to ‘wrap around’” must be doubled to avoid the possibility of
deadlock. This contrastswith the appealing simplicity of the grid, and so such networks are not
studied here.

The indirect multistage networks considered in this chapter provide alow cost switch for small
networks, and make economical use of the C104 switchesfor large networks. An example of an
indirect multistage network, with 512 terminals, is shown in figure 7.1.

C104
16

Figure 7.1 A 512—-way multistage network

107

There are 16 external links on each C104 in the left hand column, and there are 32 switchesin
the column. There are 16 switchesin the right hand column. Indirect multistage networks can
also be built using 8 linksto the left of the left hand column, and 24 linksto the right, providing
greater throughput per terminal. Similarly, 24 links to the left and 8 to the right provide less
throughput per terminal. For very large networks, where the switchesin the right column need
to switch more than 32 links, they can be implemented by small indirect networks.

7.3 TheNetworks Investigated

In the following performance evaluation, three sizes of network are considered, where the size
of anetwork is measured as the number of terminalsfromit. The networks studied are mostly
not practical, in that they do not make efficient use of the routing chips?2, but they are such that
theresultscan beeasily interpretedintermsof scalability, and extended directly to other networks
of similar form.

Three sizes of network are considered: 64, 256 and 1024. These are natural sizesfor the topol o-
gies considered.

7.3.1 Thebinary n—cube

The network sizes are all powers of 2. The smallest network is constructed from 64 C104
switches. These form asix-dimensional cube. On each switch there are six linksin use for the
network, and one more for the traffic source and sink (the terminal link).

The 256 size cube is constructed as 256 switches, connected as a degree 8 cube. The 1024 size
cubeis1024 switches, constructed asadegree 10 cube. For all threesizes, smaller “ fatter’” cubes
would more fully utilize the C104s. These are cubes of lower dimension, with several linksin
parallel where only asingle link would otherwise be used.

Deterministic routing on the hypercube is done from the highest dimension downwards, provid-
ing the deadlock free routing described in chapter 1.

7.3.2 Thetwo—-dimensional grid

The grids examined are all square. Each switch usesone link in each direction (+x, =, +y, —)
and there isone terminal at each switch. The links at the edges of the grid are not used.

The 64 size grid istherefore made from 64 switches, arranged asan 8 by 8 square. The 256 size
is 16 switches square, and the 1024 size is 32 switches square. The same number of terminals
would be given by using smaller grids with, say, four terminals per node, and parallel links be-
tween the nodes.

Deterministic routing on the grid isfirst in they direction, then in the x direction, providing the
deadlock free routing described in chapter 1.

7.3.3 Indirect multistage networks

Theindirect multistage networks considered here are all low-cost networks. A larger number of
switches can be used to make the network more highly connected: thistendstowardstheindirect
butterfly. The networks examined therefore indicate the performance characteristics of the
““cheaper’” networksin the class. The 64-way network illustrated in figure 7.2 has eight links
22. In most cases a far larger number of terminals could be connected with the number of switches used.

108

for each onefrom|eft toright showninthediagram, and the 256-way network illustratedinfigure
7.3 hastwo. A 1024—way network can be constructed from 32—way routers by using a 64—way
network for each of the center stage switches, asillustrated in figure 7.4.

6 |C104

N 8 links
16 |C104 C104
16 [C104 C104
16 (C104

Figure 7.2 64—way multistage network

Deterministic routing on theindirect multistage network routes an inbound packet at theleft hand
side via an appropriate right hand side node to the destination terminal at the left hand side.

C104
8

Figure 7.3 256—-way multistage network

109

Figure 7.4 1024—way multistage network

7.4 Thetraffic patterns

In designing universal communication networks, we are interested in network throughput where
network properties are not exploited by the traffic pattern. The important features are the local
throughput and delay for continuous operation, and the way in which throughput and delay scale
with network size. Oncethe continuousthroughput of the network has been determined, theload
may be adjusted to take advantage of the throughput.

The symmetry of the cube and multistage networks mean that for continuoustraffic approximate-
ly the same number of packetsareinjected at each node. On the grid network, onewould expect
the edge nodesto inject asmaller number of packets than the centre nodes. To understand these
effects, weal so measured atraffic patterninwhich afixed number of messageswasinjectedfrom
every terminal, but the difference produced by this traffic pattern was not significant.

741 Continuous Random traffic

The continuoustrafficiscreated at each source. Whenever an input queueisempty, anew packet
iscreated and put on the queue. The destination of this packet is chosen at random from all pos-
sible destination addresses. Thisisagood pattern asit dissipates traffic over the network, in a
similar manner to that of universal routing. However, such random behavior will obviously
create anumber of packetsfrom different sources which are going to the same destination. This
causes contention at the destination, and the effects of this are discussed later on.

7.4.2 Systematic traffic patterns

For a systematic pattern, each source sends to a specific destination. When an input queue is
empty, apacket is created to this pre-defined address. Each of the patterns chosen is a permuta-

110

tion, so that no two source nodes send to the same destination. Therefore the contention seenin
these patternsis wholly afeature of the network and routing algorithm.

For each network, asystematic traffic patternischosen. The patternsseem harmlessenough, and
represent an operation which could be reasonably expected to be performed. However, in each
casethe pattern chosen will create severe hot—spotsin the network. Theseare, in asense, worst-
case traffic patterns.

7.5 Universal Routing

For a communication network, we would like to be able to bound delay and achieve scalability
of throughput. Thebound ondelay will, with deterministic routing, depend onthetraffic patterns
currently in transit in the network. Some of these patterns will be fast, others slow. Universal
routing overcomesthis problem by bounding theamount of timeaset of communicationsislikely
to take. The probability of exceeding thistime can be made arbitrarily small. Improvement of
the upper bound is of considerable benefit, and since we are only interested in the upper bound
any detrimental effect on fast patternsis inconsequential .

The practice of universal routing is straightforward. An amount of random behavior is
introduced. This *‘upsets’ systematic traffic patterns which cause the exceptional delays, and
dispersestheload acrossthe network so that morelinkscan be used concurrently. Therealization
of the random behavior depends on the underlying topol ogy.

On the cube, a packet is sent to arandom intermediate node in the network, then it continuesto
itsdestination. Thejourney to therandom intermediate node and thefinal destination node makes
use of the appropriate deterministic routing agorithm. Thismeansthat theaverage packet travels
twice as far, so in order to maintain throughput, twice as many links are needed. Thelinks are
partitionedinto two parallel networks, oneof which carriesthetraffic onitsjourney totherandom
intermediate node, and the other carriesthe traffic from the random intermediate node to there-
quired destination.

Onthegrid, it isonly necessary to randomizein one dimension. Thisisthe second directionin
which the packet would normally travel. So for routing which goesfirst in they direction, then
thex direction, universal routing takesapacket first toarandom nodeinthex direction. Anextra
set of linksis used in the x direction specifically for this random step.

Universal routing on the multistage network sends a packet viaarandomly chosen node on the
right hand side, seefigure 7.1. Thisdoesnot increasethe number of linksrequiredinthenetwork.
In practice, even better results can be obtained by using grouped adaptive routing to make the
selection of link to the right hand switches.

7.6 Results

The simulation examines continuoustrafficinanetwork in equilibrium. Thethroughputismea-
sured asapercentage of the maximum possiblethroughput of eachinput link. Delay ismeasured
interms of header times: thisisthe amount of time it takes a header to be output from a switch,
received at the next switch, and processed ready for output at that switch, which for the C104 is
approximately 500ns. Time units are therefore consistent throughout.

7.6.1 Then—cube
The systematic traffic pattern

Then—cubeisperhapsthemost difficult of thethreestructurestovisualize, especially for thelarg-
er examples. Therefore the systematic traffic patterns on the cube will be described for a small
part of the network, then extended.

111

A seven dimensional cube can be partitioned into anumber of three-dimensional cubes. Two of
these 3-cubes can bejoined by a** middledimension” link. The 7-cube can be partitioned so that
each node liesin exactly one such sub-structure.

For a permutation, which is one-to-one by definition, the maximum congestion will occur at the
middle dimension. Therefore the 3-cube on one end of the middie link is mapped to the 3-cube
at the other end of themiddlelink, and viceversa. Thisisthe essence of the underlying permuta-
tion for systematic traffic on the cubes.

Thecubeswhich areexamined areall of evendimension. Sothetraffic patternfor one dimension
lessisused, and each packet movesalong thefirst dimension. (Thiswill notincrease the conten-
tion, but will increaseslightly thetimetaken). Onthe6-cube, a2-cube (square) mapsto a2-cube,
therefore giving four-way contention. On the 8-cube, a 3-cube maps to a 3-cube, giving eight-
way contention. The 10-cube gives 16-way contention. So with the increase in the dimension
of the cube, we can expect the throughput per terminal of the network to halve. The delaysfor
the systematic traffic are expected to double with the increase in dimension of the cube.

Resultsfor the binary n—cube

Table 7.1 Random traffic on the n—cube

Network size Mean delay Max delay Throughput(%)
64 48 322 78.8
256 59 546 70.2
1024 64 655 711

Table 7.2 Systematic traffic on the n—cube

Network size Mean delay Max delay Throughput(%)
64 188 376 25.1
256 383 1618 12.5
1024 722 3679 6.3

Table 7.3 Universal Routing on the n—cube

Network size Mean delay Max delay Throughput(%)
64 59 260 84.7
256 80 514 67.5
1024 91 605 717

112

~ 100+
£
5
Q.
g -,
5 80 -w\
o o
s 1 mMmrme—— o
s r - N mmama=
=
S 60}
e
ﬁ — random traffic
& . systematic traffic
5 401- - == universal routing
(&)
o
o
sl
0 | | | |
64 128 256 512 1024

number of nodes

Figure 7.5 Throughput varying with network size on the n—cube
Discussion

The continuous random traffic shows the throughput and delay to scale, as predicted. Universal
routing has the effect of adjusting the nature of the systematic permutation towards that of the
random traffic. Thevariation of throughput with network sizeisdueto variation within theran-
dom number generator.

The results show the behavior of the systematic permutation to be as expected, with alargein-
creasein delay and alarge decreasein throughput for anincreasein network size. Notetherela
tive decrease in throughput as network size increases. For the 6-cube, throughput is about one
third of that for random traffic, the 8-cube reducesto one sixth of the random traffic throughput,
and the 10-cube to a mere twelfth of the random traffic throughput.

Asanaside, thereisan interesting aspect of thedelay figures. Comparing therandom traffic with
theuniversal routing showsthat the universal routing doesnot doublethedelays. Thisiscounter-
intuitive, astheuniversal routing sendsmessages, on average, twiceasfar. However, thisanoma-
ly isexplained by the nature of random traffic. Asnoted earlier, random traffic will send several
packetsto the same destination. Thisisamajor causefor delay for therandom traffic. However,
theuniversal routing onthe systematic traffic doesnot cause the same destination contention (and
does not cause contention at the randomly chosen node because random headers are removed at
each link in the switch).

7.6.2 Thetwo-dimensional grid
The systematic traffic pattern

On agrid, ablock move provides the permutation on which to base the systematic traffic. The
gridisdividedintofour setsof nodes, with the nodes being bisected in both thex andy directions.
Thetop left corner istranslated onto the bottom right, and vice versa. This meansthat messages
are delayed in both they and x direction when travelling to their destination. Note that the four
separate block moves are independent of each other.

113

The amount of contention doublesin both the x and y direction with an increasein network size.
Thissuggeststhat throughput will decrease by afactor of 4, andthat theaverage delay will at least
double with each increase in network size.

Resultsfor the 2-D grid

Table 7.4 Random traffic on the 2-D grid

Network size Mean delay Max delay Throughput(%)
64 116 1135 34.2
256 223 4442 175
1024 336 19937 79

Table 7.5 Systematic traffic on the 2-D grid

Network size Mean delay Max delay Throughput(%)
64 302 1311 12.6
256 861 7126 31
1024 1916 36833 0.8

Table 7.6 Universal Routing on the 2-D grid

Network size Mean delay Max delay Throughput(%)
64 187 1095 21.9
256 368 2178 11.2
1024 826 4725 5.1
100
80 1
60 1

— random traffic
- systematic traffic
=== universal routing

40t

percentage throughput per input link

number of nodes

Figure 7.6 Throughput varying with network size on the 2-D grid

114

Discussion

The continuousrandom traffic showsthat throughput per node degradeswith increasing network
size. Thisisto be expected, asthe grid does not increase network capacity at asuitablerate. The
delay increases quickly with network size.

Systematic traffic showsthat the throughput and delay on agrid can both be affected considerably
by the traffic pattern. Again, the throughput per terminal decreaseswith the network size. Uni-
versal routing pulls the behavior back towards the random traffic, providing similar scalability
in both throughput and delay. Throughput isnow limited only by the overall capacity of the net-
work. For the grid, the universal routing takes longer than the random traffic, as expected.

7.6.3 Indirect multistage networks

The systematic traffic pattern

The systematic traffic patternisbuilt upon avery straightforward permutation. Ineach case, the
source node adds a particular value (modulo the number of nodes), to its own identity number.
This number is chosen so that all traffic is routed through a single mid-layer switch. Note that
thereisno contention withinthe switch, asmessages contend for thelinks. However, thisensures
alarge amount of contention for both the inbound and the outbound links of that switch.

Consider these patterns compared to random traffic. For the 64-way network, shown in figure
7.2, traffic all goes viathe top switch on theright hand side. Asthere are two central switches,
this can be expected to reduce bandwidth by about a half compared to the random traffic, asonly
one half of the links out of the left hand side are used.

Resultsfor the indirect multistage networks

Table 7.7 Random traffic on the MIN

Network size Mean delay Max delay Throughput(%)
64 36 442 56.8
256 46 512 48.8
1024 78 1078 30.0

Table 7.8 Systematic traffic on the MIN

Network size Mean delay Max delay Throughput(%)
64 44 44 36.0
256 204 364 8.6
1024 408 622 44

Table 7.9 Universal Routing on the MIN

Network size Mean delay Max delay Throughput(%)
64 48 228 41.7
256 46 284 47.6
1024 111 926 21.3

115

100 —

8ol — random traffic
- systematic traffic
=== universal routing

percentage throughput per input link

number of nodes

Figure 7.7 Throughput varying with network size on the indirect multistage networks
Discussion

Random traffic on the indirect multistage network shows that in the low-cost networks consid-
ered the throughput per node degrades with network size. However, the number of input links
per switch can be atered, and the *““centre” of the network made alot more richly connected.
Thiswill improve the scalability characteristics.

Systematic traffic patterns show that theindirect networkshavetraffic patternswhich can severe-
ly affect bandwidth and delay, and once again universal routing will overcome these problems.
The universal routing graphs do not look smooth because the structure of the networks varies.

7.6.4 Scalability

Thenetworksexamined areall appealingfor varying reasons, theoretical or practical. Thehyper-
cube satisfiesthe requirement for constant throughput from anode asthe network sizeincreases,
whereas the grid and indirect multistage networks tail-off in throughput as the network sizein-
creases. For the grid, using up to 4 such networksin parallel would not give the throughput of
asinglelink to acube structure, for networks over 256 nodes. The indirect multistage networks
could bereplicated to providethisthroughput. Notethat 4-way replication of the 1024-node net-
work gives atotal throughput from the processor similar to the throughput from a single link
whichisavailable from acube. These approximate calculations assume that traffic is split opti-
mally over the parallel networks.

Onall of thenetworks, universal routing removesthevarying delaysdueto traffic pattern conten-
tion. In each casg, it provides ameans of taking advantage of the bandwidth inherent in the net-
work structure.

7.6.5 Isthisgood use of link bandwidth?

One of the disadvantages of universal routing isthe additional link bandwidth whichisrequired.
For instance, on the n-cube, the number of links required isdoubled. Thisraisestheissue asto

116

whether these extralinks are being well used. If they were used instead to ‘fatten’ the original
cube structure, would deterministic routing provide a better solution?

If the links were doubled then the throughput could be doubled for deterministic routing which
used both available paths optimally. However, even doubling the throughput on the cubes does
not bring the systematic traffic throughput close to that of universal routing. This suggests that
universal routing does not only give scalability, but also makes good use of link bandwidth.

For theindirect networksno extralinksare used, and onthegrid 1.5 timesasmany linksare used.
These factors also show that using the linksfor universal routing is preferable to extralinks and
deterministic routing on these structures.

7.7 Performance Predictability

Thepreviousresultsshow that universal routing canimprovethethroughput and bandwidth scal-
ability of anetwork. Inthissection, universal routing is shown to improve the predictability of
the network also.

We investigate the 8-cube. Each node in the network sends to a distinct destination node, i.e.
the traffic pattern isapermutation. 1f each node creates twenty packets to the same destination,
the resulting traffic pattern is called a 20-permutation.

The underlying permutation is the perfect shuffle, which is obtained by deriving the destination
node number by rotating the bits of the source node number by a particular amount. A rotation
of 1 givesa2-way shuffle, therotate of 2 givesa4-way shuffle, and soon. Therotationwasvaried
from O to the cube dimension and the time measured for a 20-permutation to complete using both
deterministic and universal routing.

—~ 900 —

[]

=

g 8001 R

GJ ‘. *

2 S

5 7001 o ‘. ® - -@ Deterministic

E p’ — Universal

o 6001+ . °

e . .

2

f - 500'_

()]

o

[2]

5 4001 .

% »

8 300 R .

8 ¢ “

§ 200+ .

g | J

£ 100+ i TR <
0 | | | | | | |

2 4 8 16 32 64 128 256
n, for an n-way shuffle

Figure 7.8 The variation of time taken to finish with the degree of shuffle

Theresultsfor the8—cubeareshowninfigure7.8. Thisshowsthat thedeterministicrouting gives
awide variation in run-time. For instance, changing to an 8-way shuffle rather than a 4-way
shuffleincreasesthe network delivery timeby afactor of 2. With universal routing thetimetaken

117

remains approximately constant (a representative value is shown). Thisisamajor advantage,
since calculating a bound on the run-time requires the worst case to be taken into account.

Again, the extralinks for universal routing could be used for deterministic routing and provide
extra bandwidth to allow the permutation to finish in about half of the time. However, the vari-
ability remains, and most of the deterministic routing caseswould still beworsethantheuniversal
routing.

7.8 Conclusions

Inthischapter we have examined communi cation networkswhich can now bebuilt from state-of -
the-art VL SI technology. Each of the networksinvestigated has been shown to have asystematic
traffic pattern which severely effects its performance. The detrimental effect of this pattern
grows with increasing network size.

The inherent scalability of the networks have been illustrated by the use of random traffic pat-
terns. The use of universal routing provides scalability similar to that of random traffic patterns,
for thesystematic traffic patterns. Resultshave highlighted the unpredictable nature of determin-
istic routing, and shown that the use of linksfor universal routing restores predictability and the
scalability inherent to the network structure.

118

119

8 General Purpose Parallel Computers

8.1 Introduction

Over the last decade, many different parallel computers have been developed, which have been
used in awide range of applications. Increasing levels of component integration, coupled with
difficulties in further increasing clock speed of sequential machines, make parallel processing
technically attractive. By thelate 1990s, chipswith 108 transistorswill bein use, but design and
production will continue to be most effective when applied to volume manufacture. A **univer-
sal” parallel architecture would alow cheap, standard multiprocessors to become pervasive, in
much thesameway that thevon Neumann architecturehasall owed standard uniprocessorstotake
over from specialised electronics in many application areas.

Scalable performance

One of the major challenges for universal paralel architectureisto allow performanceto scale
with the number of processors. There are obvious limits to scalability:

 For agiven problem size, there will be alimit to the number of processors which can be
used efficiently. However, we would expect it to be easy to increase the problem size
to exploit more processors.

 Therewill in practice betechnological limitsto the number of processorsused. Thesewill
include physical size, power consumption, thermal density and reliability. However, as
weexpect performance/chip to achieve 100-1000 Mflops during the 1990s, the most sig-
nificant markets will be served by machines with up to 100 processors.

Softwar e portability

Another mgjor challenge for auniversal parallel architectureisto eliminate the need to design
algorithmsto match the detail s of specific machines. Algorithmsmust be based on featurescom-
mon to alarge number of machines, and which can be expected to remain common to many ma-
chinesastechnology evolves. Both programmer and computer designer have much to gainfrom
identifying the essential features of a universal parallel architecture:

« theprogrammer because hisprogramswill work onavariety of machines- andwill contin-
ue to work on future machines.

« the computer designer because he will be able to introduce new designs which make best
use of technology to increase performance of the software already in use.

8.2 Universal message passing machines

A universal message passing machine consists of:

* p processing nodes with concurrent processing and communication (and preferably pro-
cess scheduling).

* interconnection networks with scal able throughput (linear inp) and bounded delay (scal -
ing on average aslog(p)).

Programsfor message passing machines normally consist of acollection of concurrent processes
which computevaluesand periodically communicate with each other. These programsmust take
into account the relationship between the communication throughput and the computation

120

throughput of the message passing machine. We will call thisratio the grain (g) of the architec-
ture, and measure it as operations/operand. For simplicity, we will assume that a processor per-
forms an operation in one clock tick, so that we can measure the grain in ticks/operand.

The importance of achieving a good balance between computation and communication can be
understood by considering asimpleexample. Supposethat atwo dimensional imageisto be pro-
cessed by an array of transputers. Each transputer stores and processes a portion of the image.
Each step of the computation involves updating every element of theimagein parallel. Assume
that at every step of the computation, every element of thearray a[i , j] isto be updated to:

fCali,j], a[i-1,j], a[i+1,j], a[i,j-1], a[i,j+1])

and that function f involves 4 operations. The following table shows the operations performed
for each item communicated for four possible mappings.

elements per oper ations per
transputer communication
1 1
4 2
16 4
256 16

If we chose amapping which all ocates one el ement to each transputer, wewoul d need each trans-
puter to perform one operation in the same time that it can communicate one dataitem. Thisis
often referred to as fine grain processing. If, on the other hand, we allocate a large number of
elements to each transputer, the communications requirements are small. Thisis often referred
to ascoarsegrain processing. It can be seen from the examplethat asthe grainisdecreased, the
communi cations capability becomesthelimiting factor. Atthispoint, itisimpossibletousemore
transputersto increase performance, but easy to use more transputersto process alarger image.

Specialised transputer configurations can often be used to provide fine grain processing. Inthe
above example a two-dimensional array of transputers could be used, as communication is re-
quired only between adjacent transputers in the array. However, a general purpose machine
should be ableto providefinegrain processing for awide variety of algorithms, and for software
portability it should allow automatic allocation of processes to transputers. To do this it must
support a high rate of non-local communication, which can be achieved with a suitable network
of routers.

Another important factor affecting the performance of parallel computers is the latency (1) in
communication. A transputer may idle awaiting data from another transputer even though the
communication rate between the transputers is adequate. Thisis normally overcome by using
extraparallelism in the algorithmsto hide communication delays. Instead of executing one pro-
cess on each transputer, we use the transputer process scheduler to execute several processeson
each transputer.

Whenever aprocessisdelayed asaresult of acommunication, itisdescheduled and thetransputer
activates another process. Thisinturn will eventually become descheduled asaresult of acom-
munication. Execution proceedsinthisway through several processes. Whenever acommunica
tion completes, the corresponding process is rescheduled ready for subsequent execution. Pro-
vided that there are sufficient processes, the transputer will never idle as a result of
communication delays.

To understand the use of excess parallelism, consider the following simple worker process suit-
ablefor usein aprocessing farm. Inatypical farm acontroller process would hand out packets
of work to many such worker processes.

121

local data, result

loop

{ Input ? data
result := compute (data)
output ! result

}

Thisprocess performsinput (?) to alocal variable, computation and output (!) from alocal vari-
able sequentially. Any delay in performing communication will be directly reflected in thetime
taken for each iteration of the loop.

Provided that the result output at each iteration of theloop is not used (by the controller) to pro-
duce input for the next two iterations, this process could be replaced by the following version
which allows input, computation and output to take place in parallel.

local data, result, nextdata, nextresult

loop
{ parallel
{ input ? nextdata
nextresult := compute (data)
output ! result
}
data, result := nextdata, nextresult
}

Here delaysin communication will affect thetotal timetaken for theloop only if one of the com-
muni cationstakeslonger than the computation. Evenlarger delaysin communication can betol-
erated by executing several such processes in each transputer, asin the following version. The
n processes are all independent of each other, and each operates on itsown local variables (data,
nextdata, result).

paralleli=1ton
{ local data, result, nextdata, nextresult
loop
{ parallel
{ input ? nextdata
nextresult := compute (data)
output ! result

}

data, result ;= nextdata, nextresult

}

Here every communication can be delayed by up to » computation steps. An algorithm of this
kind can be efficiently executed even in the presence of long communication delays.

8.2.1 Using Universal message passing machines

Designing a program for a particular grain (g) is asignificant task, so we would like to keep g
constant for all sizesof machine. In practice wewould also liketo keep g low, asthissimplifies
programming and allowsfine—grained parallelism. A low and constant g allows programsto be
written at a higher level using, for example,

e Array manipulation

* Big DO-PARS

 Explicit parallelism with lots of small processes

122

The programmer and compiler will take into account the grain g, and will construct a program
asacollection of v virtual processors (processes) of grain>g and cycle-timec (ticks). Weassume
that the processes are cyclical, and in each cycle perform c/g communications and ¢ operations.
Noticethat wewant to keep thegrain of the software aslow aspossible so asto exploit al possible
parallelism for a given problem size, but the grain must be at least g to avoid processor idling.

The output of the compiler isaprogram suitablefor use on all universal machinesof graing. We
expect to keep the program in thisform, and perhaps distribute it in thisform. Wenotethat g is
fixed for arange of machines based on the same components, and further that thereislikely to
belittlevariationing evenfor machinesbased on different components. Thismeansthat thecom-
piled program is likely to be re-useable.

Toload acompiled program for execution, we make use of aloader which takes as parameter the
latency of communication: [(ticks). Thiswill vary from machine to machine and will scale as
log(p) for realizable networks. The loader will alocate at least I/c virtual processors to at most
(v X c)/l processors. There would be no point in attempting to use more processors than this,
asthiswould result in processorsidling someof thetime. It would bebetter to leave some proces-
sors available for some other purpose. Thus the program will run with optimal efficiency on a
p—processor machine provided (v X ¢) > (I X p).

Notice that our loader ensures that there will always be enough processes on each processor to
ensurethat (at |east) oneisexecutable; the otherswill bewaiting for communication to complete.
Thismeansthat wewill need to use at |east log(p) more processesthan processors. Another way
to think of thisis that we could use a specialised machine exactly matched to the algorithm in
which each processor executesonly one process; thiswould offer log(p) more performance. Spe-
cialised parallel computerswill still be needed for maximizing performance where the problem
sizeislimited!

We note that our proposal for universal message passing is closely related to Valiant’s proposal
for Universal PRAMs [8] in which ! =log(p) and ¢ = 1.

8.3 Networksfor Universal message passing machines

Universal message-passing machines consist of a number of concurrent processors, connected
by acommunication network. A suitablenetwork isaUniversal Communication Network, where
the throughput per terminal link remains constant with varying network size, and the delay per
terminal link grows slowly with increasing network size. Such amachineisuniversal, astheal-
gorithm running on the machine (made up from the processes on the processors) does not depend
on theunderlying structure of the machine. Thisstructural independence meansthat the program
structure will not need to be altered if the underlying machine is changed, for instance if it has
more or less processors. The machine may be characterized by the parametersg and /.

Suppose that aprocess sends amessage which will taketime! to get to itsdestination. The com-
munication delay may be hidden by the processor scheduling another parallel process (or other
parallel processes) during the communication delay. Given the network delay, [, we can predict
thenumber of processeswhich arerequired to hidethecommunicationlatency. It hasbeen shown
that several networks have constant throughput per terminal and latency growing with log(p),
where p is the number of processors. Among them is the n—cube.

8.3.1 A simulation of the n—cube

The 6-dimensional cubeisexamined. Fromthedistribution of packet arrival times, the probabili-
ty that a packet takes longer than a certain amount of time is derived. The probability, in turn,
isused to predict the amount of parallel slack required. Theresultscompareto thetheory of Val-
iant [8], and follow similar arguments.

123

The probability (derived from simulation) that a packet delivery timeis greater thantime T is
shown in figure 8.1.

—
o
S
J

0.804 -

0.60 1

probability time taken > time, T

o

o

o
[

0.20 +—

0.00 | e, | | | | |
0 80 160 240 320 400 480 560

time, T

Figure8.1 Probability that a packet takes longer than time T on a 6—cube

Thereareanumber of processeson each processor, inthiscase 6, which operate one after another,
for instance process 1, process 2, ..., process 6, then process 1 again. Thetimerequired between
process 1 finishing and process 1 starting againis!/, thelatency of the communication. However,
although process 1 may not have received its communication, and therefore not be ready to run
again, process 2 may have received its communication, and be ableto restart. Thisimpliesthat
the probability of no process being ready isactually the product of the probabilitiesthat any one
of the processes is not ready (assuming that these events are independent). Note that process 1
hastimel, whereas process 2 hastime 4//5, process 3 hastime 3//5, and so on. Thisdoesnot take
account of the compound probabilities of many delayshappeninginavery shorttime. Theproba-
bility of waiting, against the network latency /, is shown in figure 8.2.

124

t,

o

@

+

o

=)
I

1.0e-04 +

1.0e-05 +

1.0e-06 ! ! | | | |
0 30 60 90 120 150 180

latency, |

Figure 8.2 Probability that a processor will have to wait

For 6 processes, the graph shows that for a probability of waiting of 10~2, we need about 100
cycles between successive executions of aprocess. For aprobability of 103, we need about 130
cycles. Thesesuggest that each process needsto run for about 20 or 26 cyclesrespectively. This
isthe cycle sizec, defined earlier. Inthe next section, the effect of the probability of waiting is
shown.

The effect on program runtime

In our model, each processor has 6 processes. Each of the 64 processors run their 6 processes
repeatedly. Suppose that a delay to any of the processors means that all the processors have to
wait for theonewhichisdelayed. Thenthereare 384 (=6 X 64) processeseach of whichrequire
their packet to be delivered within time/ in order to avoid a delay to the system. If the system
isdelayed, it waits for afurther / units of time before it continues.

Because we requirethat all 384 packets are delivered, if the probability of any one packet being
delayed is 102, nearly al of the cycleswill take time 2/ rather than /. Thetime required to run
the program consequently doubles.

If the probability of adelay is10~3, about one third of cycleswill be delayed. If the probability
is10~4, then about onein 26 cycleswill bedelayed. These probabilities correspond to particular
values of ¢. The factor of increase in runtime over the case where there are no communication
delays, is shown in figure 8.3.

125

20—

1.8 1+

1.6 1+

Expected increase in runtime

144

1.2+

1.0 | | | L. P
20 23 26 29 32 35 38

time assigned to a process

Figure 8.3 Increasein runtime due to latency as afunction of cycletimec

832 Anexample

Suppose we want to run an image smoothing algorithm on a parallel machine. Then to operate
where the runtime will be minimally affected, we want to hide a latency of 160 cycles. For 6
processes on each processor, thisgivesacyclesize, ¢ of (160/5)= 32. A network throughput of
about 80% (as simulated for the n—cube) means that about there will be about 25 units of output
per 32 units of time.

Let the unit of time be 0.5 microseconds. Thisisthe about time required to transmit afloating-
point number using DS-Links. Floating-point valueswill be bundled into 4 packets, onefor each
of the+-x, £y directions. Theheader overhead isvery small, so the 25 unitsof timecorresponds
to transmitting 4 groups of 6 floating-point numbers.

Theimage smoothing operation consists of 5 operations per pixel (4 additionsand onedivision).
Thissuggeststhat splitting apictureinto 6 by 6 pixel squareswill givefour communications(each
of six floating point numbers), and 36 cal culations per process. Thereforewithinthe 16 microse-
conds, atotal of 36 x 5= 180 floating point cal culations need to be performed. The correspond-
ing calculation rateisabout 11.25 M Flopsper processor. Each processor runssix such processes,
giving atotal of 64 x 6 =384 processesin the network. Thissuggeststhat an array of such pro-
cessors will process an image of 386 x 36 = 13896 pixels without loss of efficiency.

A corresponding cal cul ation for anetwork throughput rate of 60% suggeststhat 5 Mflop proces-
sorscould processa 6144 pixel imagewithout loss of efficiency. Asexpected, asmaller problem
requires a higer ration of communication to computation.

In thisexample we have taken an a gorithm which could be executed on a dedicated two—dimen-
sional grid and re-written it so that it can execute efficiently on universal message—passing ma-
chines of varying sizes.

126

8.4 Building Universal Parallel Computersfrom T9000s and C104s

Throughout the remainder of this chapter we assume that the basic architecture of the general—
purpose parallel computer consistsof T9000 processing nodes connected viaC104 switches, and
examine a number of practical issuesin the construction of such machines.

8.4.1 Physical organization

A T9000 runs somewhat hotter than first—generation transputers; a typical T9000 processing
modul e, with dynamic memory and drivers, might be expected to dissipatearound ten watts. This
power budget can, if necessary, accommodate an error correcting memory subsystem. A small
mothercard, with ten T9000s and some C104 switches, might therefore dissipate about 150 watts
in an area of about one tenth of a square metre. Such aboard would require a cooling air flow
of around twenty cubic metresper hour. Thisisnot ahuge requirement by the standards of high—
performance computer design; a conventional backplane/crate implementation using forced air
cooling with a 30mm card pitch is quite reasonable. Fan noise may, however, be considerable
and a substantial volume will be occupied by air ducting and fans.

Higher component densitiesmay easily be achieved using contact and/or fluid cooling. The pub-
lished design for the Parsytec GC supercomputer [1] implements a sixty—four node subsystem
inatotal volume of about 500 by 300 by 200 mm. This GigaCube uses|arge aluminium contact
plates and heatpi pesto transport heat away from the active components. Two alternative cooling
systems can be provided for the ** cold” end of the heatpipes: afan and fin module for forced air
cooling, or awater cooling block accepting an external water supply. Either module may be ac-
commodated within the GigaCube volume, as is a secondary power supply converting a 42V
40kHz AC power feed down to the 5V required by the modules.

Wemay contrast thesedensitieswith the degree of compactnessrequired to minimizesignal prop-
agation delays. Assume that only T9000 data links travel between cards in the computer. Low
level flow control on such alink network is maintained on groups of eight tokens (see Chapter
3); such agroup takes about 800nS to transmit at the 100 Mbits/srate. An end—to—end delay of
half thisfigure corresponds to a separation of sixty metresin free space; thus, even allowing for
velocity factors, we are able to build very big machines.

Overall, it can be seen that the choice of component density isnot constrained by the T9000/C104
architecture; therelatively low power requirementsand long permissible cablerunsallow the de-
signer full flexibility in mechanical design.

8.4.2 Network Performance | ssues

A primary part of the design of a T9000 and C104 system is the design of the data link routing
network. Raw throughput and latency are two important issues that must be considered.

Early work by Dally [3] on routing networks suggested that two dimensional grids formed good
routing networks for supercomputers. These resultswere, however, based on parameterswhich
do not apply to C104 networks. In particular, it is desirable to use the very high valency of the
C104 toreal effect; connecting many linksin parallel toform alow vaency network wastes much
of the routing capability.

There are several possible measures of network performance. One, popular with computer
manufacturers, isthe peak poi nt—to—point bandwidth between apair of processorsinan otherwise
unloaded network. This measure gives some information about the behavior of the processor to
network interface, but it conveys almost nothing about the performance of the network itself.
Realistic measures must quantify the behavior of the network under reasonable load conditions,

127

taking into account contention between messageswithin the network. Important effectscan arise
as anetwork isloaded:

e Evenif thenetwork saturatesuniformly asregardsthroughput, individual messagelaten-
ciesmay becomevery high asthe network approachessaturation; seriousunfairnessmay
also arise between different processors. Randomization, as offered by the C104, can be
shown [8] to make highly delayed messages improbable.

e Certain particular patterns of communication [3] can cause adramatic build—up of mes-
sagetraffic at particular intermediate nodesin the network. Thisisauniversal property
[4] of deterministic sparse routing networks. It is unfortunate that many popular net-
works (grid, n—cube, Clos...) show this bad behavior on traffic patterns that would be
expected to arisein typical computations. Randomization can again be shown to render
these systematic collisions improbable.

The use of randomization in aC104 network can be seen to offer important simplificationsin the
network’sbehavior. It can completely decouplethe network topology from the algorithmic mes-
sage pattern. One canthen essentially characteriseanetwork by itsthroughput and averagelaten-
cy for randomly distributed traffic under high load. In practice, the adaptive routing offered by
the C104 normally providesall the benefits of randomization, along with auseful increasein av-
erage bandwidth as will be shown below.

Throughput inaC104 network islimited by contention, the simultaneous presenceof two or more
packetsrequesting the sameoutput link fromaC104. Under randomtraffic, thismay bemodelled
very smply as discussed in chapter 6. The formulaederived there may be simply modified to
account for restrictions on the output links. It isthen straightforward to calculate approximate
throughputsfor networksby cascading this cal cul ation through the variouslayersof the network.
There are two other direct results from this formula:

e A single 100 Mbit/s link between T9000s can deliver a unidirectional throughput of
8.9M bytes/s. A perfect network could route permutation traffic, in which it is guaran-
teed that no two processors are attempting to communicate to the same destination, at
thesamerate. Withrandomtraffic, evenfor aperfect network, contention at the destina-
tion T9000s reduces the maximum throughput per link to 5.6 Mbyte/s.

e Consider an indirect network: onein which there are layers of C104 switch that are not
connected directly to T9000s but only to other C104s. Then the amount of traffic on
these inner layersisreduced by contention in the outer switches adjacent to the T9000s.
A balanced indirect network design will thus have adensity of linksthat is highest near
to the T9000s and is reduced between the inner switches.

8.4.3 A practical Routing Network

A simpleand useful routing network isthefolded Clos?3. The network providesrouting between
themn external portson theleft side of the network, where each of the n switchesintheleft-hand
column provides m external ports. A 512—terminal versionisillustrated in figure 8.4.

23. Thetitle is derived from an important early paper [5] on the design of telephone switching networks. The
particular numbers of interconnections provided by Clos and the related Benes [6] networks are important for
the establishment of telephone circuit connections without contention. These numbers have no special signifi-
cance for packet routing networks such as those built using C104s.

128

C104
16

Figure8.4 Folded Clos network

The ssimple model of chapter 6 can be used to evaluate the performance of the folded Clos net-
work. If the network is programmed for random routing, then arandom one of the p right hand
switchesis selected for each message. The probability of an output being active at thefirst stage
isthus P, = 1-e~™P. The probability of an input being active at the second stageis also P, and
the probability of an output being active, for randomtraffic, is P,= 1-e ;. Finally, theprobabili-
ty of one of theexternal output portsbeing activeis P;= 1-ePP,/M giving an averagethroughput
per link of 8.9 X P; Mbyte/s. If grouped adaptive routing is used at thefirst stage, then the con-
tentionthereiseliminated aslong asp >=m. Thus, the previousformulaismodified by replacing
P, withmin(1,m/p). Table8.1 below shows some cal culated random traffic throughputsfor typi-
cal Clostype networks.

Table8.1 Sustained high— oad throughputs for Clos-type networks

m| p random adaptive random adaptive
throughput | throughput routed routed

Mbytes/s Mbytes/s efficiency efficiency
16 | 16 3.3 4.2 59% 74%
8 | 16 4.3 4.8 76% 86%

Note that the two networks differ only in that half the external ports are left unconnected for the
m= 8 network. Therandomization appliedto folded Closnetworkswaseffectively free; no addi-
tional links were traversed by randomized packets. Nevertheless, adaptive routing can be seen
to be more efficient. Grid and n—cube networksimpose more severe penalties. Random routing
must be appliedto all but onedimension of thegrid or n—cube, almost doubling thetraffic density.

129

Simple adaptive routing also achieveslittle in eliminating systematic contention from these net-
works.

Similar methods may be used to analyze a wide variety of networks. Homogeneous networks
such asthe Folded Clos and n—cube are straightforward. 1nhomogeneous networks, such astwo
or threedimensional grids, have an unbalanced traffic pattern which peaks(linearly) inthe center
of thegrid. Calculation of the contended throughput inthe centre of thegrid givesagood estimate
of the overall throughput of the network.

8.4.4 Routing Network Simulations

Some detailed simulations[2] of C104 networks have been performed by Siemens as part of the
Esprit PUMA project. Thiswork wasinstrumental in theinclusion of grouped adaptive routing
in the C104. These studies cover Clos, grid and n—cube networks. Concentrating first on the
m=16, p=16 network examined above, the Siemensresultsfind sustained throughputson random
traffic of 2.9 M byte/sfor random routing and 3.1 M byte/s for adaptive routing which compare
well with the crude cal culations of the previous section. Interestingly, for aknown bad message
pattern, deterministic routing offers a throughput of only 0.3 M byte/s, random routing (of
course) the same 2.9 and adaptiverouting 8.8 M byte/s. It turnsout that the bad pattern for deter-
ministic routing, ablock permutation, isavery good pattern for adaptive routing.

The Siemens simulations also give insight into the average packet delay in the network; for the
m=16, p=16 system delivering 1M byte/s/link throughput we see an average delay of 6us. Grids
and cubes again perform worse than Clos networks in this parameter.

Overall, the Siemens results show comparable performance for n—cube and Clos networks of
comparable cost, with asmall advantage for the Clos designs. Two and three dimensional grids
performed very badly.

Thereisareceived wisdom that the two—dimensional nature of silicon die and PCBs|eads natu-
raly to atwo—dimensiona network structure. Thereislittle justification for this notion; areal
system of modulesin boardsin cratesin cabinetsismorenaturally tree structured. Itis, however,
truethat therealization of good global messaging networksrequiresmany linksbisecting the sys-
tem. Parsytec[1] have demonstrated a construction technique appropriate for three dimensional
grids. Thefolded Clos network aso lendsitself to anatural physical implementation, with the
processors and outer switched arranged on vertical boards and the inner switches on horizontals
asshowninfigure8.5. Suchanarrangement will require careful selection of connectorsand sup-
port boards, but can easily realize a 256 processor system in a single compact rack.

130

-
=
A=

Figure8.5 Horizontal boards containing the center stages of a Clos network

8.4.5 Security Implications of Network Topology

In some applications, secure multi—user T9000 parallel computers are required. This might be
to provide conventional inter—user security in a general—purpose machine. It might also be to
improvesystemruggednessin the presence of somepoor quality softwaremodules. For instance,
in adatabase system, one might hope that a client instance would be ableto fail without bringing
down the main database.

A simple solution to this problem would beto run al the untrusted processesin protected mode,
with all communication and memory management controlled by trusted servers. Unfortunately,
for avariety of reasonsthisis not always possible:

e Usersmight be using programming environmentsthat insist on raw accessto the proces-
sors, and do not support protected mode.

e Theincreased communication overheads of protected mode may not be acceptable.

It ispossibleto use a C104 routing network in order to provide some security against rogue pro-
cessing nodes. The concern isthat a rogue node might transmit a packet with headersthat it is
not authorized to use, causing corruption of avirtual channel which it should not use. Onetrick
Isto operate the C104s without header deletion at the boundary of the networ, so that the virtual
channel number as seen by the receiving T9000 is actually used to route the packets. Careful
design of the C104 network, and programming of itsintervals, can ensue that individual proces-
sors can only access restricted ranges of virtual channels on the other processors. This scheme
isat first sight attractive, but suffers from severe limitations:

» Theseschemestendto requirelarge numbersof C104sand an otherwise undesirabl e net-
work topology.

e Largegaps are created in the range of virtual channels usable at each processor.

e Most standard programming environments [7] assume the use of header deletion at net-
work boundaries.

131

e Thistechnique offers error detection, but not error recovery. It isdifficult to trace the
author of bad packets, and almost impossible to protect against network flooding.

Overall, it seemswisest to accept that C104 networks are not intended to enforce protection, and
to use gateway processors between trusted and untrusted subnetworks.

Most of the popular networks lend themselves naturally to rigid partitioning, but usually only in
restricted ways. For example, n—cubes can realize setsof smaller n—cubes, grids can be dissected
and Clos networks partitioned linearly. Itismuch harder to assemble closed subnetworks from
arbitrary, non—adjacent sets of processors.

85 Summary

We have used the following result from contemporary computer science:

» the ability of certain networks together with randomized or adaptive routing to support
scalable throughput and low delay (even when routing among thep x log(p) virtual pro-
cessors distributed among p processors)

together with the existence of existence of message-passing hardware:

» processorswith efficient process scheduling, in which processing throughput and commu-
nication throughput are balanced, and

« high—valency routersallowing the construction of compact communication networkswith
scalable throughput and low delay,

and have shown that we can already construct scalable universal message passing machines. For
these machines, we can write scalable, portabl e software exploiting message passing. Such ma-
chines can easily be constructed from available commodity components.

References

[1] Technical Summary parsytec GC, version 1.0, Parsytec Computer GmbH,
Aachen, Germany, 1991.

[2] A Klein, Interconnection Networks for Universal Message—Passing System,
Esprit ' 91 Conference Proceedings pp 336—351, Commission of the European
Communities, 1991, ISBN 92-826-2905-8.

[3] W J Dally, Performance Analysis of k—ary n—cube Interconnection Networks,
IEEE Trans Comput 6 pp 775-785, 1990.

[4] L Valiant, in Handbook of Theoretical Computer Science.

[5] C. Clos, A Study of Non—blocking Switching Networks,
Bell Systems Technical Journal 32, 1953

[6] V. E. Benes, Mathematical Theory of Connecting Networ ksand Telephone Traffic
Academic Press 1965

[7 Network Description Language User Manual, Inmos Ltd, 1992.

[8] L. G. Vdiant, A Bridging Model for Parallel Computation,

Communications of the ACM, August 1990, pp 103-111

132

133

134

9 The Implementation of Large
Parallel Database Machines on
T9000 and C104 Networks

The design of large database machines requires the resulting implementation be scalable and
cheap. Thismeansthat use has to be made of commodity itemswhenever possible. Thedesign
also hasto ensurethat scalability isincorporated into the machinefromitsinceptionrather than as
an after—thought. Scalability manifestsitself intwo different ways. First, theinitial sizeof asys-
tem when it isinstalled should be determined by the performance and size requirements of the
desired application at that time. Secondly, the system should be scalable as processing require-
ments change during the life-time of the system. The T9000 and C104 provide a means of de-
signing alargeparallel database machinewhich can be constructed from commodity components
in amanner that permits easy scalability.

9.1 Database Machines

A database machine providesahigh level interfaceto the stored data so that the user isnot aware
of theaccess path to that data. Further, the user can specify what dataisrequired and not how the
dataisto befound. Inarelational database machine, the topic of this paper, the datais stored in
tables. Each row of atable contains anumber of columns each of which contain asingle atomic
value. Rows are distinguished from each other by the value of one of the columns having adis-
tinct value. Datafrom one table can be combined with that from another by a process known as
relational join. If weassumethat in each table thereisacolumn which holds datafrom the same
domain, then we can join the tables on those columns. In general, the output from ajoinisthe
concatenation of one row from each of the tables where the joining columns have equal values.

A database machine allows different usersto access the database at the sametime for any opera-
tion. Thusdifferent users can be accessing the database to read, write, modify and erase rows of
tables. Theeffect of each user hasto bemadeinvisibleto the other usersuntil auser hasindicated
that aunit of work iscomplete. The database machinetherefore hasto ensurethat different users
do not interferewith each other by accessing the samerowsof atable. Many users can accessthe
samerow of atableprovidedthey areall readingthedata. The maintenanceof suchaconcurrency
management system is expensive and most of the current algorithms are based upon the use of a
large memory to hold locking information. The design to be presented in this paper will show
how a scalable concurrency management system can be constructed.

Itisvital that the datastoredin the databaseiscorrect and consistent. Thismeansthat datavalues
have to be checked whenever dataiswritten, erased and modified. Thisconsistency isachieved
by the use of integrity constraintswhich can be of severa different kinds. First, thereisasimple
check constraint to ensure that avalue is contained within a simple range of values. A second
more complex check constraint can beinvoked which ensuresthat avalueinacolumn of atableis
related in someway to avalueinanother row of the sametable, or on somefunction appliedtothe
table asawhole. This can then be extended to a check which refersto another table. Finally, a
referential constraint imposes relationships between tables. The column, or columns, which
uniquely identify arow inatablearecalled the PRIMARY KEY of that table. Another table may
store the same values in a column of that table. This column will not be the primary key of the
secondtable, thoughit may form part of the primary key of the secondtable. Thedatabasesystem
has to ensure that only values which occur in the first table are stored in the second table. The
column in the second tableis said to beaFOREIGN KEY which referencesthefirst table. If we

135

insert arow into the second table then we must check that the value of the foreign key (or keys)
occurring inthat row already existsin thereferenced table (or tables). Similarly, if arow isto be
deleted from the first table then we must ensure that there are no rows in the second table which
have theforeign key column with the same value asthat which isto be deleted. In either case, if
thisreferential constraint failsthen the operation on the database should beterminated. Itisgen-
erally agreed that if full constraint checking is imposed on existing database implementations
then the performance of the system will be reduced to 25% of current performance. Thus many
database systems are run without consistency checking, especially referential checking, so that
theoverhead isnotimposed. Thedesignto bediscussedinthispaper will permit theimplementa-
tion of afull constraint system with a scalable performance.

A key aspect of current database technol ogy isthe ability to manipulate complex datatypes. This
ismanifested in theinterest in object oriented databases. We shall describe how object oriented
capabilities are captured by the design.

A final factor which iscrucia to database machine performance isthat of recovery from errors.
Oates and Kerridge [1][2] have shown how a recovery system can be implemented in paralel
with the datamani pul ation component of adatabase machine. Thearchitectureto bedescribedin
this paper will show how these capabilities can be captured.

Many of theideasexpressed inthispaper result fromthe highly successful IDIOM S| 3][4] project
which resulted in the demonstration of a database machine which could undertake both Onine
Transaction Processing (OLTP) and Management | nformation System (M1S) queriesonthe same
data concurrently. The IDIOMS machine demonstrated this capability for banking applications
specified by the Trustees Savings Bank plc. One purpose of thisdemonstrator wasto show that a
low—cost scal able architecture could be constructed. Thisaspect isfurther enhanced with theuse
of T9000 and C104 technology.

9.2 Review of the T8 Design

In this section a brief overview of the IDIOMS design is presented. It demonstrates the limita-
tions of the T8 transputer asabasisfor building asystem which can be scaled easily. Scalability
manifestsitself in two different ways. First, asystem hasto be scaled to match theinitial size of
theapplication, thereby dealing with different sized applications. Subsequently, the system hasto
be scaled to deal with changes of application. For example, the amount of data or the number of
applicationsmay increase or theresponsetimeof the system may haveto beimproved. Figure9.1
shows the basic IDIOMS design. Transactions are passed to the T processors, where access is
made to the disc for the required records to undertake the transaction. It ispresumed that datais
partitioned over the discs connected to the T processors. In this case the partitioning uses the
account number. Speed of accessto the account information isimproved by the use of an index.

136

Al

Figure9.1 Basic IDIOMS architecture
Key:
T Transaction processor SE Storage engine D Data dictionary
R Relational processor C Communication engine # Disc controller

It isalso presumed that the transaction processing timeis small; that is, in general atransaction
will accessasingle account, modify it in some simple manner and write the updated record back
todisc. Conversely, itispresumed that aManagement Information System (MI1S) query will ac-
cessmany recordsinthedatabase. andwill thustakealongtimeto process. The Storage Engines
connected to the Transaction processors are able to read data from the transaction data but not
write data back. This means that an MIS query can be interrupted so that the T processor can
access the disc, because this operation must be given priority. The IDIOMS machine design al-
lows the transaction to accessthe dataasif it were atraditional record structure and can thus be
processed using alanguage such as C. The Storage Engine accesses the data asif it were SQL
tablessothat it can be processed in arelational manner. The machine design permitsboth opera-
tionsconcurrently onthe samedataset. Theoverall design strategy isto ensurethat thediscs con-
nected to the transaction processors (T) have sufficient spare access capacity to allow the amount
of MISactivity required. The IDIOMS machine has demonstrated atransaction processing per-
formance improvement of 45 times over the current mainframesused by TSB. The current sys-
temisincapable of providing MIS support. Thedemonstrator has shown that for the current mix
of transactions there is sufficient disc access capacity available that the running of concurrent
MIS queries results in no appreciable diminution of transaction processing performance [5].

Theremaining Storage Engines are used to store datawhich isonly accessed by the MIS system,
for example summary and statistical tables. This data can be joined with the data held on the
transaction discsintherelational processorsR. MISqueriesareinput to the Data Dictionary (D)
processor wherethey are parsed and processing resourcesareallocated asrequired. Thedatadic-
tionary hassufficient information to know which partsof which tablesare placed onwhich disc so
that only those discs which hold data needed for the query actually contribute to the necessary
processing. A sequence of relational operations can be constructed as a pipeline by sending the
output of one Relational Engine (R) to the input of another using the communicationsring of C
processors. More details of relational processing techniquesin such amachine can befoundin

137

[6]. Thenetwork of C processors providesthe scalability of the system because we can add extra
nodesinthe C processor structureasrequired. Thuswe can add transaction nodes, MISnodesand
relational processing on an as needed basis. Comparethiswith atraditional mainframe solution
whereit isimpossibleto add the precise amount of extracapability required, rather theincrement
in performance quite often increases capability that did not need to beenlarged. Inthefollowing
sectionswe shall discussthe changesthat can be madeto the IDIOM S design asaresult of using
T9000 and C104 technol ogy.

9.3 A Processor Interconnection Strategy

Networksof upto 512 processorscan easily be constructed using asimplethree-level CLOS net-
work (seefigure7.1). Thenetwork isreplicated for each of thelinksof the T9000if full intercon-
nectionisrequired. Inthe case of adatabase machinewe may need to have more processorsthan
thisand we may al so need to ensurethat the original design permitseasy on—siteincreasein size.
Applications which can justify such processing needs usually cannot be taken out of servicefor
long periods because they are critical to an organisation’s profitability. Figure 9.2 shows how a
network of five-levels can be constructed which allows 1920 T9000s to be connected.

31 24
0 23

: 7
— | 16
78 15

/N

Figure9.2 A fivedevel indirect network

The componentsin thisnetwork areall C104s. Theterminal linksare then connected to T9000s.
The periphery of this network has sufficient capacity to hold 1920 T9000s each connected by a
singlelink. If al four links are to be connected then the compl ete network has to be replicated
four times. Theelement of thenetwork to theright isduplicated and connected to theeight central
C104stwice more, oncefor the lower connections and once to the upper connections. A total of
152 C104sarerequired to connect just onelink of each transputer and thus 608 arerequired if all
four linksareto beinterconnected. It should be noted that any communication between transput-
erson the same edge of the structure requiresonly threelevels of communication rather than the
five needed to crossfrom one edge to another. Thisstructure gives sufficient capability for scal-
ability oncethe database machine hasbeeninstalled. The system needsinitially to be set up with
just one of the four quadrants and even that does not need to be fully populated. Thereafter the

138

initial quadrant can be fully populated and subsequent quadrantsfilled as necessary. If only one
quadrant is used then there is no need for the 8 central C104s.

9.4 Data Storage

Of crucial importance to any database machine isthe provision of a high bandwidth, large vol-
ume, fault tolerant data storage sub—system. We chose to make the same design decision aswas
donein IDIOMS, namely that an operating system isnot used to control the data storage because
the file system is usually inappropriate for database operation. We therefore chose to store the
data directly on the disc storage and use a Data Storage Description Language to specify the
placement of thedata[7]. Thisthen permitsgreater and moreflexible control of the database ma-
chine. Furthermore, thedatadictionary processcan utilizetheinformation to makequery proces-
sing more efficient.

In this design we propose to obtain fault tolerance by simply maintaining several copies of the
data in atriple modular redundancy scheme. Thisis sometimes known as disc mirroring. We
shall obtain high bandwidth by providing alarge number of link connectionsto the disc subsys-
tem. In some ways the design is similar to the many RAID (Redundant Array of Inexpensive
Discs) productswhich are currently being marketed, except that we have chosen not to distribute
thebitsof aword over many discs. Thedesignwhichisgiven presumesthat adirect link interface
tothediscunitisprovided. Currently, of course, thisisnot the case, but the design gives compel -
ling reasons why this should be done.

However before we can present the design afew basic facts about disc accessing are required.

Disc manufacturers always quote adisc transfer speed which assumes that the read head is cor-
rectly located onthedesired block beforethetransfer takesplace. They also quote seek and laten-
cy figureswhich indicate the time taken to move the head to the correct track and to wait for the
desired sector to rotate under the head. Thefigurethey don’t quoteisthe effect of thesetimeson
overall performance. In experiments we have undertaken which are confirmed in another re-
port[8] it was shown that an effective rate of about 0.5Mbyte/sec could be achieved from a
SCSI-1 disc which had arated performance of 3 Mbytes/sec. Thiswasthefigurefor sequential

access. Theactual ratefor randomreadswasof theorder of 0.1 Mbytes/sec. Faster disctechnolo-
gy may improvethisoverall performance but the accessrateis still going to be substantially less
than the figure quoted by disc manufacturers. The way that disc manufacturers overcome this
performance is by constructing disc strings, that is having a number of discs on the same bus,

hence the SCSI bus system which permits upto seven discson the bus. It has been found that the
optimum number of discsto haveonaSCSI—1 busisfour[9]. Thisfigurematchesthe0.5Mbytes/
sec and the rated performance of SCSI-1 of 2 Mbytes/sec, for sequential access. In order to
achieve good performancein adisc array it isusually suggested that consecutive datablocks are
placed on separate drives so that the seek and latency time can be overlapped. Thisworkswell if
most of the accesses are sequential as happensfor filesin traditional operating system environ-
ments. However in adatabase system thisisnot the case and thereisthuslittlelikelihood of dis-
tributing disc blocksover drives having abeneficial effect. 1f such disc block striping wereto be
undertaken it would be best to do thisover astring of drives connected to asingle control proces-
sor. Figure 9.3 shows the structure of a simple disc sub—unit comprising 31 drives.

139

Discs other processors

@/_, in the disc sub-system
O/— | System Data

C104 T9000 :
Connection
@

Figure 9.3 Disc sub—unit

The sub—unit chooses to have only one disc per connection to the C104. It is presumed that the
disc drive contains an interface compatible with a T9000 link. In the short term this could be
achieved by useof astandard discwith extrainterfacecircuitry. Thenumber of discsconnectedto
asingle T9000 link isjustified because the bandwidth of a T9000 link is 17.48 Mbytes/sec bi—
directionally. Thiscapacity divided by the actual disc performance of 0.5Mbytes/sec resultin up
to 34 discs being reasonable. This sub—unit of itself has no fault tolerance and is not scalable.
These aspects are achieved by making the sub—unit acomponent of acomplete disc sub—system,
as shown in figure 9.4.

IT—% !T_! Control :
Connections

[g__l_] Data
Syst
[g N ystem
O J

Disc sub-unit (@™ pan .
Pl Connections
<
(-,

Figure9.4 A complete disc sub—system

Each of the disc sub—unitshas one connection which connectsit to the external environment. The
other two connections are taken to a pair of C104s which provide connection between the sub—
units. The two T9000's (T) which are also connected to the C104s are used to provide a fault
tolerant repository of information about the data stored on the disc sub—system. The complete
disc sub—system can comprise a maximum of 30 sub—units, though of course, it does not haveto
befully populated initially. Assuming afully populated system we can construct adisc sub—sys-
tem which holdsfrom 18Gbytes using 20 Mbyte capacity drivesto 2325 Gbytesusing 2.5 Gbyte
capacity drives. In both cases, the bandwidth available is 524 Mbytes/second. Asdisc perfor-
manceimprovesit will be necessary to reducethe number of discsconnected tothe C104 sothat it
matches the available link bandwidth. It should be noted that the capacity of the system will be
reduced to one-third if atriple modular redundancy strategy is adopted.

Fault tolerance can be achieved by ensuring that every time dataiswritten to the system two co-
piesaresent viathe sub—unit controlling transputer and the C104sto two other sub—units, wherea

140

copy of thedataiskept. Thuswe can be guaranteed that within onetransfer timethrough aC104
datawill havearrived at two other sub—unitswherethedatacan bereplicated. Atthat pointit may
be necessary to wait to confirm the satisfactory writing of the datato all of the sub—units. A well
understood two—phase commit protocol could be used to ensure system integrity. Read perfor-
mance can be substantially improved becausethere are now three copiesof thedata. Eventhough
aread request may be directed to a specified system connection link, thereisno differenceif the
actual read is sent to adifferent sub—unit if one of the sub—units happensto be overloaded. The
design could be criticized because thereisonly onelink between the system connection and each
disc. Theeffect of thisweaknessishowever reduced because we have three copies of each data
block, each on different disc units each having their own primary system connection. It isthus
vital that we have aflexibleinterconnection strategy between the disc sub—system and therest of
the database machine.

9.5 A DiscInterconnection Strategy

Figure 9.5 shows the connection between the disc sub—system and the rest of the architecture
when attached to anindirect network generated by 48 C104s, which permits512 terminal connec-
tions.

16
0 31
16 (1)
L0
) S K3 3l
Disc 15
Sub-system .
§ 1
TI : 15
—\ ;|
0
1 1 16
(31 1y
15
T‘I —/

Figure 9.5 Disc sub—system interconnection

Each of the T1 processorsin figure 9.5 provide ageneric Table Interface processto the disc sub—
system. Thedisc sub—systemissimply connected to the routing chipsonelink per terminal con-
nection. Thisinterconnection strategy permits the use of generic table handlers rather than the
dedicated onesintheoriginal IDIOM Sdesign. Thusthetable partitioning that wasexplicitinthe
IDIOM Sdesign hasbecomeimplicitinthe T9000 based design. Thetableisallocatedtothedisc
sub—system in such away that the separate parts can be accessed in parallel by multiple TI pro-
cesses. TheTI processwill usually have to manipulate theindex that is used to accessthe part of
the table that has been allocated to the particular Tl process. A given query may not access the
whole table and therefore only the required number of Tl processes will have to be allocated to
satisfy the table handling requirements of the query.

We now investigate how the remaining links on the TI process can be used given that the disc
sub—systemandthe Tl processesare onthesameinterconnectionlayer. First, wepresumethat the

141

interconnection layers are replicated so that the transputers holding the Tl process can be con-
nected to other layersremembering that the disc sub—systemisonly connected to onelayer. Thus
wewould end up with four layers of interconnection. We now haveto allocate processesto these
layers. It isnot necessary in the connection system shown in figure 9.5 to consider locality of
reference because all processorsare equidistant from each other. Intheinterconnection architec-
tureshowninfigure 9.2 it would be necessary to consider which processes do communicate with
each other so that those which communicate frequently arein apart of the network wherethereis
athreelevel communication structurerather than oneinvolving fivelevels. Inthefollowing sec-
tionsweshall discussthe connectionsthat haveto be made between the processesthat make up the
database machine.

9.6 Relational Processing

Figure 9.6 showsthe way in which the IDIOMSrelational engineswere constructed using three
T8 transputers. Thisstructure wasrequired becauseit wasnecessary to provide somelocal buff-
ering of data between the Storage Engine processors, which were sending data to the Relational
Engine over the communication structure.

Buffer Buffer

Join

Figure9.6 IDIOMS stylerelational engine

Thisdesign thenimposed some softwaredifficultiesbecause the synchronization which normally
occursbetween occam processesislost when that communi cation takes pl ace between processes
which are not on adjacent processors. Thisloss of synchronization can be overcome by having
each message acknowledged by a special message which is sent from the buffer process to the
storage engine which has sent the data. This extra communication results in a reduction in
throughput becausethe sending processhastowait until it receivesan acknowledgement beforeit
can send the next block of data. The omission of the acknowledgement means that the buffer
process hasto be able to send messagesto the storage engine, in sufficient time, so that dataisnot
sent to the buffer process which cannot be stored in it.

This problem does not occur with the T9000/C104 solution because the hardware allows pro-
cessesto communi cate with each other directly. Thusthe completerelational processor architec-
ture can be implemented on a single transputer with the same process structure. However, the
buffer process does not need to send wait messagesto the sending process, it just does not input
any more datawhen it becomes full, thus the sending process becomes blocked trying to output
data. Provided the processeshave been correctly constructed thiscausesno problem. Thebuffer

142

processes are still required because it makes relational processing more efficient when a nested
loops join has to be undertaken (every row of one table is compared with every row of asecond
table).

A general relational process can therefore be allocated to any one of the transputersin the archi-
tecture. In order to undertake the required processing the relational processor will need to bein-
formed of the structure of thetablesto bejoined and the type of join processing to be undertaken.
In addition, therelational processor will need to betold wherethe output from therelational pro-
cessingistobesent. Thisaspect of resourceallocation and control of processingwill bediscussed
in section 11.

9.7 Referential Integrity Processing

Figure 9.7 shows a typical situation that occurs in relational databases involving a many—to—
many relationship between customersand their accounts. A many-to—many rel ationship cannot
bedirectly represented so an intermediate linker tableisintroduced which implementstwo one—
to—many relationships. Theprimary key of the Accountstableisthecolumn A which containsthe
account number. The primary key of the Customer tableisthe column C which containsthe cus-
tomer identification number. The primary key of Account—Customer is acompound key com-
prising A and C, that isthe combination of A and Cisuniquewhereasindividual valuesof A andC
may bereplicated. A fuller descriptioncanbefoundin[12]. A corollary of thisstructureisthatin
order to send | ettersto account holdersit is necessary to join Accountsto Account—Customer on
the common column A and then to join the result to Customer on the common column C.

Account-

Accounts Customer Customer
A A C C

: Primary Key Check - PK Cheg¢k

D>
Delete or Update :
Foreign Key Check FK] Check :
>
' Insert and Update :

Figure 9.7 Foreign key, primary key relationships

Figure 9.7 shows the checks which have to be undertaken when undertaking insert, update and
delete operations upon a database in which referential integrity processing has been specified.
Thus, if it isdesired to delete arow from either the Accounts or Customer tables, thenit isfirst
necessary to check that no row in the table Account—Customer has the same key value as that
whichisabout to bedeleted. That isthe value of the column A or C respectively must have been
deleted from Account_Customer beforeit isdeleted from Accountsor Customer. Similarly, if a
value of theprimary key of AccountsA, isupdated, then acheck hasto bemadein Account—Cus-
tomer to ensure that there are no rows which have the old value of A remaining.

Whenever arow isinserted into Account—Customer acheck hasto be madein both Accountsand
Customer that arow withthesamevaluefor A and C already exist. Thisisknownasaforeignkey
check. Similarly, if arow inthe Account_Customer tableisupdated aforeign key check hasto be
carried out to ensure that the new values already exist in the referenced tables.

143

It is obvious from the foregoing description that much processing isinvolved in the checking of
referential constraints especialy in systems which involve much updating of data. Itisfor this
reason that many existing database applications execute without referential processing enabled
becausethe processing overheadistoogreat. Figure 9.8 showshow two co—operating processors
can be used to implement areferential co— processing system.

Table Updates Referential
Interface Co-processor
I
I
Table Access Referential Access

Figure 9.8 Referential co—processor architecture

Thereferential co—processor containsacopy, sometimesknown asaconcreteview, of the prima-
ry key column(s) of atable partition. This means that a particular referential co— processor is
dedicated to aparticular tablepartition and isnot ageneral processor which canbeallocated onan
asneeded basisliketableinterface processors. Thereferential co— processor can be accessed by
any number of tableinterface processors because the accessisread only as an existence check is
being undertaken to check whether or not avaluealready existsinthereferential co—processor. |If
atableinterface process modifies the primary key of atable then those changes have to be com-
municated to the appropriate referential co—processors. This modification hasto be done exclu-
sively so that update anomalies cannot occur between table interface and referential co—proces-
sors. Thereferential coprocessor isjust aterminal transputer intheinterconnect injust thesame
way as atable interface processor is connected. The only difference is that the referential co—
processor undertakes the referential processing for a particular table partition. Thus, when a
query isparsed that will invoke referential processing, accessto therequired referential co—pro-
cessors will have to be granted.

The main advantage of thisarchitectureisthat the bulk of referential processing doesnot require
access to the complete table, just to the columns which are referenced by other tables. Itisthus
sensibleto providethis capability asadedicated resource. Thebulk of table accessesare, infact,
to read datafrom the tablein response to queries, which need no referential processing. Thedis-
advantageisthat thedatainthereferential co—processor hastobeuptodatewithall changesmade
to the database. Thisisclosely linked with concurrency management which is discussed in the
next section.

9.8 Concurrency Management

Figure 9.9 showsthe architecture of the concurrency management system. Each TableInterface
processor isaterminal processor intheinterconnect structureasarethe Transaction Manager pro-
cessors (TM). The TM processors support one or more TM processes, though we shall assume
thisisjust onefor ease of explanation. There haveto beasmany TM processes asthere are per-
mitted concurrent transacti ons because wewish to ensurethat the processing of onetransactionis
not disturbed by the processing of the other transactions which are running concurrently.

144

A transaction isasequence of querieswhich asingle user issuesas an atomic pieceof work. That
is, either thewhol etransaction issuccessful and all modificationsto the database are savedinthe
database, or thetransaction failsand thus has no effect on the database whatsoever. A transaction
may fail because arow from atable required by one transaction has already been allocated to a
different concurrent transaction. Itisarequirement of database management systemsthat they
exhibit the principle of serializability. This principle ensuresthat the effect of a number of con-
current transactionsisthe samewhen executed concurrently asif they had been executed oneafter
the other. In addition the effect of one transaction cannot be seen by other transactions until the
transaction comes to an end and commits the changes to the database.

Thedesign of thisconcurrency management system presumesthat i nterference between transac-
tionsislow, whichisreasonablefor commercial style applications. For CAD/CAM applications
thismay not bejustified and adifferent approach woul d be required becausethe nature of transac-
tionsisdifferent, in particular, they tend to be much longer, which increasesthelikelihood of in-
terference between transactions.

Each tableisdivided into anumber of partitionsto increase the parallel accessto thetableand to
reducethe possibility of transactionsinterfering with each other. Each partition hasitsown, spe-
cific, Partition Manager process alocated to a dedicated processor which is connected to thein-
terconnect in the same way as any other terminal processor. This process recordswhich rows of
thetable partition have been all ocated towhich transaction. A Tablelnterface processdetermines
whether or not it wishesto have accessto arow. If it doesrequire accessto arow it sendsames-
sagetothePartition Manager associated with thetabl e partition which the Table I nterface process
isaccessing. Atany onetimemany Tablelnterface processesmay beaccessing thesamepartition
of atable. Wehaveto ensurethat theserequeststo accessarow arereceivedinastrictorder. This
can be simply achieved by using the Resource Channel mechanism provided by the T9000. This
mechanism allowsmany processesto shareasingle channel whichthey canonly accessoncetheir
claimonthat channel hasbeen granted. Thishasadirect correspondencewith the shared channel
concept inoccam3[10,11]. Figure 9.9 showstheindividual shared channelswith each TableIn-
terface processhaving accessto all the shared channels (indicated by thebold lines). Thereareas
many shared Partition Control Channels as there are partitionsin the database.

145

Partition Partition Partition
Manager Manager Manager
Partition
I I —— N T — 1T Control
Channels
Table Table Table Table
Interface Interface Interface Interface
Lock
-ttt — — — — — Control
| Channels
Global Global
Lock Lock
Manager Manager
Rollback Rollback
Manager Manager
Transaction Manager Transaction Manager
Rollback
Rollback Control Channel Controller

Figure 9.9 Concurrency management architecture

Inaddition, each Tablelnterface processhastoindicateto one Transaction Manager process, with
whichitisassociated, that it has gained accessto arow of atable partition. If aTransaction Inter-
face process attempts to access arow that has already been allocated to another transaction then
the transaction becomes blocked and has to send a bl ocked message to its Transaction Manager.
Yet again this mechanism hasto ensure that access to the Transaction Manager is controlled and
this can be simply achieved by the use of aresource channel. There are as many Lock Control
Channelsasthereare Transaction Manager processes. Each Tablelnterface processcan accessall
the Lock Control Channels.

The Partition Manager maintains a record of which rows of the associated table partition have
been allocated to which transaction. The Transaction Manager maintains arecord of thoserows
of table partitionsthat have been allocated to the particul ar transaction. In addition, the Transac-
tion Manager needsto know with which other transactionsit could interfere, so that it can deter-
mine if transaction deadlock has occurred. Two or more transactions are said to interfere with
each other if they both access at |east one table partition in common. Inthiscaseit possible that
one transaction has already gained access to arow which the other transactions require. Inthis
case the second transaction ismadeto wait until thefirst transaction commitsitswork. Transac-
tion deadlock occurs when the transaction which is not blocked attempts to access arow which
had been allocated previoudy to the other, now blocked, transaction. Neither transaction can
make any progress because they are both waiting for each other to finish, which isimpossible.
Thisisjust asimpledeadlock; far more complex situations can happeninreality with many more
transactions.

146

The traditional solution, adopted by most existing database management system implementa-
tionsisto store al the lock information in a single data structure which allows the detection of
such deadlock cycles. Necessarily, the accessto this data structure, which is expensive to main-
tain becomesabottleneck inthesystem. Intheapproach outlined abovetheamount of datathat is
saved for the normal situation, where no transaction blocking or deadlock occursisvery light-
weight. It simply involvesthe communication of two sets of valuesfrom the Table Interface pro-
cess, one set to the Partition Manager and the other to the Transaction Manager. In the normal
case when the transaction completes successfully all the data structures (which are just smple
lists of values containing no internal structure) will be emptied so that the memory space can be
re-used for the next query.

If atransaction becomesblocked it hasto determinewhether or not adeadlock hasoccurred. This
can be achieved by the Transaction Manager sending messages to other Transaction Managers
withwhichitisknown that thetransactioninterferes. If itispossibleto construct acycleamongst
blocked transactionsthenitisknown that deadl ock hasoccurred and one of thetransactionshasto
berolled back. Thecycleiscreated by following through each of the Transaction Manager pro-
cessorslooking at therow for whichthey arewaiting. A cycleoccurswhenitispossibletoreturn
to the originating blocked transaction. A Transaction Manager can beinformed whichrow it is
waiting for and which transaction has accessed that row because that informationisavailablein
the Partition Manager. The decision as to which transaction to roll back is the function of the
Rollback Control process. The system has been organized so that only one transaction can be
rolled back at onetime, hence the use of aresource channel between the Rollback Manager pro-
cesses and the Rollback Controller processor, which isaccessed by means of the shared channel
Rollback Control.

9.9 Complex Data Types

It is becoming more important that database systems are able to support data types other than
those traditionally supported by existing database management systems. Usually such systems
areonly capabl eof supporting integer, real, character and boolean datatypes. Somesystemshave
supported date and time datatypes but ininconsistent ways. Some systemshavealso provided an
unstructured datablock into which auser can placeabit string of somelength, which the user then
manipul ates as necessary.

The T9000/ C104 combination in conjunction with the occam3 provides asimple means of im-
plementing complex data types through two mechanisms entitled remote call channels and li-
brary. A library allows a datatype definition to be created with afunctional interface to permit
manipul ation of structures passed toit using either ordinary channelsor remote call channels. A
library can be accessed by any number of concurrent user processes because it maintainsno state
information between callsto the library. A remote call permits the passing of parametersto a
procedure using two implicit channels, one to send the parameters and the other to receive the
results. Itissimilar in concept to the remote procedure call mechanism provided in some operat-
Ing system implementations.

We cantherefore construct asysteminwhich oneor moreprocessorscontainthecodefor alibrary
which implementsaparticular complex datatype. Thislibrary can then be accessed either using
explicit channels or more likely by using remote call channels. Thelibrary isactually accessed
using aresource channel which permits many user processes to access a single server process.
The bottleneck of having asingle processor to deal with agiven library can be ssimply overcome
by having many processors contai ning the same code and by using someform of resourcesharing
strategy. Resource channels can be passed as parameters so that adirect connection canbe easily
madeby referring to asingleprocesswhichallocatestheresource. Thecomplex datatype proces-
sors are connected to the interconnect in the same way as any other terminal processor but once
allocated are only able to process messages for a particular data type.

147

9.10 Recovery

Inthel DIOM Senvironment recovery wasundertaken at two different levels. Thefirst dealt with
recovery from storage mediafailure. Thiswas achieved by simple disc mirroring. Inthearchi-
tecture described in this paper that aspect of recovery isdealt with by the disc sub—system using
Triple Modular Redundancy and so can beignored. The second type concerned recovery from
transaction failure which occurswhen thereis somefailurein the on-ine transaction processing
support infrastructure. Typically this occurs when there is a communication system failure. A
transaction arrives at the computer system from aremote location, such as an Automatic Teller
Machine, using acommunications mechanism. If the communications mediafailsbeforethere-
sults of the transaction can be returned to the originating point, then the effect of the transaction
hasto beundone. Thereareanumber of techniqueswhich can be used to overcomethisproblem
e.g. beforeimages, shadow copies and transaction logg[12], which all require the saving of in-
formation on a stable storage media such as disc during the course of transaction processing.
From the saved information it is possible to undo the effect of a particular transaction without
having to re-instate the whole database. The architecture proposed in this paper can use these
same techniques. Simply, a separate disc sub—system can be used to store transaction recovery
information, automatically providing mediafailurerecovery. A set of processorscan beprovided
which can undertake the necessary processing to undo the effect of an incomplete transaction

9.11 Resource Allocation and Scalability

9.11.1 Resource Allocation

The IDIOMS architecture relied upon asingle Data Dictionary / Parser processor which parsed
incoming queries and allocated resources as necessary. Assuch it could become a bottleneck if
the system was subject to alarge number of small queries. Theparsing of queriesdoesnot needto
berestricted to asingle processor. The parsing process entailsthe decomposition of aquery into
its component parts which can be allocated to separate processors for each query. A number of
different processing strategies can then beidentified which will depend upon the number of pro-
cessorsthat areactually availablewhen thequery isresourced. Thegeneration of these strategies
can be undertaken without knowing what actual resourcesareavailable. Inadditionthestrategies
can be evaluated against each other to determine the most cost effective against some system de-
fined cost function.

Oncethe strategies have been identified, the actual resourcesrequired can be communicated to a
singleprocessor which knowswhat resourcesareavailable. If oneof thestrategiescan beaccom-
modated then the resources can be allocated and the parser process can be sent information about
theresourcesit can use so that it can send appropriate messages to the processors which will en-
able query processing to begin. When aquery terminates amessage can be sent from one of the
processors to the single processor which holds resource availability information. If more than
one strategy can beresourced, then the resource alocator processor can decide which strategy to
use. Theresourceallocator processor could contain constraintswhich haveto bemet in order that
aquery can bestarted. 1t may bethat at specific timesof theday it would not befeasibleto start a
query which consumes most of the processing resource. For example, in banking systemsit is
known that thereisapeak in transactions around lunch—time, henceit would be sensible to deny
access to alarge query which would use most of the processing resource just before midday.

Figure9.10 showsaprocessor structurewhichwill implement such aresourceallocation strategy.
We presume that queries arrive from the usersinto a User processor. The User processor then
accessesthe Resource Allocator process using the shared channel to determinewhich Parser pro-
cessto use. If none are availablethe User processwill be made to wait until one becomes avail-
able. The query isthen sent to theindicated Parser process. It should be noted that all User pro-

148

cesses are connected to all Parser processes. The Parser process then decomposes the query and
determinesthe different strategieswhich are possible. The Parser process then accessesthe Re-
sourceAllocator processusing the shared channel Resource Request, which ensuresthat only one
request for resourcesisdealt with at onetimeand thusit isnot possiblefor the sameresourceto be
allocated to more than one query. The Parser process will send information to the allocated re-
sources, using channels not shown in the diagram, indicating the processing to be undertaken.
Generally resultswill bereturned to the User processfrom the Relational processors(R), henceit
isnecessary to connect all the R processorsto all the User processors. Whenthequery iscomplete
the User processwill send amessage using the shared channel which accessesthe Resource Allo-
cator processto indicate that the resources used by the query are no longer required and can be
allocated to another query.

Parser Request / Resource Release

User[N Parser

= \ Process Resourse
= > |~ Allocator]

XUSGI\ Process
] Parser
3R \\
— Process

~Userl—

// Resource
— / Request
3R

User Processes

Figure 9.10 Resource allocation processor structure

9.11.2 Scalability

The system described in this paper is scalable in the two ways identified previoudly. First, the
installed size of a system can be matched with theinitial system requirements. In comingtothis
initial sizethe system designer must be aware of the likely increasesin storage and performance
that will ensue. For example, it is not uncommon for system to double in storage requirements
over thefirst two yearswith aconsequent increasein processing requirements. Thusitisvital that
the system interconnect is designed so that the perceived increases can be accommodated. Itis
thusnot sensibleto build aninterconnect that islimited to 512 terminal connection pointsif it can
be anticipated that more will be needed in the future.

Secondly, the system can be scaled after installation by simply adding further resources. These
resources can be added wherever they are required within the functional componentsin the ma-
chine becausethereisauniforminterconnect mechanism with aknown cost. Theonly constraint
would bein the five-evel indirect structure, shown in figure 9.2, where it may be preferable to
add some facilitieswithin athree-level interconnect regimeto ensure the required performance.
In adding extraresourcesthe only part which hasto be changed isthe resource allocator process
discussed previously. Each component in the architecturethat hasbeen described isessentially a
generic component, even if in use it is made specific to a particular task, such asthe referential

149

co—processors. Thismeansthat no new software hasto be constructed. Thustheimplementation
of the system as a highly parallel system has afforded an easy mechanism for scalability.

A key factor in the operation of the database machine will be the collection of statistics so that
optimal datastorage canbeachieved. A vital component of the collection of statisticsisthemoni-
toring of the changesin queries with time as the use of the database develops. We have aready
started work on such an automated system([13].

9.12 Conclusions

Thispaper has presented the outlinefor the design of ahighly parallel database machinewhichis
solely dedicated to that single task. The use of a general purpose processor has been avoided
thereby ensuring that the design has had to make few compromises concerning the implementa-
tion. The advantage bestowed by the T9000/C104 combination isthat we can design each indi-
vidual software component as a stand—alone entity which makes the system inherently scalable.
A further advantage of the use of these hardware componentsisthat the resulting interconnect is
uniformin the latency that it imposes upon the system thus the system designer does not haveto
take any special precautionsto place closely coupled processes on adjoining processors. Thepa-
per has also shown how it ispossibleto build ahighly parallel disc sub—system. Itisasubject for
further research to best determine how datashould be allocated in such asystemin order to maxi-
mize parallel access to the data stored in the disc sub—system. Undoubtedly, the use of a Data
Storage Description Language| 14], such as that developed for the IDIOMS project will be re-
quired.

Acknowledgements

Theideasexpressed in thischapter arethose of the author but necessarily they result from discus-
sions with alarge number of people and are also due to interaction with real users of large com-
mercial database systems. The author isindebted to the discussions held with Bill Edisbury and
Keith Bagnall of TSB Bank plc and Bob Catt, Alan Sparkesand John Guast of Data SciencesLtd.
The co—workerswithinthe University of Sheffieldinclude; Siobhan North, Dave Walter , Romo-
la Guiton, Roger England, Paul Thompson, Sammy Waithe, Mike Unwalla, Niall McCarrall,
Paul Murray and Richard Oates. Thework discussedinthis paper hasbeen supportedin part with
funds from the UK Science and Engineering Research Council (through CASE Awards) and the
UK Department of Trade and Industry.

References

1. RJ Oates and M Kerridge, Adding Fault Tolerance to a Transputer—based Parallel
Database Machine, in Transputing ’ 91, PH Welch et al (eds), |0S Press, Amsterdam
1991.

2. RJ Oates and JM Kerridge, Improving the Fault Tolerance of the Recovery Ring, in

Transputer Applications’91, T Duranni et al (eds), 10S Press, Amsterdam, 1991.

3. IM Kerridge, The Design of the IDIOMSParallel Database Machine, in Aspects of
Databases, MS Jackson and AE Robinson (eds), Butterworth—Heinemann, 1991.

4. R England et al, The Performance of the IDIOMS Parallel Database Machine, in
Parallel Computing and Transputer Applications, M Valero et a (eds), 10S Press,
Amsterdam, 1992.

5. JM Kerridge, IDIOMS: A Multi—transputer Database Machine, in Emerging Trends
in Database and Knowledge—base Machines, M Abdel guerfi and SH Lavington (eds),
to be published by IEEE Computer Science Press, 1993

150

10.
11.

12.

13.

14.

JM Kerridge, Transputer Topologies for Data Management, in Commercial Parallel
Processing and Data Management, P Valduriez (ed), Chapman and Hall, 1992.

JM Kerridge, SD North, M Unwallaand R Guiton, Table Placement in a Large
Massively Parallel Database Machine, submitted for publication.

AE Eberle, AGemof aDiscDrive, Digital Review, Cahners-Ziff Publishing, January
141991,

V Avaghade, A Degwekar and D Rande, BFS— A High Performance Back—end File
System, in Advanced Computing, VP Bhatkar et a (eds), Tata McGraw Hill, 1991.

G Barrett, occam3 Reference Manual Draft (31/3/92), Inmos Ltd, 1992

JM Kerridge, Using occam3 to Build Large Parallel Systems: Partl; occam3
Features, submitted for publication

R Elmasri and SB Navathe, Fundamentals of Database Systems, Addison—\Wesley,
1989.

M Unwallaand JM Kerridge, Control of a Large Massively Parallel Database
Machine Using SQL Catalogue Extensions and a DSDL in Preference to an
Operating System, in Advanced Database Systems, PMD Gray and RJ Lucas (eds),
Springer—Verlag, LNCS 618, 1992.

JM Kerridge et al, A Data Storage Description Language for Database Language
L, Sheffield University, Department of Computer Science, Internal Report,
CS-91-05, 1991.

151

10 A Generic Architecturefor ATM
Systems

10.1 Introduction

Therapid growth in the use of personal computers and high—performance workstations over the
last ten years has fueled an enormous expansion in the data communications market. The desire
to connect computers together to share information, common databases and applications led to
the development of Local Area Networks and the emergence of distributed computing. At the
same time, the geographical limitations of LANs and the desire to provide corporate-wide net-
works stimulated the development towards faster, more reliable telecommunications networks
for LAN interconnection, with the need to support data as well as traditional voice traffic. The
resulting increasein the use of digital technology and complex protocols hasresulted in the need
for enormous computing capability within the telecommunications network itself, with the con-
sequent emergence of the concept of the I ntelligent Network. With new, higher bandwidth ap-
plications such as video and multimedia on the horizon and user pressure for better, more seam-
less connection between computer networks, this convergence of computing and
communications systems |ooks set to accelerate during the nineties.

A key stepinthisconvergenceisthe development by the CCITT of standardsfor the Broadband
I ntegrated ServicesDigital Network (B— SDN). B— SDN seeksto provideacommon infrastruc-
ture on which awide variety of voice, dataand video services can be provided, thereby eliminat-
ing (hopefully) the final barriers between the world of computer networks and the world of tele-
communications. The technological basis for B—-ISDN chosen by the CCITT is the
AsynchronousTransfer Mode (ATM), afast—packet switching technique using small, self—rout-
ing packets called cells.

Thesinglemost important element which hasdriven the devel opment of both distributed comput-
ing and theintelligent network isthe microprocessor. Indeed, as systems such astel ecommunica-
tions networks have cometo look more like distributed computers, so microprocessor architec-
tures which support distributed multi—processing have come to look like communications
networks. A message—passing computer architecture, such asthat of the transputer, shares much
in common with a packet switching system and thus provides anatural architecture from which
to build communi cation systems. The communi cationsarchitecture of thelatest generationtrans-
puter, the T9000, shares much in common with ATM and is thus anatural choice for the imple-
mentation of ATM systems.

In this Chapter we describe the application of the transputer, in particular the serial links and
packet routing capabilities of the communications architecture, to the design of ATM switching
systems. We discuss their usein public switching systems and present a generic architecture for
theimplementation of private ATM switchesand internetworking applications. Welook at termi-
nal adaption requirements and develop someideasfor interfacing transputers, routers and serial
linksto ATM networks. Finally, we consider various aspects of the performance of thisarchitec-
ture.

152

10.2 An Introduction to Asynchronous Transfer Mode

10.2.1 Background

Current communications systems split roughly into two basic categories.—

a) The existing telephone network, aWide Area Network (WAN), predominantly designed
around the requirements to transmit voice traffic around the globe

b) Existing Local Area Networks (LANS), designed to transmit digital data between com-
puters over relatively short distances

Astheideaof distributed computing and corporate—wide networks has gained acceptance, so has
the desire to connect computers (predominantly PC’'s and workstations) across larger and larger
distances. Unfortunately, seamless transmission of data from computer to computer across the
globeusing either of the existing typesof networksisseverely limited by the constraintsinherent
in each system:—

a) The telephone network is optimized for low—bandwidth, low latency point—to—point
voicetraffic (thistraffic isrelatively insensitive to noise and data errors)

b) Local areanetworksareoptimized for high bandwidth computer data(whichisnot gener-
ally sensitive to latency, but isintolerant of data errors and usually uses some form of
shared medium)

In summary, the telephone network isunreliable and too slow and LANscan't carry voice easily
and don't go far enough. This split has led to communications networks developing from two
directions over the past decade or so; one trying to make the telephone network faster and the
other to make LANs go further.

Attempts to make the tel ephone network faster and more useful to data communications hasre-
sulted in aplethoraof communications techniques and standardsto transmit data between other-
wise isolated computers. First came analogue modems (maximum 19kbits/s), then digital net-
workslikeX.25 (generally 64kbits/s), and latterly higher bandwidth accessviabasic/primary rate
ISDN, framerelay, etc. However, the fastest access rates in common use are still no more than
1.5-2 Mbits/s, compared with 10-16 Mbits/son LANs such as ethernet and token ring. Of more
concern has been the need to use ‘ heavyweight’ protocols to protect computer data asit travels
over theexisting, relatively unreliable, telephone network. The processing overhead of these pro-
tocols has a significant impact on the useable bandwidth available.

Progress on extending LANS has resulted in the devel opment of Metropolitan Area Networks
(MANS) designed to offer high bandwidth connections between computers over an areathe size
of, say, areasonable city. An example is the Fibre Distributed Data | nterface (FDDI), which
can offer 100 Mbits/s connection over severa kilometres. FDDI, however, is still a shared me-
dium, isrelatively expensive, requiresnew fibre cabling (although copper standardsfor short dis-
tances have been devel oped) and still requires expensive internetworking equipment to connect
to WANSs. In addition it cannot support voice traffic very easily. Another standard, | EEE 802.6,
shows greater promise in thelonger term sinceit is designed to be” mediaindependent’ and also
to integrate more easily with WANSs.

However, the situation has become exacerbated in recent years with the arrival of higher and
higher bandwidth users (large CAD design databases, for example) and the expected growth of
multimedia, with its requirement to support voice, video and computer data applications (multi-
media applications are described in more detail in Chapter 11 of this book). So, into the picture
comesthe CCITT with its efforts to provide the basis for the Broadband— SDN, a telecommu-
nicationsinfrastructure capable of supporting any type of traffic anywhere acrossthe globe. The

153

CCITT hasbasedthisinfrastructureon Asynchronous Transfer Mode (ATM) technology, which
is described in the next section.

10.2.2 Basic ATM Concepts
ATM Cadls

ATM isbased on the concept of auniversal cell (avery small packet) 53 bytesin length, of which
thefirst 5 bytes are used for a routing header and the remaining 48 bytes are for carrying data.
Each ATM cell isaself—contai ned entity which can berouted individually through each switching
node in the network from source to destination. This cell has no awareness of the type of datait
is carrying and can be considered to be a universal carrier of data, a sort of communications
‘truck’ (or ‘lorry’, for those of usin the UK) into which you can put voice, video, data, etc. The
term *asynchronous' is used since no clocking or timing relationship is maintained between the
ATM cells.

| DATA FIELD HEADER

48 bytes 5 bytes
Figure10.1 ATM Cell

The CCITT Recommendationsfor the public networkshave so far defined ATM torun at anomi-
nal 155 Mbits/sto fit in with the Synchronous (framed) bit rates used in the transmission systems
between exchanges. In these systems, the ATM cellsare packed in like bricksinto atwo—dimen-
sional framefor transport to the next switch (described later). In reality the bit rate available for
the ATM cellsisabout 149 Mbits/soncetheframing overhead hasbeenalowedfor. Itisexpected
that a 622 Mbits/s standard will follow (4 x 155 Mbit/s plus some extra overhead) with eventual
data rates up to 2.4 Gbits/s being anticipated.

The situation for private networksis not yet clear, since the standards have not yet been set. 155
Mbits/s seems likely, but since ATM cells can be transmitted either framed (synchronously) or
unframed (asynchronously) lower data rates (< 155 Mbitg/s) for unframed cells may also be
adopted. It isimportant to remember that thisis the point—to—point bandwidth available to each
connection, not the bandwidth of the network as a whole, which is the case of conventional
shared—medium LANS/MANS like ethernet and FDDI.

ATM Connections

Any user who wishes to gain access to an ATM network must first establish a connection with
thelocal switch. In the diagram below, our subscriber picks up a(very sophisticated) ATM tele-
phone in order to send data across the network. During call set—up, the user negotiates with the
network for the call and service characteristics desired. For example, the number dialled, band-
width and servicequality (error rates, etc.) required may be sent tothelocal switch. Thisisimpor-
tant, since different types of traffic require different performance from the network and the user
will be charged accordingly. The local switch then negotiates with all the other switches neces-
sary to connect to the desired destination. Assuming the connection is possible and that the user
requested bandwidth and quality of service can be supported, the local switch confirmsthe con-
nection to the user and allocatesan ATM cell routing header from those available. If therequire-
ments are not met and alower standard of serviceisoffered, it is up to the user to either accept
this or terminate the call. Otherwise, the user equipment can now start sending datainto the net-
work using ATM cells and the routing header specified by the switch.

154

0800-ATM-CALL 0800-ATM-CALL
Which Channel? Which Channel?
CALL |—>] CALL CALL
ONTROY €< EONTROlI] € EONTRO
VCi=42 VCI=197

ATM
SWITCH

|

0800-ATM-CALL

Which Channel? 0800-ATM-CALL

Which Channel?

ATM
SWITCH

ATM
SWITCH

ATM
TERMINAL ATM

TERMINAL
0800-ATM-CALL

Figure10.2 ATM call connections
Cell Header Policing

During the call set—up, the user negotiates with the network for certain service characteristics
such as bandwidth. This may be specified in terms of the peak and average bandwidth required
from the network (other parametersare under discussion). Since the user will be charged (on the
public network) for his/her use of the system, and thischarge will be dependent on the bandwidth
negotiated, it is clearly necessary to monitor the actual use made to ensure nobody is cheating.
It is proposed that this be done by monitoring the instantaneous and average bandwidth (or any
other parameters) used by each cell on the network. Thisisreferred to as Cell Header Policing
andisdoneonacell-by—cell basisoninput by thenetwork interface (ATM linecard) at each ATM
switch. Various agorithms have been proposed to perform this bandwidth policing, the most
common of which isthe Leaky Bucket algorithm. Depending on the type of service negotiated,
transgressorsof the negotiated policing limitsmay either be charged more (accordingtotheir use)
or find their cells being discarded if they threaten the quality—of—service of other users.

Another important aspect of header policing arises due to the nature of ATM itself. On entering
each ATM switch, each ATM cell is routed asynchronously (hence the name) from input to the
appropriate output acrossthe ATM switching fabric. Since cellsmay suffer delay in crossing this
fabric due to internal traffic congestion, they may arrive at the output in’clusters’, resulting in
alarger instantaneous bandwidth through no fault of the user (thisis analogous to the behavior
of busesincities...). Inextremis, if noflow control isprovided acrossthe switch fabric, cellsmay
arrive at the output out of order. It would clearly be unreasonable to charge the user more or,
worse, start discarding cells because of this behavior, so it is therefore necessary for the ATM
switchitself to re-timethe cellson output to the next switching nodein order to meet theoriginal
user requirements. There is, therefore, a requirement to use header policing on output, as well
ason input, and the system must ensure that cell order is maintained across the switch.

Cedl Header Trandation

Theroutethat an ATM cell takesthrough the B— SDN network is determined by the routing val-
uesin the cell header. Only avery limited routing ‘ space’ is provided for each ATM cell since
the header isonly 5 byteslong and the bit—fields available are necessarily limited. To overcome
this, the routing value isre—used (re-mapped) at each ATM switching point in the B—ISDN net-
work. That is, the routing value only applies locally to one switching node and changes as the
cell progresses through the network from one switching node to another. This constant re-map-
ping of the cell header is called Cell Header Trandation and is performed when the cell isre-
ceived by the ATM switch. Cell header trandation is performed on a cell-by—cell basis by the
network interface, or ATM ‘line card’, and with ATM operating at 155 or 620 Mbits/s, thisre-

155

quires either very fast processing, custom hardware, or preferably an intelligent combination of
the two.

CALL CALL CALL
ATM CONTRO CONTRO CONTRO
ATM
f 0800-ATM-CALL

ATM CELL § R E2 l ATM CELL STREAM l ATM CELL STREAM } ATM CELL STREAM
CELL-BY-CELL CELL-BY-CELL CELL-BY-CELL

SWITCHING
AND
HEADER
TRANSLATION

SWITCHING SWITCHING
AND AND
HEADER HEADER
TRANSLATION TRANSLATION

Figure 10.3 ATM Cell Header Trandation

Withinthe ATM switch itself, routing decisionsfrom network input to network output acrossthe
internal switching fabric also need to be made on acell-by—cell basis. It may be necessary to per-
form another trand ation of the ATM cell header, to aninternal format for routing purposeswithin
the ATM fabric itself.

10.2.3 ATM Protocols and Standards

Having explained the basic principles it is now worth considering afew of the details. A good
place to start isthe CCITT Recommendations which apply to ATM. These are part of the I.xxx
series of Recommendations which form the standards for ISDN networks.

ATM Protocol Reference M odel

Likeall good protocols, the ATM standard isdefined asaseriesof layers. Thereare3 basiclayers
which, from the top down, are.—

AAL: The*ATM Adaption Layer’ defines various ‘mapping’ mechanisms from existing
protocols (ISDN, voice, video, LAN data, etc.) onto ATM and vice versa.

ATM: Thisdefines the ATM cell, routing techniques and error mechanisms

PHY: Thisisthe Physical layer and defines media (for example fibre/copper, connectors,
etc.), bit timings, framing standards, etc.

In addition, the ATM standards describe Management and Control functions for each of the lay-
ers, such as call set—up and maintenance functions within the network. These layers constitute
the ATM Protocol ReferenceModel (PRM) and are shown pictorially in Figure 10.4. The details
of each layer are shown in Figure 10.5.

156

MNAGEMENT PLANE

CONTROL USER - E
PLANE PLANE E s
HIGHER HIGHER s | &
LAYERS LAYERS g |
I | <
Z | =
ATM ADAPTION LAYER g |
(AAL) w | >
Zz |3

3

ATM LAYER a

PHYSICAL

LAYER

REF: CCITT Recommendation 1.321

Figure 10.4 ATM Protocol Reference Model (PRM) [1]

HIGHER LAYER FUNCTIONS

CS Convergence Sublayer

SAR Segmentation and Reassembly

Generic Flow Control

ATM Cell Header Translation and Extraction
Cell VPI/VCI Translation

Cell Multiplex and De-multiplex

Cell rate Decoupling
HEC: Header Error Correction Generation/Verification
TC Cell Delineation
PHY Transmission Frame Adaption
Transmission Frame Generation/Recovery

LAYER MANAGEMENT

Bit Timing
PM Physical Medium

REF: CCITT Recommendation 1.321

Figure10.5 ATM PRM Layer Functions [1]

Itisimportant to point out that many of thedetailsinthe ATM standardsarestill not yet finalized,
particularly many of the management functions. However, asimplified diagram showing what
all 3layersdo isgiven below and this may be referred to in the discussion of each layer in the
following sections.

157

HIGHER LAYERS

VARIABLE-LENGTH FRAMES
CONSTANT BIT-RATE TRAFFIC
VARIABLE BIT-RATE TRAFFIC

mn—n—r1—m —— VIDEO
@I 0 OmI0O0—> TERMINAL

«——CT———T17 FDDI
«——COICIICTIETN N-ISDN
«—[IIT—I—IIm VIDEO
«—COCImO 0 0 TERMINAL
——13——> FDD!
e —> 1 V/E--
O N-ISDN

; EMMETTIITTM T1/E1...

\

I

£

T

&
ATM ADAPTION LAYER (AAL) \

/ «—[COI——T11 ETHERNET

l 48-Byte SAR_PDU 48-Byte SAR_PDU H I
\ ATM / ATM LAYER ATM
l u 53-Byte ATM CELL 53-Byte ATM CELL n I
PHYSICAL LAYER
W CECEE CEC S . —

Figure10.6 ATM Summary

The AAL Layer

The'ATM Adaption Layer’ isresponsiblefor mapping other protocolsontothe ATM cell format
for transmission and switching. Examples of this would be to carry data traffic (in the form of
ethernet, token ring or FDDI frames), voicetraffic (64 kbit/sISDN, for instance) or video traffic.
Of necessity, the AAL layer comesin severa varieties to suit the nature of the protocols being
mapped. Datatrafficistypically ‘bursty’ in natureand needsto be handled on aframe-by—frame
basis. Voicetraffic isreferred to as‘ constant bit—rate’ traffic, that is, it isa constant flow of bits
with no pause. Video traffic is referred to as ‘variable bit—rate’, since video coding algorithms
typically generate an output which variesin bit—ate according to the contents of the picturebeing
transmitted. The AAL layer providesfunctionsto map all of these different types of traffic onto
aflow of ATM cells. shown in the previous diagram.

There are four types of AAL specified inthe CCITT standards, denoted asAAL1to AAL4. Re-
cently, aproposal for afifth, AAL5, hasbeen madewith aview to providing a‘lightweight’ AAL
for frame (packet) based computer data (currently provided by AAL3). In each case, the AAL
layer is responsible for Segmentation of the outgoing data, whatever it is, into small chunks of
48 byteswhichthenformthedatafield of the ATM cell. This48-bytefield will also contain over-
heads, such as CRC and payload type information which depend on which type of AAL isinuse.
For example, the actual user datafield in AAL3 isonly 44 bytes, with 2 bytes of header and 2
bytes of trailer added by the AAL to form the 48-byte field. Incoming data received from the
ATM layer undergoes Reassembly by the AAL to provide an appropriate output stream, i.e. it
undergoesthereverse of the segmentation process. An exampleisgivenin Figure 10.7, showing
the AAL3 operation.

158

Protocol
e.g. ETHERNET FRAME Data
Unit
|,4 bytes . | o 64-1512 bytes Sle4bytes
TRAILER [PADDING CS-PDU PAYLOAD HEADER CS-PDU
le n x 44 bytes N
<
TRAILER 2 44 bytes 2.| HEADER
——————— >T> | SARPDUPAYLOAD | #]---- > SAR-PDU
48 bytes 5 bytes
——— ATM-PDU
fffffff > ATM-PDU PAYLOAD HEADER |-~~~ >
53 bytes

Figure 10.7 AAL3 Example

The use of each layer of the ATM protocol standardisillustratedinasimpleformin Figure 10.8.
ATM and PHY layer protocols areimplemented everywherein our simple network, but an AAL
isonly invoked at the termination points of the ATM network; that is, an AAL function isneeded
at:—

 the endpoints of the network (the user terminals)

e pointswherethe ATM network meetsanother type of network (connecting to an ethernet
network, for example)

e certain control nodes within the ATM network itself (passing signalling, management
and control information between the control processors in the ATM exchanges, for
instance).

There isinsufficient space here to cover the AAL layer in detail so the reader isreferred to the
many papers on the subject for more detailed information, for example in [1] and [2]

The AAL layer isnot needed as part of the switching function of an ATM network; thisishandled
entirely by the ATM layer.

159

77777777777777777777777777777777 e
ATM | ATM | AM
TERMINAL SWITCH Ffj?qg:?r\:_s | TERMINAL |
HIGHER | ; - | [HIGHER|
LAYERS | | |LAYERS| |
K : AAL ‘ | :

\4 ‘ ‘ A
| 2 \ \ \
AAL } SWITCHING FUNCTION \ ‘ AAL }
ATM | ATM ATM ATM ATM || [ATM |
PHY | PHY PHY PHY PHY | | PHY |
I O [N R l»]\i1 ,,,,, 3 [O

Figure 10.8 PRM Illustration in asimple Network
ATM Layer

There are two versions of the ATM cell format, one for the User—Network I nterface (UNI) and
another for the Network Node | nterface (NNI). The basic structure of the ATM cell isshownin
Figure 10.9.

48 BYTES 5 BYTES
INFORMATION FIELD CELL HEADER NNI
VPI 0
vl | ver |1
VCI 2
GFC Generic Flow Control > vel PT||R|P 3
HEC Header Error Control HEC 4
P Ce” Loss Priority 87654321
PTI Payload Type Identifier BIT BYTE
R Reserved
VCI Virtual Channel Identifier UNI
VPl Virtual Path identifier GFC | VPl |O
NNI Network Node Interface
1
UNI User Network Interface VPL | VeI
VCI 2
vcl PTIRP|3
REF: CCITT Recommendation 1.321 HEC 4
87654321
BIT BYTE

Figure10.9 ATM Cdll Structure

Thecell header containsrouting information, control bitsand error detection features. Two meth-
odsof routing areprovided; oneisviathe*Virtual Channel | dentifier’ and the other the* Virtual
Path I dentifier’ (VCI and VPI respectively).

160

 VIRTUAL
¥ CHANNELS

AAAAAAAA

VIRTUAL PATH

 VIRTUAL
. CHANNELS

AAAAAAAA

VIRTUAL PATH

 VIRTUAL
¥ CHANNELS

AAAAAAAA

VIRTUAL PATH

REF: CCITT Recommendation 1.321

Figure 10.10 ATM VCI-VPI Relationships

Virtual Paths may be considered to be ‘bundles’ of Virtual Channels and may therefore be used
to route acommon group of cellstogether. An analogy would bethat the VPI representsavirtual
‘leased line’ between two sites, with the VCI’sbeing used to carry individual calls, as shownin
Figure 10.11 below.

S

'_-\" :
(/

WL

NCRR

R~

7,0
A

VP SWITCHING VC SWITCHING
(Cross-Connect) (Virtual Circuit Switch)

O
| ’/fofoiofé/
A

REF: CCITT Recommendation 1.321

Figure 10.11 ATM Cell Routing

TheHeader Error Correction (HEC) byteisan error detection/correction mechanismfor thecell
header contents only to avoid mis—routing of cells. The definition of the HEC code and its
intended use is actually part of the PHY layer standards, but isincluded here briefly for conve-
nience. Protection of the datafield isleft to higher layer protocols. The HEC byte can detect and
correct single-hit errors in the header and detect (only) multi—bit errors. It is up to the network
to decide what to do with multi—bit errors, although the most likely course of action isto discard
the cell and report the error. Another use of the HEC byte is for Cell Delineation. The HEC is

161

continually evaluated on a bit—by—bit basisin order to provide a synchronization mechanism at
the receiver —an ATM cell HEC has been identified when the HEC output is O, so the location
of therest of the cell can be easily determined.

The Generic Flow Control (GFC) bitsare not, currently, fully defined but are provided in order
to support future flow control mechanisms within the network.

The Priority bit is used to indicate whether the cell can be discarded by the network in times of
extreme congestion. For example, discarding a cell containing video data may result in a brief
but acceptabl e sparkle on amonitor, whereas di scarding maintenance and call set—upinformation
may result in (an unacceptable) loss of service

The PHY Layer

Thislayer defines how cells are transported from terminal to network, between switching nodes
within the network and then from the network to the destination terminal. The medium used in
public networks is most likely to be optical fibre at 155 Mbits/s and above. As mentioned pre-
viously, ATM cellscan betransmitted in aframed, synchronousformat or in an unframed asynch-
ronous format. For the public networks, a synchronous mechanism has been defined based on
the bit rates defined in the CCITT Synchronous Data Hierarchy (SDH) and the SONET (Syn-
chronous Optical NETwork) frame structure developed in the US. This mechanism allows the
packing of ATM cellsinto the SONET/SDH 2-D frameformat, rather like bricksor tiles (theuse
of asynchronoustransmission medium issometimesreferred to as Synchronous Transfer Mode
(STM))

—i A H B ©® ©§ B =B B =B B
ASYNCHRONOUS - Full Bit Rate (150 Mbits/s nominal)

—> —>
ASYNCHRONOUS - Full Bit rate, Variable Cell Rate

— | W [W f 'R =B N I N
ASYNCHRONOUS - Full Bit Rate, Idle Cell Bandwidth Padding

—- I 3B B =B 9 | —
ASYNCHRONOUS - Variable Bit Rate (e.g. 45 Mbits/s)

AT
N ‘

ATM CELL STREAM FRAMING LOGIC SONET/SDH FRAME

(155 Mbits/s)
SYNCHRONOUS

FRAMING
HEADER

Figure10.12 Transmission variationsfor ATM Cells

162

Various proposals have been made for PHY layer standards for private networks, including the
use of FibreChannel. In private networks, however, thereisan incentiveto use existing, installed
twisted pair cablewhere possibleand thisislikely to constrain the datarate available. Cost issues
at the user terminal end are also likely to work against afull SONET/SDH implementation, at
least initially. AT INMOS in Bristol we have been using transputer links as a physical medium
for carrying ATM cellsin our demonstrators, since they come free with every transputer. Work
isin progressto develop driversfor DS-Linksto copper and fibre, since they offer acheap and
attractive physical interconnect and could form thebasisfor low—cost ATM connectionsover dis-
tances of 10-100 metres, or even further, to alocal ATM switch (further information on physical
driversfor DS-Links can be found in Chapter 4 of this book and some of the issues surrounding
their useto carry ATM cells are discussed later in this Chapter).

10.3 ATM Systems

In describing the use of DS-Links, routers and transputers in the construction of ATM systems
we need to consider the types of equipment needed to build an ATM network. We make here a
relatively naive split between Public Switching Equipment, Private Switching Equipment and
Terminal Equipment, as shown in the diagram below, and then describe ways of applying the
communications and processor architecture of the transputer to this equipment.

PRIVATE NETWORK } PUBLIC NETWORK
|
ATM }
U (3 ATM ‘
ATM X PUBLIC
I/F ATM
X
ATM ¢
> | ATM
WORKSTATION MUX/ IWU
CONC
. \ §
TATN |
OMPUTER
NETWORK j(_) LAN |
GATE \
|
|
|

NEILR.05.0

ATM.1/14

Figure 10.13 Possible ATM Network Equipment Environment

Thefirst effortsin ATM date back tothe early 1980’ sand until about 1991 the bulk of ATM devel-
opment was focused on Public Switching systems, particularly in Europe. Field trials of public
switching equipment have already started in some areas, but most public activity is expected to
beginin late 1993/1994 with more widespread field trialsof CCITT compliant equipment in the
US, Europe and Japan. How long it will take for the genera availability of 155 Mbits/s services
on the public network is anyone’s guess. As with any major infrastructure investment like this
it must be expected to be a10-20 year program. During thisperiod, the developing ATM network

163

must coexist with existing networks [5], hence the requirement for I nterworking Units (1 WU)
between the two.

Sincelate 1991/1992, there hasbeen an enormoussurgeof interestin ATM for privateuse, mainly
driven by computer manufacturersand users predominantly inthe US. The creation of the' ATM
Forum’ and the release of draft standards by Bellcore/Apple/Sun/Xerox for the use of ATM as
asort of local areanetwork has spurred interest considerably. Theinitial useof ATM inthisarea
isclearly asaninterconnect fabric for existing ethernet/token ring/FDDI networks (thereis con-
Siderable debate as to whether this interconnection will be done by ‘pure’ ATM or aMAN, such
as |[EEE 802.6). This would require Internetworking equipment capable of converting from
LANSMANSsto ATM and then connecting into the public network. Ultimately, the possibility
of building small, cheap, high—bandwidth Private ATM Switchesfor usein an office or building
extendstheideacloser to the user and offersthe possibility of aseamlesscommunication system,
with the distinction between Local and Wide Area Networks finally disappearing.

If the cost of providing aphysical ATM connection can be driven low enough, it becomes attrac-
tive to take ATM right to the desktop. An ATM Terminal Adapter in each workstation or PC
would provideafast communicationsmedium capable of supporting voice, video and datatraffic
and would form the basis for widespread multimedia applications. Coupled with cheap ATM
switches, mixed data could be sent or received from anywhere on the planet extremely quickly.
First generation adapterswould be board- evel solutions, but thereis plenty of scopeto integrate
this into a single—chip ATM termina adapter later, when standards are firmer and the silicon
technology more mature.

It seems reasonable to suppose that not all of these private terminals would necessarily require
afull 155 Mbits/'s ATM connection. Lower speeds between the terminals and the local switch
would besufficient, at leastintheearly yearsof use, andan ATM Concentrator could beprovided
to make efficient use of the connectionsto thelocal public switch. Operating at lower speeds, say
sub—-50 Mbits/s, also opensup the possibility of using existing cabling plant within buildingsand
offices.

So, having considered a possible environment for ATM equipment, let us now consider where
the communications and processing architecture of the transputer can make a contribution to-
wards realizing this network.

10.3.1 Public Switching Systems

Various fast packet switching architectures suitable for the implementation of ATM switches
have been described. Indeed, this has been and still is the basis for an enormous amount of re-
searchand devel opment activity around theworld. Martyn DePryckersbook [2] givesathorough
description of most (if not all) of these architectures, aswell as providing an excellent introduc-
tion to ATM principles and concepts.

Fast Packet Switch M odel

In[4] ageneric model of afast packet switch ispresented and we make use of such asimplemodel
inorder toillustrate where the DS-Link communications architecture and the transputer proces-
sor family contribute.

164

CONTROL
FUNCTIONS

P —J\/F i —— O/P
I/F
/P — '/FZ _/LI — O/P
SWITCH
I/P — '/FZ FABRIC ZF— o/P

]
: :

I/P — '/FZ ____O/P

5/14 I/F NEILR

Figure 10.14 Generic Fast Packet Switching Architecture.
This basic architectural model has three main components.—

e Central Control functions (for signalling, control of the switch fabric and operationsand
mai ntenance)

 Input/output ports to and from the network
» A switching fabric

Inareal switch each of these componentswill be acomplex subsystem initsown right and each
will require varying degrees of embedded computing and control. The usefulness of the trans-
puter architecture isin providing the basis for the control of these complex subsystems and in
particular as a distributed control system for the exchange as a whole.

Central Control Functions

Probably the most computationally intensive areas of the switch are the call-control computer
and the billing (or call accounting) computer, which form the central control and maintenance
functions within the switch. The call control computer handles all of the signalling, call set—up/
clearance and resource alocation for the exchange. It is areal-time function which, on alarge
exchange, has to handle hundreds of thousands or even millions of transactions per hour. It goes
without saying that it needsto bereliable, since the allowable downtime for amain exchangeis
2 hours every 40 years or so. Different manufacturers have different preferences as to whether
acentralized or distributed architecture is used, but increasing processing requirements and the
development of modular switches means that even centralized architectures are usually multi—
processor in nature.

The billing computer tracks the use of the system by individual usersin order, naturally, to pro-
videbillinginformation to the network operator. Thisisalsoademandingtask if millionsof trans-
actions per hour are involved and requires considerable processing power to handle the large
transaction rate and database requirements. Thereis probably more emphasis on the fault—toler-
ant aspects of this part of the exchange than anywhere else; to the network operator, losing the
billing computer means losing money!

165

Both the billing and call—control computer represent the major software investment in a public
switch. The software maintenance effort is huge; hundreds, even thousands, of software engi-
neers are needed to maintain the software on these systemsin each of the major manufacturers.
At acolloguium at the Royal Society in London called * Telecommunications Beyond 2000°, one
of the senior executivesat AT& T in the US pointed out that they have 6 million lines of code on
their main switch, which grows at about 1/2 million lines ayear. Supporting this sort of invest-
ment and adding new features and functionality for new servicesbecomesincreasingly difficult,
especially whenintimeamature, single—processor or shared—memory multiprocessor computer
approaches the limits of its processing performance.

The advantage of the transputer architecture hereis purely as a scalable, multiprocessing com-
puter, which is capable of being used in machineswith up to many thousands of processors. The
communications architecture of the T9000, for instance, isdesigned to provide ameans of build-
ing such large computers free of the performance constraints experienced by shared—memory
machines. This same architecture also supports various redundancy models economically (via
the serial links), so fault—tolerant computer systems can be built in a straightforward fashion.

On existing (non—ATM) switchesit should be possible to migrate towards such aparallel archi-
tecture for these computers, rather than outright replacement of existing machines, in order to
preserveas much as possibl e of thisexisting softwareinvestment. A network of transputerscould
be provided as an accelerator to an existing billing computer, for example, to take some of the
moreintensiveload off the existing machine. Onnew ATM switches, however, thereisan oppor-
tunity to build anew architecturefor these functionsright from the beginning, onewhichiscapa-
ble of growing with the demands of the application.

W W W 9w
SCALABLE, FAULT- | 3| Tx 5 Tx Tx 5| Tx [| SCALABLE, FAULT
TOLERANTBILLING | T W v TOLERANT CALL CONTROL
cOMPUTER/ACCELERATOR | <= T 7, |« Tx K Tx | | PROCESSOR/ACCELERATOR
v vt 4
| 7
P —/F j o/P
/ 1 /
i —4VE Zl —OP
SWITCH
p —'% FABRIC Z' e— OF
™ ™
| | | |
= =
ip —JIIF, o/P
ATM.6/14 / Z NElLR.05.0{.92

Figure 10.15 Billing/Call Control Application

If atransputer—based multiprocessor is used for the call—control functions, it will be necessary
for it to communicate with the ATM traffic carrying the signalling and maintenance information
around the network. Thistraffic istransmitted using ATM cells (naturally) with reserved values
for the cell header, so that they can be detected, decoded and acted upon by the control functions
inthe exchange. Thismaintenancetraffic rateisactually quitelow (lessthan 5% of thetotal ATM

166

bandwidth) so carryingit around directly onthe DS-Linkswithinthe control computer isno prob-
lem, evenif theactual ATM traffic ratesriseto 622 Mbits/sand beyond. A smple ASIC tointer-
face between DS-Linksand the ATM cell streamisall that would berequired, withan AAL func-
tion provided in software on the transputer to extract the signalling data.

OA&M CELL STREAM To || W {79 | | conTROL
(SIGNALLING, META- — Pl - FUNCTIONS
SIGNALLING, CONTROL) [[To || . [T IS{T9 |

TRAFFIC Ds DSLink/ATM

CELL STREAM : INTERFACE

ATM.7/14

Figure10.16 Interfacing to ATM Maintenance Traffic

ATM ‘linecards on apublic switch need to befast and reasonably intelligent. ATM cellsarrive
at the line card about every 3 us and header tranglation, policing functions and error checks all
need to be made on each cell onthefly. Itisn’'t possibleto do all of thisin software (certainly not
economically) and afull hardware solutionisexpensiveandinflexible. Thecombination of afast,
inexpensive micro like the transputer and some dedicated hardware functionsis agood compro-
misethat provides abal ance between performance and flexibility. The context switch time of the
T4 transputer of 600—-950 ns means that some useful processing timeisstill available eveniif it
isinterrupted on every cell, although in most instances the hardware could be designed to inter-
rupt the processor on exceptions only. It would be possible, for example, to perform the header
trandation operation using a direct table look—up, but use hardware for the HEC verification.
However, the real value in having afast but inexpensive micro on the card isthe ability to track
statistical information for use by the operations and maintenance functions, report faultsand take
recovery action where necessary.

167

1[5 | | conTroL
Pl FUNCTIONS
I T9
ATM INTERFACE
CONTROLLERS Z%”
\ x| - ™|
\ x| AT Tx|
Tx Tx
" "
-5 -5
Tx d Tx

Figure 10.17 Transputers as Embedded ATM Interface Controllers
Network I nterfaces

Theseline cardswill typically consist of ahardwareinterfaceto the ATM/STM line, somelogic
to handle HEC checking, etc., aninternal interfaceto the switching fabric and accessto thetrans-
puter, viainterrupts and memory. RAM will berequired for program and data (translation |ook—
up tables, etc.). The basic ideais shown below in Figure 10.18. The dotted line indicates where
future integration is possible using semi—custom technol ogy.

168

CONTROL
PATH

-

X
(1
INTERNAL B:';';EER/ —> 9
SWITCHING | TXCVR| FE
FABRIC | ADAPTION 2
‘ ATM LOGIC =
| <

|

<«——> DATA PATH

Figure 10.18 Possible ATM ‘Line Card’

Such aline card is essentially a uniprocessor application, so the use of the transputer serial links
for multiprocessing is not required. However, the seria links are very useful in other ways; for
program download and debugging, test and diagnostics.

Putting softwarein ROM on theline card is undesirable from an upgrade and maintenance point
of view. It would be better to be able to download code from some central point within the ex-
change. This could be achieved either by sending code via the switch fabric (possibly using a
small boot ROM for cold—startsonly) or by sending it down the transputer serial links (perform-
ing cold starts via the boot—fromink capability).

If the serial links are brought to the edge of the line card they can be used for testing in one of
two ways. First, they can be used as part of the production test of the card by integrating them
with an ATE system. Test code can be downloaded into the transputer (viathe links) which runs
entirely in the internal RAM. This code can exercise, at full speed, the external interfaces of the
transputer aspart of thetest functionsof the ATE system. Secondly, if the serial linksare accessi-
ble while the card isin service in the exchange, it isauseful ‘entry point’ for atest engineer to
interrogatethe system. Better yet, if the serial linksareinternally interconnected, the switch con-
trol computer itself can use them to interrogate the system.

Switching Fabric

In alarge public switch the data rates and requirements of the switching fabric are such that it
ismost likely to bebuilt out of dedicated hardwareand will initself beavery complex subsystem.
It isnot appropriate to consider the use of the C104 for this fabric directly, nor to consider that
the (non—maintenance) ATM traffic could be carried viatransputers. However, like the network
interfaces, thereis considerable benefit in embedding processors within the hardwareto provide
intelligent control of the fabric. Maintenance and statistical measures can be provided, routing
tablesupdated (if applicabl e) and thefabric monitored and reconfigured under fault or congestion
conditions.

169

19 5| 15979 | | conTROL

[Sc104
— ' FUNCTIONS
To [<579 |

7.

SWITCH FABRIC

DS CONTROL
///// PROCESSORS

% //
Tx T 4 / Tx
| X Tx //

L/ !
Tx ///f*

4 Ve
Tx /// Tx

- % % -
- Tx Tx =

L/ /
Tx Tx

Figure 10.19 Embedded Switch Fabric Control

If desired, the links available from the control transputers can themselves be interconnected via
a C104 network to provide a distributed control plane which is quite independent of the main
ATM switch fabric, asillustrated in figure 10.20.

There are many other possibilities for mixed processor/hardware intelligent switching fabrics
that remainto beinvestigated, and it ishoped that further ideaswill be presented in future papers.

170

CONTROL
DISTRIBUTED FUNCTIONS
CONTROL
PLANE E%
ATRE
/ /!
Tx \ Tx ¢ P Tx
—1 \ 1 11 // P
X | Tx

X Tx

4

u....l_g\

T T\
T Bl N

Figure 10.20 Distributed Control Plane

L-%llll >-<|
AN

10.3.2 Private Switching Systems

All of the preceding discussion on public ATM switchesal so appliesto private systems. However,
there are some important differences.—

e the machines are not aslarge
* the bandwidth requirements are likely to be lower
e they arefar more cost sensitive.

The nature of the Customer Premises Equipment (CPE) market is also likely to require much
faster design cycles for the equipment, probably 1-2 years as the technology becomes estab-
lished. The dynamics of the market are likely to place manufacturers under pressure to provide
modular, flexible designs which can be upgraded, either in terms of performance, services or
number of connections. Greater emphasis than in the past will be placed on network reliability,
so the fault—tolerance aspects of the equipment will come under closer and closer scrutiny.

A Generic Private ATM Switch

The main difference from the point of view of applying the transputer architectureisthat in pri-
vatesystemsitisnow possibleto consider to useof the C104/DS-Link asthebasisfor aninexpen-
sive switching fabric. Many current ‘campus ATM switches have been derived from existing
bridge/router technol ogy and are based on shared businterconnect schemes. Thesedo not provide
scalable performance, as the common bus quickly becomes a bandwidth bottleneck. However,
using the communications architecture of the transputer we can construct a scalable Generic
ATM Switch for private applications [6].

171

19

MANAGEMENT |
AND
CONTROL

Aid

SWITCH
NETWORK

Figure10.21 Generic Private ATM Switch

Atitssimplest, thisswitch may be considered to be ano morethan a* black box’ multiprocessor
computer running an ATM program. It has interfaces around the periphery to allow it to talk to
the transmission network outside, but in essence it exploits the architectural similarity of mes-
sage—passi ng/fast—packet—switching machines discussed earlier. Figure 10.21 showsillustrates
several waysinwhich ATM interfaces can be built for such a switch, depending on cost/perfor-
mance trade—offs required.

Thereare someimportant features of the DS-Link/C104 communications architecture which ap-
ply initsuse as afast packet switch:—

e DS-Linksare cheap
e The C104 can be used to build Scalable networks

e Thein-built Flow Control mechanismsat the Tokenlayer of the DS-Link protocol mean
that thefabricisLossless, that is, no datapackets/cellsareever lost internally dueto buff-
er overflow withinthefabricitself. Buffer dimensioning/overflow issuesare moved out-
side the switch fabric to the network interfaces at the edge.

e DS-Links may be Grouped to provide high bandwidth connections within the fabric.
This can be used to:—

O minimize congestion for agiven desired bandwidth
o carry high-bandwidth traffic (for example, to 622 Mbit/s ATM).

o provide redundant paths in the fabric for fault—tolerance reasons

172

e Link grouping oninput can be used to avoid Head-Of—Line Blocking (congestion at the
input to the switch fabric) by statistically increasing the chances of accessing the fabric
(thisisillustrated in the previous diagram)

e Universal (randomized) Routing can be used to avoid the " hot—spot’ congestion which
can sometimes occur with certain systematic traffic patterns (for a full examination of
this see Chapter 7).

e Traffic of any packet length may be carried by the C104 fabric. Only traffic intended
directly for the (current) T9000 needs to be segmented into 32—byte packets, although
longer packets may affect the congestion characteristics of the fabric.

Since the C104 fabric is simply an interconnect mechanism for a multi—processor computer, it
istrivial to add further processors to this architecture to perform the Management and Control

functions. Asmany as necessary can be attached to the switching fabric and they can communi-
cate with the ‘line cards' directly using the same fabric.

Multiple switching planes could also be used to provide either:—
e Separate control/data traffic planes
» Different planes to handle different traffic priorities

e Redundant Fault—tolerance within the overall switching fabric

= C104 C104 g DS
F =

DS g c104Ec104

SWITCH DUAL
NETWORK SWITCHING
~ PLANES

Figure 10.22 Multiple Switching Planes
Generic Internetworking Unit

One of the attractive aspects of thisarchitectureisthat interfacesto other networks, for example
ethernet, token ring, FDDI, frame relay, etc., can be added very easily and so provide a Generic
I nternetworking architecture:—

173

| |
4|
| |
TIE= =°rs />
= Am|[€
MANAGEMENT | = [T=—l
AND ‘ Ios
CONTROL _|l.|.|.||.l|.l=§ =) =: Lo —>
cluaEEc14E Z E
= —
$ T9 <

§C104 C104

SWITCH
NETWORK >

M

R

i

Figure 10.23 Generic Internetworking Architecture

Sincewe have ssimply built acomputer (and onewhich isscalablein performance at that) we can
add additional computing performance whererequired. A **pool’’ of processors can be added to
this system to provide high—performance protocol processing between the various networks. In-
deed, **Parallel Protocol Processing” techniques may be applied. For example, a ‘farm’ of
T9000 processors may be made available to perform frame-by—frame AAL conversion from
ethernet to ATM.

ATM Concentrator

We can extend the internal serial interconnect beyond the confinesof our ‘ black box” ATM com-
puter to provide alow—cost, lower speed entry point from an ATM terminal into the network, a
sort of broadband serial concentrator. By using appropriate physical drivers, we can usethe DS-
Linksdirectly tocarry ATM cellsasynchronously over local distancesintotheswitch. Apartfrom
cost advantages (since the DS-Links are inexpensive and the complication of full STM framing
is not required) the DS-Links also provide an in—built flow—control mechanism which would
provide an automatic means of ‘throttling’ the traffic flow back to the source. Thisis something
whichiscurrently missing fromthe ATM standards (GFC bits notwithstanding) and which could
be added without requiring any alterations to the ATM standards by using the DS-Links. The
availability of flow control to the source would considerably ease the buffering/performance de-
signissueswithinthelocal switch aswell asreducing the hardware/softwarecostsassociated with
header policing on input.

174

|
" MANAGEMENT
| T9

LOCAL ATM AND
CONNECTION | CONTROL
(e.g. <100 Mbits/s|
777777777 <100 metres)| Al

§!
N

|
; |
|
********* | g]lllllll_ 1 Ta|
N ELiZHciiaERF c104E| |
o 2 -F iz = ey
| T
A ,Pc,AgAiTgnpAng . | =S
| 1
. | clruaEEc104E|
[| —
= | |
,,,,,,,,, ‘ \
! |
”V NF: JE SWITCH ‘
A" E NETWORK |
|
! |
| J

Figure 10.24 Low Cost ATM Concentrator

Issues and techniquesfor using DS-Links at adistance have been covered in Chapter 4 and such
aninterconnect could probably provideavery low cost entry—point into an ATM network for end
user terminal equipment.

Private ATM Network Interface

Thebasicissueconcerning thenetwork interfacesfor our private C104—based ATM switchishow
to get ATM cellsfrom thetransmission system onto the DS-Links. Later in this Chapter adiscus-
sionispresented of the various ATM-DS-Link mappings that are possible and the performance
Issues that arise. Here, we consider the functional aspects of such interfacing for the moment.

The ATM line card must perform:—
1 Rate adaption:

e The need for rate adaption will vary depending on the speed and number of DS-Links
provided at the line interface. In any case, some FIFO buffering will be needed to cope
with glight rate mismatches caused by cell header processing, etc. More exotic methods
may be added if theDS-Linksareto run at asubstantially different rateto the ATM line.
Rate adaption between the DS-Link network and ATM can be provided by supporting
one or more of the following:—

0 FIFO’'sto cope with traffic bursts

O Inserting and deleting ATM ‘ldle cells' (null cells for bandwidth padding) into
afull—rate 155 Mbit/s ATM cell stream

o Allowing the ATM clock rate to be varied (for example 1.5/2/34/45/155 Mbits/s.
This may be allowable for private networks, but not on the public side).

175

2 ATM Cédl Header Processing:
e HEC checking and generation for the ATM header
e Policing functions
e Header trandation

3 Packetisation:

e Encapsulation of ATM cellsinto DS-Link packets for transmission viathe DS-Linksto
the switching/processor network

4 STM/ATM Interfacing:

e Interfacingthe ATM cell output stream to the synchronous, framed transmission system,
where required on the public network. Thiswill typically be done in hardware.

5 Management and Control:
e HEC error counts
e Policing parameters/algorithms
e Trandation table updates, €tc.

There is a hardware/software ‘threshold’ to be determined here which is the subject of further
investigation. Some functionsare obviously suited for hardwareimplementation, othersfor soft-
ware. Thereisagrey areain between for functions such aspolicing and header translation, where
the exact split between hardware and software could vary. A simple block diagram of aproposed
network line card isgiven in the diagram below. The dotted lineindicates where scope existsfor
a semi—custom integration of the card onto a single device in future.

A

CONTROL
PATH

-
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\

X

o

c104 é DS BUFFER/ ATM / |- > S

SWITCH__, ADilﬁ.'II-'IEON . [PXCVR E
|

= Loaic PHY[| [Tz

<

\
‘L POSSIBLE FUTURE INTEGRATION

<«<—> DATA PATH

Figure 10.25 Simple ATM-DS-Link Network Interface Card.
10.3.3 ATM Terminal Adapters

Current PC’sandworkstationstypically provideafairly ‘ dumb’ interfaceto anetwork intheform
of asimple card to memory map an ethernet or token ring chip set into the hosts address space.

176

All interface control and higher layer protocol processing then fallson the host machine. It isbe-
comingincreasingly attractiveto add afairly powerful processor directly onto the network adapt-
er cardsin order to offload more of the protocol processing overhead from the host machine. As
the bit—rate of the physical layer hasincreased in recent years, so the performance bottleneck in
network accesshasmovedtothehigher layersof the protocol stack, which aremore software/pro-
cessor performance bound than the lower layers.

As 32-bit micro costs fall, we can apply many of the arguments for intelligent ATM line cards
to an ATM Terminal Adapter and it becomes sensible to consider ‘smart’ rather than ‘ dumb’
adapters. However, instead of providing an interface to a switching fabric (proprietary or DS
Link) weneed ashared memory interfaceto oneof the standard PC/workstation buses. A terminal
adapter will also haveto run one or moreof the AAL standardsand thisisanother reason for hav-
ing afast micro on the card —the AAL layer can be quite complex, the standards are changing
and it may be necessary to run multiple AAL’s to support, say, multimedia applications. This
tendsto mitigate against ahardware—only implementation and, liketheline card, ahardware/soft-
ware ‘threshold’ needsto be determined. Also, an ATM terminal adapter may not need to run at
asustained 155 Mbits/srate, so it may be possibleto sacrifice some performancein order to save
cost by using software functions. In the end, the application requirements will decide.

A ssimpleblock diagram for ashared—memory PC Adapter cardisshown below. A suitable ATM/
PHY interface chip isassumed (these are now becoming available) and some appropriate system
interfacinglogictoload and store ATM cellsin memory. Again, the dotted line showstheintegra-
tion possibilities.

—|

ssia. =] T4/9 | | RAM

LINKS <

—

CONTROL/
DATA PATH

R a1

BUFFER/
wer A PC| | e kelatm 1
@1 ADAPTION/ . [TXCVR
|

I/F 1
I PHY [~

POSSIBLE FUTURE INTEGRATION

ATM NETWORK

Figure 10.26 ATM—-PC Terminal Adapter Card

In thisexampleit isassumed that the AAL layer is handled in software by the transputer. A ver-
sion of the AAL 3iscurrently being written for the transputer at INMOS in order to eval uate per-
formance trade—offs and whether a software—only implementation isfast enough for modest ap-
plications. Details of thiswill form the basis of future papers.

An dternative form of Terminal Adapter can be envisaged for the control functionsin apublic
or private switch. If a T9000 or multiple T9000's are being used for the control then it may be
necessary to interface the DS-Links of the T9000 straight to ATM. A relatively simple ASIC

177

would berequired in order to do this and which would perform the rate adaption, ATM cell tim-
ing, packetisation and HEC functions described above. All other functions could potentially be
performed in software, since the Maintenance and Control cell rateisvery low.

RAM

g

TO CONTROL é é DS —> TOATM
PROCESSORIC104 | 19 . SWITCH
SWITCH FABRIC |/ aTmle PeRe

Figure 10.27 ATM-DS-Link Adapter Application

10.4 Mapping ATM onto DS-Links

In this section the issues associated with carrying ATM traffic over a DS-Link are considered.
The DS-Link and the C104 do not require packets to be of a specified size, although the perfor-
mance of the C104 chip has been optimized for use with small packets. This optimization isfor
parameters such as the amount of buffering on the chip and so variations in packet length will
affect the blocking characteristics, although no packet datawill ever be lost because the buffers
cannot actually overflow. The current T9000 implementation, however, does place a constraint
on packet length, presently of 32-bytes, and this means there are at least two ways of carrying
ATM cells using DS-Links, depending on whether a T9000 is in the data path or not (this
constraint could disappear in later T9000 versions if commercial issues justify avariant).

1041 ATM onaDS-Link

In this section we consider the raw bandwidth the DS-Link can providein order to carry ATM
cells. We can consider 2 possible ways of using the DS-Links.—

e Ina‘T9000" system with a full T9000 packet layer protocol implementation i.e. ac-
knowledged packets of 32—byte maximum length

e Ina‘hardware system (built with no T9000's in the data path) where the packet layer
protocol implementation may be different, i.e. different packet length (and possibly
without support for packet acknowledges).

A genera performance model of the DS-Link is given in Chapter 6. This describes the data
throughput of the DS-Link, given a specified message and packet size. It takes account of packet
overheads, flow control and unidirectional and bidirectional use of the links. This basic model
isextended hereto show thethroughput of the DS-Link carrying ATM cells, both with and with-
out the full T9000 packet layer protocol. That is.—

* One ATM cdll in single packet:—
O One 53-byte packet on the DS-Link

178

e OneATM cell in 2 T9000 packets.—
O One 32-byte data packet
O One 21-byte data packet
Both unidirectional and bidirectional useof the DS-Linksisconsideredinthefollowing analysis.

Datarates and throughput are calculated for DS-Links operating at 100 and 200 Mbits/sto give
arepresentative performance spread.

10.4.2 Unidirectional Link Use
Single 53-byte packet

Suppose that the 53—byte ATM cell is sent as asingle 53—-byte packet. The packet has aone byte
packet header and afour bit packet terminator. The flow control overhead is rounded up to one
flow—control token, of four bits, per ATM cell. The total number of bits transmitted is the sum
of the data bits, the header bits, the terminator bits, and the flow control bits, with the DS-Link
transferring a byte of information as 10 bits.

ATM CELL
ATM DATA ATM HEADER
48 5

\4

A

SLOT TIME, S

Figure 10.28 Unidirectional Single-Packet ATM—-DS-Link Mapping

The net bandwidth available for the ATM traffic in this configuration has been calculated and is
presented in Table 10.1 at the end of this section.

Double Packets

Now suppose that the largest packet contains 32 bytes of data, asis the case for a T9000. The
53-byte ATM cell will be transmitted as 2 packets, one 32 bytes long, the other 21 bytes. Each
packet has a one-byte header and a4 bit terminator. Again the overhead of flow control tokens
islessthan onetoken per ATM cell, and isrounded up to onetoken per ATM cell. Thisisan extra
4 hits.

179

ATM CELL

ATM DATA TM HEADER
48 5

SLOT TIME, S

A 4

Figure 10.29 Unidirectional Double—packet ATM-DS-Link Mapping

Again, the bandwidth results are presented in Table 10.1 at the end of this section.

10.4.3 Bidirectional Link Use

When considering the effect of bidirectional operation, it isassumed that theinbound link carries
asimilar traffic load to the outbound link.

For bidirectional link use, the link overheads are greater. The link carrying the outbound data
must now carry the acknowledge packets for the data on the inbound link, and vice versa. An
acknowledge packet consists of aone-byte packet header, and afour—bit packet terminator. The
outbound link must also carry flow control information for the inbound link.

ATM CELL

ATM DATA | ATM HEADER
48 5

A
\ 4

SLOT TIME, S

Figure 10.30 Bidirectional Single-Packet ATM-DS-Link Mapping

180

ATM CELL
ATM DATA

'ATM HEADER
5

ACK ‘ 21

32

ACK
I SLOT TIME, S .

Figure 10.31 Bidirectiona Double-Packet ATM-DS-Link Mappings
Theresults are presented in Table 10.1.

10.4.4 Summary of DS-Link Results

The performance results of the above configurations are summarized in the following table. The
bidirectional throughput is available simultaneously in both directions on the link.

Max Packet
Size (bytes)

ATM Cell Rate
(Cells/s)

Link Speed
(Mbits/s)

ATM Cell Throughput
(Mbits/s)

100 32 75 69 177k 163k
53 77 72 182k 175k
200 32 150 138 354k 325k
53 154 144 363k 340k

Table 10.1 ATM Performance over DS-Links

Theresultsindicatethat 100 Mbits/slinkswould bemorethan sufficientto carry ATM at T3 rates,
say sub—50 Mbits/s, so could be used to provide an economical point—to—point local connection
from aterminal into an ATM concentrator. The DS-Link speed can be varied anywhere from 10
Mbits/s upwards in 5 Mbit/s increments, so the bit rate could be set appropriate to the physical
medium used (only the transmit speed needs to be set, the receiver is asynchronous).

At 200 Mbits/sthe DS-Links could provide afull—+rate ATM connection unidirectionally and an
only marginally slower (144 Mbit/s) bidirectional one, althoughif thetraffic flow wasasymmet-
rical thisrate could be improved.

For interconnect use within aC104 switching fabric, single 200 Mbits/s DS-Links could provide
full performance. However, traffic congestion issueswould be far more significant than the mar-
ginal DS-Link bandwidth, so the use of grouped link pairswould be beneficial for blocking/con-
gestion reasons. Assuming the fabric could support at best only 80% per—ink throughput (based
on the simulation modelsfor ahypercube with Universal routing), thiswould mean that any DS-
Link pair running at a bit—rate from about 120 Mbits/s up would support full—+rate ATM traffic
through the switch fabric (for amore complete treatise, see Chapter 7).

181

10.5 Conclusions

In this paper the use of thetransputer architecture, its multiprocessing capability, its communica-
tionlinksanditspacket switching interconnect capability, hasbeen described intermsof applica-
tions within the emerging ATM systems market. Applications within public switching, private
switching/internetworking and terminal adaption equipment have been considered. The main
motivation in these discussions has been the convergence of architectures necessary to support
message—passi ng multi processing computers (such asthe transputer) and fast—packet switching
systems (such as ATM). As each technology evolves and matures it is reasonable to expect an
even closer relationship between the two.

A distinction has been drawn between the use of the transputer architecturein public versus pri-
vate switching systems. In high—speed public switches the T9/C104 architecture is offered asa
multiprocessing architecture for the control plane of the switch, with ATM traffic carried by a
separate, dedicated (usually proprietary) switching fabric. Lower—speed private customer prem-
ises equipment has the potential to use a C104—based switching fabric directly, which could be
used to carry both control and data traffic.

The use of transputers as uniprocessors, as opposed to multiprocessors, for building network ter-
mination and terminal adapter cards has also been considered. This area has a different set of
constraints, mainly driven by cost, since ATM adapters and line cards will represent the volume
end of the market. Silicon integration is the key, and the move to semi—custom techniques for
transputer technology is an important factor here.

Giveneconomical driversfor fibreand twisted pair, the DS-Linksthemsel vesoffer their potential
as a low—cost physical interconnect between terminals (PC's and workstations) and a local
C104—-based ATM concentrator. Transporting ATM cells and protocols acrossaDS-Link physi-
cal medium isvery straightforward and providesrelatively cheap office—scal e connections with
the added advantage of a built—in flow—control mechanism back to the source.

ATM is an exciting field and the transputer architecture offers a multitude of possibilities for
building ATM systems. There are numerous combinations of ideas possible and no doubt intime
many unique and interesting variations will emerge.

REFERENCES

[1] CCITT Draught Recommendations. Technical Reports|.150,1.321,1.327,1.361, 1.362, 1.363,
[.413 and 1.432. CCITT

[2] Martin De Prycker: * Asynchronous Transfer Mode: Solution for Broadband—ISDN’, Ellis
Horwood, UK, 1991, ISBN 0-13-053513-3

[3] A.L.Foxand A.K.Joy: * ATM—based Switching for the Integrated Broadband Network’ , Elec-
tronics and Communications Engineering Journal, 2(4), August 1990

[4] C. Hughes and A. Waters: ‘ Packet Power: B—ISDN and the Asynchronous Transfer Mode',
|EE Review, October 1991

[5] Karl Anton Lutz: ‘ATM Integrates Different Bit—Rates’, Technical Report, Siemens AG,
1989

[6] C. Barnaby andN. Richards: ‘ A Generic Architecturefor Private ATM Systems’, Proceedings
of the International Switching Symposium 1992, Session A8.4

182

183

11 AnEnabling Infrastructure for a
Distributed Multimedia Industry

11.1 Introduction

Advances in technology for telecommunication and new methods for handling media such as
voice and video have made possible the creation of anew type of information system. Informa-
tion systemshave becomean essential part of themodernworld and they need to be made accessi-
ble to avery high proportion of the working population. It istherefore important to exploit all
the means available for making the transfer of information effective and accurate. Infieldssuch
as computer assisted training, multimedia presentation is already well established as atool for
conveying complex ideas. So far, however, the application of multimedia solutions to informa-
tion retrieval has been limited to singleisolated systems, because the bulk of the information re-
quired has needed specialized storage techniques and has exceeded the capacity of present day
network infrastructure. Theredo exist special purpose multimediacommunication systems, such
as those used for video—conferencing, but their cost and complexity separates them from the
common mass of computing support.

If, however, distributed multimedia systems can be realized, many possibilities for enhanced
communication and more effective access to information exist. The key to this new generation
of information systems is integration, bringing the power of multimedia display to the usersin
their normal working environment and effectively breaking down many of the barriersimplicit
in geographical distribution. Now that significant computing power is available on the desktop,
integration of voice and video is the next major step forward.

Theseintegrated systemsrepresent avery large market for componentsand for integrating exper-
tise. 1t will probably be the largest single growth areafor new IT applications over the next ten
years. A coordinated set of components, conforming to a common architectural model with
agreed interface standards, is required to alow the research and development of prototypes for
new applications and to progress smoothly to the delivery of complete multimedia distributed
systems. T9000 transputers, DS-Links and C104 routers provide a cost—effective platform on
which thisinfrastructure can be built.

11.2 Network Requirementsfor Multimedia

11.2.1 Audio Signals

Digital techniques for encoding audio data are well established, and now lie at the heart of the
telephone system and the domestic compact disc (CD) player. A number of encoding schemes
exist, giving different trades—off between quality, bandwidth and processing costs. Audio sup-
port for applications can draw on these techniques and does not pose a major communications
problem. However, use of conferencing involving large groups between sites may requireasur-
prisingly high quality of microphone and speaker system to give an acceptablelevel of reproduc-
tion; such environments are often noisy and acoustically complex.

For many purposes, such as remote participation in seminars or discussions, telephone quality
speech will be satisfactory. The normal standard for telephony is Pulse Coded Modulation
(PCM) [1]. PCM speech will handle frequencies up to 3.4kHz, and is provided as 8k samples
of 8hits each per second, or 64kbps. For long distance use, an amost equivalent service can be

184

provided at 32kbps using the more sophisticated algorithm Adaptively Quantized and Differen-
tially Encoded PCM (ADPCM) [2, 3, 4]. Modern algorithmssuch asCode Excited Linear Predic-
tion (CEL P) can even produce reasonabl e results at 4.8kbps, but thereisno justification for such
techniques when communicating with fixed locations on asingle site.

Application of ADPCM at 64kbpsyieldsahigher quality speech service, conveying frequencies
of up to about 7kHz, which will cover amost all the current requirements. Where higher quality
isrequired (for example, for music or comparativelinguistics), one might aswell opt directly for
a single high quality service, using, for example, CD encoding, in about 0.34 Mbps (stereo).
Again, compression will reduce this bandwidth significantly.

Thesimple PCM encodingisvery robust against network loss. The compressed schemesareless
so, and the economic balance is probably in favour of compressed dataon amoderately reliable
network.

11.2.2 Video Signals

The techniquesfor video transmission are evolving rapidly, with more powerful coding devices
giving steadily lower bandwidth requirements. If uncompressed, video information is very
bulky, running up to hundreds of Mbpsif high quality color isrequired. Proposed high definition
standards, already in use within studios, are even more demanding, with an increase of analogue
bandwidth from 15 MHz to 70 MHz and a correspondingly increased digital requirement. How-
ever, theinformationto besent ishighly redundant and great savings can be achieved by compres-
sion. Indeed, compressed still images are sufficiently compact to be treated as normal computer
data and this section restricts itself to moving images.

Thereisasignificant design choice to be made here: isamoving image to be sent as a sequence
of independent still images, or as a progressive representation in which the similarity of succes-
siveimagesisexploited? The latter offers considerably higher compression factors, particularly
when motion of objectsin theimageis detected and exploited. However, thishigh compression
rateisat the expense of greatly increased complexity, particularly if accesstothevideoisto start
at arbitrary points.

There areat present three major video compression standards: JPEG [5, 6], MPEG [7, 8] and the
CCITT Recommendation H.261 [9, 10].

JPEG (produced by the Joint Photographic Experts Group —an ISO/CCITT committee) provides
compression of singleimages, with compression factors of between 10 and 30, depending on the
quality required. There are hardware implementations of JPEG using large scale integration,
which give good perceived quality at normal video rates (25 frames per second). A typical
PC24—based JPEG card costs about £2,000 at present.

MPEG (produced by the corresponding committee for moving pictures) and H.261 (from
CCITT) both exploit interframe coding and can achieve compression ratios of upto 100 or better,
depending on the programme material (static material isobviously much more suitablefor com-
pression, but quite small scale movements have a large effect on the compression efficiency).
However, current implementations are much more complex and expensive, and interfaces with
filing systems require research. Current H.261 Codecs cost about £20,000, but much cheaper
VLSl implementations are under devel opment.

There also exist other highly effective compression schemes, such as that used in DV1 (Digital
Video Interactive [11] — a format from Intel) and various fractal—based proposals. However,
these suffer from the disadvantage of requiring an expensive compression phasewhichisslower
than real time, ruling them out for many of the intended network applications.

24. PCisatrademark of the IBM Corporation.

185

All the above encoding techniques have parameterswhich alow the selection of variousqualities
of service, the primary parameters being number of pointsin the image, frame rate and degree
of information discarded during encoding. These parametersallow the cost trades—off to be ad-
justed to meet different quality requirements, so that higher compression might be applied in a
general interview, say, than adetailed fine art study. At the bottom end of the range of qualities,
thereissome competition from rough video provided entirely by software on existing platforms,
such asthe PC or the Macintosh (Quicktime?®), but thislow quality material isnot aserious com-
petitor for most purposes.

In summary, the most flexible and cost effective technology currently available isthat based on
motion JPEG. Thisrequiresbetween 2 and 5 Mbpsto achieve good quality video from most pro-
grammematerial, although upto 15 Mbpsmay be needed for guaranteed studio quality. Thecom-
pressed material is not tolerant of errors, the only effective recovery mechanisms being frame
discard and repetition of the previousframe. Future system development based on MPEG or its
relatives will offer higher compression ratios at similar costs within five years, but will require
low error rate channels.

11.2.3 Performance

Multimedia systems need to be able to capture and present awide range of media. Some of the
media are very bulky, and so present a considerable challenge to network and operating system
designers. The most demanding requirements come from isochronous media, such asaudio and
video, since they have fixed timing deadlines.

The network requirements can be characterized in termsof the necessary bandwidth and end-to—
end delay, and by the acceptable variation, or jitter, in the delay. Mediatransmitted in their raw
form also show different tolerancetolossof datasamples, but asincreasing useismade of power-
ful compression techniques, data |oss becomes correspondingly less acceptable.

To aconsiderabl e extent, the demands can be matched to the available network resources by ad-
justing thequality of reproduction offered. Both audio and video remain usablefor many applica-
tionsthrough awide range of qualities. Low bandwidth allows understanding, but higher band-
width increases quality, pleasure and impact of the presentation. The particular demands from
arange of mediaare summarized in Table 11.1.

25. Macintosh and Quicktime are trademarks of Apple Corp.

186

Table11.1 Bandwidth Requirements
Medium sample | repetition | uncompressed | compressed
size rate/ rate rate
(bytes) | duration
Text Page (A4) Sk 1 sec 40k bps 10k bps
Colour image 320k 3 sec 800k bps 90kbps
(640 x 512 pixel)
Audio (3.4kHz) 1 8k/sec 64k bps 4.8k bps
Audio (7 kHz) 1.5 16k/sec 200k bps 64k bps
Video 320k 25/sec 65M bps 7.5M bps
(high resolution)
Video 20k 15/sec 2.5M bps 200k bps
(low resolution)
Videophone 20k 15/sec 2.5M bps 64k bps
(static subject)

11.3 Integration and Scaling

In addition to the requirements of the mediathemselves, the need to integrate them into asingle
system must be considered. In multimedia applications, presentation of a number of different
medianeedsto becoordinated. Typically, thisimpliesaneed for someform of general distributed
platform, providing efficient and flexible communication for control and synchronization mech-
anisms. Modern object—based platforms can meet these requirementsin a flexible manner.

Until recently, most multimedia computer systems were constructed on the basis of computer
control of essentially analogue systems. For example, interactive video systems generally con-
sisted of analogue videodisk equipment controlled by, and sharing display facilities with, a per-
sonal computer. Such analogue systemsdo not scalewell. Analoguevideo networksaredifficult
to maintain, manage, and share between different applications.

Devel opmentsin thetechnol ogy available have now made possiblethe construction of equivalent
digital networks, and digitally—based multimedia systems can now be constructed. This opens
up the possibility of multi—service networks (both local and wide area) which can convey arange
of multimediainformation types on asingle network, giving economies of scale, flexibility and
ease of management. Inthisenvironment, site—~wide distribution of audio and video information,
integrated with traditional computer data and control, becomes a realistic proposition.

11.4 Directionsin networking technology

From the computer user’s perspective, network developments over the past ten years have been
dominated by theincreasing coverage and performance of thelocal areanetwork; there now need
be few barriers to the sharing of text, data and program within asite. For the more demanding
media, particularly for video, current networks can support single user demonstrations, but not
the activities of arealistically sized user community.

For example, the bandwidth requirementslisted in Table 11.1 indicate that a number of existing
technol ogieswould be able to support the requirements of asingle multimediastation (e.g. serv-

187

icing asmall office or conference room). Such requirements probably do not exceed 20 Mbps
each way in total and current ring and bus technol ogies (such as Fibre Distributed Digital Inter-
face (FDDI) [12], FDDIH I and Distributed Queue Dual Bus(DQDB)) all havethe necessary raw
capacity —although the capabilities of their routersand the ability to reserve bandwidth are more
questionable.

Inreality, however, abuilding (or group of buildings) will requirethe parallel operation of many
such stations. The University of Kent, for example, has some 125 teaching roomsregistered for
AVA provision. Evenif only 20% of thesewere using multimediaat onetime, thetotal bandwidth
requirement would be almost a Gigabit per second, beyond the capabilities of any of the current
ring or bus networks. Something with an order of magnitude greater capacity is needed.

Fortunately, a quiet revolution has been taking place in the wide area networks, exploiting the
power of fibre optic transmission and providing the basisfor atelecommunicationinfrastructure
of enormous capacity. The aim isto produce atruly integrated network that is able to carry all
types of traffic, from the isochronous data of digital voice and video to the bursty packet traffic
produced by computer applications, using a single underlying network technology.

Theapproach being taken isbased technically onthe CCITT Recommendationsfor the so—called
Asynchronous Transfer Mode and the resulting networks are called ATM networks. They use
the efficient switching of small fixed—size (53 byte) packets to provide a combination of high
speed to any individual user and simultaneous serviceto large numbers of customers. The small
fixed—size packetsare called cellsand their usefacilitatesthe multiplexing of traffic that issensi-
tiveto delay jitter with traffic that isnot. ATM systems designed for telephony are expected to
operate at speeds of 155Mbps and above. Thisimplies a packet switching rate of over aquarter
of amillion packetsper second fromeachlink into asingle switch. Thedistribution of the switch-
ing function meansthat the total switching and transmission capacity isnot limited to that of any
individual link or switch; the system scales up naturally like the telephone system and does not
suffer from size limitslikea LAN.

11.5 Convergenceof Applications, Communicationsand Par allel Processing

11.5.1 Multimediaand ATM

The capabilities of the new ATM networks are well matched to the requirements of distributed
multimedia systems. ATM networks operate at a high enough speed to support all the types of
information wanted, and give the flexibility needed to share information between many users.

Recent advances in compression technology also affect the situation by reducing the peak re-
quirements of audio and video to the point where they can be handled and stored in conventional
desktop systems. The ATM networks cope well with the varying load presented by compressed
data streams.

The future therefore seems clear:

e therewill be an increasing penetration of ATM technology as the networking solution
of choice, both in the wide area and as the local infrastructure;

 therewill beamajor expansionintheuse of multimediatechnol ogiesfor integrated com-
munication and information retrieval both within and between organizations.

As an example, the UK academic sector has recently initiated the SuperJanet project to provide
anew generation of wide areainfrastructure capabl e of supporting multimediaapplications, and
anumber of multimediaresearch groupsare planning to make use of it to extend their local facili-
ties.

188

11.5.2 ATM on your Desk

However, the currently available ATM equipment is primarily aimed at the telecommunication
carriers. Thereal benefits of an integrated ATM network become apparent when the flexibility
of themixture of ATM based servicesisdeliveredtotheend user’sdesk [14]. Thisimpliesaneed
for local area ATM solutions, and for ATM compatible end user equipment.

In the multimedia architecture described in this chapter, the further step of using ATM cellsfor
communication within the workstation is proposed. Multimedia activities produce a great deal
of movement of data and the same considerations regarding the transmission and switching of
this data pertain within the workstation asin thelocal and wide area. It therefore seemssensible
that a similar solution should be applied.

At present, however, ATM switcheson offer commercially aredisappointingly expensive. Prices
of £75,000 for asmall switch aretypical and this renders—for the time being — their use uneco-
nomic for supporting the above scenario.

11.53 Transputersand ATM

Starting from the need for the flexible interconnection of parallel processing elementsthat isre-
quired to produce parallel computers, astyle of architecture has emerged in which separate pro-
cessing elements areinterconnected by communication links. Some of these designs are packet
based, and the best known isthe INMOS transputer. 1n the T9000 range of transputers, INMOS
have chosen astyle of communication whichissimilar both in general philosophy and in techni-
cal capability to the ATM networks. Therationale behind thisdecisionisbroadly similar to that
which led the CCITT to choose ATM for the Broadband Integrated Services Digital Network
(B-ISDN).

ThelNMOS choicehasthehappy consequencethat it will be possibleto construct systemswhich,
with aminor amount of technical ‘glue’ to make the necessary detailed adaptations, carries the
same high level view of ATM based communication from the wide areainto thelocal processing
component within multimedia devices. Integrated multimedia networking becomes possible at
reasonabl e cost (withthe cost of an ATM switch being reduced by at | east oneorder of magnitude,
probably more).

11.5.4 Convergence... and an Opportunity

This three-way convergence of application requirements, telecommunications standards and
parallel processing technology representsareal opportunity for progress; all theimportant pieces
are becoming available now (1993). It istherefore the right time to seek to define standards so
that the necessary components can come together from different vendorsto form asingle family
of compatible products.

11.6 A Multimedia Industry —the Need for Standard Interfaces

The development of multimedia applications depends on the availability of suitable products.
Broadly based applications can only be constructed easily if the necessary components are of -
fered by a number of suppliersin aform which is simple to integrate and to configure to meet
the specific needsof theuser. Thedetail of the configurations needed on adesktop and in ameet-
ing room will be different; so will the configurations needed by the author of training material
and users of that material.

The solution to this problem lies in amodular approach, based on the definition of a small set
of key interfaces between components. The interfaces are crucial because the exact packaging

189

of functionsand the power of the componentsthemsel veswill evolveasthetechnol ogiesdevel op.
Theinterfaces between components, however, arerelatively stable and allow the construction of
systems using components from different sources and with different levels of technical sophis-
tication.

Some interfaces need to be common to all components; others are more specialized. Universa
interfaces are needed for the control and management of the components — particularly for:

e the control of communication and information storage and retrieval, so that common
tools and common user paradigms can be applied across the full range of media;

 thoseenquiry functionswhich allow each component to determinethe capabilitiesof any
others with which it interacts and so take account of the changes and limitations of the
configuration in which it is placed.

At amore specific level, agreed interfaces are needed for each of the mediatypes so that, for ex-
ample, all audio or al video components can interwork successfully.

Toalarge extent, theseinterfaces can be based on international ly accepted standards, but in some
of the areas being addressed such standards do not yet exist, or the way they are to be combined
isnot fully defined. Thereisan urgent need, therefore, for the involvement of a broad range of
potential component suppliers and system or application developers. What is required is the
minimum of technical work for the definition of a profile for multimediause of ATM standards.
It would provide both an architectural framework which identifies the interfaces needed and a
portfolio of references to related interface specifications covering the full range of multimedia
requirements.

The agreement by the Industry to such aprofile would provide afirm basisfor the development
of new applications using distributed multimediasystemsand would beamajor input of practical
experience into future formal standardization.

11.7 Outline of a Multimedia Architecture

11.7.1 Components, Stations and Sites

The basic building block of the architectureisthe * component’. Componentswill either handle
apiece of equipment (such as a microphone, video camera, display, disk, ...) and/or carry out a
function such as encryption or compression. Each component will contain one or more proces-
sors. The most important feature of the architecture is that the components will communicate
with each other in a single universal fashion by the transmission and reception of ATM cells.
ATM cellswill be used to carry the media, to carry control information and to carry signalling
information (i.e. thecommandsfor organizing the pattern of interconnection between the com-
ponents). Components are viewed under this architecture as atomic devices—i.e. communica-
tion mechani smswithin amulti—processor component are specific for that component and would
not follow ATM standards.

190

wide area connectiol
with CCITT
Recommendations

site interconnection
using lower cost links

component station interconnection
using processor links

Figure11.1 Hierarchy of interconnections

Three regimes of ATM interconnection between components are envisaged (see Figure 11.1).
Thefirst regimeisthat of a‘station’. A station isaset of one or more components that can be
considered to act together —i.e. they areeither all switched—on or all switched—off, and thetrans-
mission of cellsbetween them can be considered to be error—free. The second regimeisthelocal
interconnection of stations—a‘site’. Thisisaregimeinwhich transmission delayswill be short,
and error—rateswill normally bevery low. 1t must copewith stationsvarying their statusbetween
inactive and active. Such aregime may use synchronous or asynchronous transmission. The
third regimeisthat of the ‘wide—area’, in which it is assumed that the full application of CCITT
standards will bethe norm—i.e. quality of service, policing, tariffing, etc.. Inthisregime, syn-
chronous transmission will be used. Within all three regimes there will be components that are
used for switching cells.

The architecture has three main areas that require agreement on standardization:

e specificationsof how different typesof mediaaretobecarriedincells. Asfar aspossible
thiswill follow international standards—i.e. use of ATM adaptation layer, use of stan-
dard encoding for voice (CCITT G.series Recommendations) and video (JPEG, MPEG,
H.261), etc.;

e gpecificationsof how componentsareto becontrolled. Thiswill havetwo parts. agener-
al scheme of control and realization of this scheme for particular components;

e gpecifications of the manner in which signalling is to be carried out —i.e. how connec-
tionsareto be created and removed within thethree ATM regimes. Clearly inthewide-
arearegime thiswill be determined by outside authority.

191

11.7.2 Example Components

The hardware requirements to support audio and video revolve around a family of interfacing
components delivering and controlling the media. 1n each case, the information flows from the
network asastream of ATM cells. Theinterface decodesand decompressestheinformation, con-
vertsit to analogue form and passes it to the display device or audio system — see Figure 11.2.
For input devices, the processis reversed.

dlsp'lay decoder petwork ATM cells
device interface

controller

Figure11.2 A Component

Thedisplay (or capture) can be performed by connecting existing audio—visual devices, athough
moreintegrated solutionswill appear astimegoesby. Thecontroller element can beaspecializa-
tion of asingle designfor thewholefamily, but the decoder (or encoder) is specificto the medium
being supported. The network interface can be expected to havetwo variants. onefor direct con-
nection as a station to the site network for use by isolated devices and alargely vestigial onefor
use within a station for connecting the different components supporting multiple media.

The following components are considered to be basic to the architecture:
* video capture (still and full motion) including compression;
e display including decompression and input device handling (keyboard, mouse, etc.);
e audio input and output (including compression);
e bulk media storage;
e encryption;
e switching both within a station and in the local area;
» access to other networks and other communications technol ogies.

Thisisaninitia list of areasto be covered and it will grow astheindustry develops. The central
componentisavery small ATM switch (onasinglecard) tointegrate alocal cluster into astation
—asingle C104 router and aminimal controlling processor may be all that is required.

11.7.3 Example Station

Using the components outlined above, a suitable multimedia station for an office or conference
room can be constructed from modular components. The size of the moduleswill be determined
largely on economic grounds, relating to processing costs. For example, it may be attractive to
provide both audio input and output in asingle card, but to separate video input from output.

A typical configuration would always provide a hardened network interface for the station as a
whole, an enclosure and power supply, together with a small integrating switch. The switch

192

would be used by componentsspecificfor that station (e.g. afull-duplex audio card, avideoinput
card, avideo output card and a control terminal interface, also providing OHP tablet output) to
share asingle outgoing ATM link to the site multiservices network — see Figure 11.3.

audio

ATM network ATM link

video . .
switch interface

control

screen
keyboard

Figure11.3 A Station

11.7.4 Example Site

The campus of the University of Kent at Canterbury providesatypical ‘site’ for such amultiser-
vice network. Geographically, itisacompact single areawith most of the major teaching build-
ingsfalling withinacircle of 500mradius. There are some outlying locations, but noneare more
than 2 Kmfromthecentre. The campusiscrossed by publicroads, but the University hasducting
under them.

Fibre optic links have been installed throughout the campus and services are being migrated onto
them. The new links provide for an FDDI—-based backbone and a number of distribution links
to the Ethernet segmentsin individual buildings. Provision variesfrom 12 fibres per link in the
central ring to 8 or 4 fibres on the distribution spurs. The central part of the campus, together
with the fibre network, is shown in Figure 11.4.

193

UNMIVERRITY OF RENT

AT CANTERBURY #ogs

AUTHERFIRD CDLAEGE

HERRUE RN s e
7 e HLDT SOLLEGE
i Y
R it
; L] Boskes Do
metevs G

Figure11.4 The Fibre Routes at UKC

Theseopticfibres(or, at least, the physical channelsinwhich they arelaid) would form the back-
bonefor a‘site’ ATM network —once the low—cost distributed multimediaindustry described in
this chapter and enabled by T9000/DSHink/router technology comes into place. The logical
structure of a possible (initial) UKC siteis shown in Figure 11.5.

194

SuperJANET FDDI
Computing Computing
lecture storage video conf.
' Rutherford
Grimond omputm lecture
Electronics lecture switch Darwin
lecture lecture
Electronics Grimond utherfor Eliot
video conf. switch switch lecture
Biology Keynes
lecture Grimond Library lecture
video conf. switch Rutherford
self-study
library
FDDI —— storage self-study

Figure11.5 A Site

11.8 Levesof conformance

Combination of modular components can be viewed at a number of different levels. The more
detailed the specification used, the lower the integration cost, but the more limited the field of
application. It can therefore be worthwhileto identify different levels of conformanceto thein-
terface specifications.

One can distinguish:

» an abstract statement of the media types, the processing components and the interfaces
and data flows between them. |t isthe essential minimum set of agreements necessary
for system integration to be possible, since it includes the agreements on datatypes and
interpretations needed to have acommon understanding of how to process and represent
the various media. However, it does not commit an implementor to any particular com-
muni cation technology or physical packaging. Using theterminology of theinternation-
al standards for Open Distributed Processing (ODP) [13], this correspondsto ODP ‘in-
formation and computational specifications';

e a statement of how the various interfaces are to be realized, giving the detailed
constraints on implementation in a particular environment. This corresponds to ODP

195

‘engineering and technology specifications . Several different solutions may be needed
to support different kinds of integration. Of particular importance are solutions to:

O networkinterconnection: specifying theformatsand protocolsthat areto apply be-
tween two systems on a wire or a fibre. This form of specification does not
constraintheinternal structure of the systemsand i sthe minimum requirement for
the construction of distributed applications,

o physical packaging: specifying the form and interconnection requirements for a
system component at, for example, the card level. Widely accepted standards for
particular computer families, such as the format for PC cards and buses fall into
this category;

O software interfaces. specifying the interface to device drivers and presentation
management systemsat alanguage level. These specifications should be obtained
directly by selection from established industry practice, rather than creation of new
specifications. Support for specific software environments such as MS-DOY
Windows?6 or UNIX/X-Windows?’ fallsinto this category.

This framework then allows integration to take place at many different levels, but within this
structureall playersare expected to conform to the abstract specifications. All suppliersof com-
muni cation components are expected to conform to one of the agreed communication specifica-
tions. All suppliersof, for example, PC cards are expected to conform to the specifications for
the physical, bus and device driver specifications for the machine range. A supplier of avideo
display card with an integral network interface might need to conform both to the networking
and the subsystem interfaces (see Figure 11.6).

common abstract view

interface 1 video interface 2

physical link card physical bus driver application

|
Software interface

Figure11.6 Possible conformance points

11.9 Building stations from components

Aswell astheabstract standard for thearchitecture, hardware standards such asmethods of trans-
mission of cells, particularly within the station, board standards, etc. haveto be specified for the
concrete realization of components.

For the transmission of cellswithin astation there are broadly two possibilities: use of astandard
busor use of point—to—point linksin conjunction with routing between components. Use of abus
hastwo major disadvantages. First, it would put anon—scalable resource at the centre of the sta-
tion, which would, moreover, be a shared resource whose propertieswould have to be taken into
account when various combinations of components areintegrated together in astation. Second,
there are alarge number of possible bus architectures that might be chosen.

Links do not suffer from these disadvantages; they are scalable and they exploit the same inter-
connection model between componentsas hasalready proved effectiveat higher levels (between
stations and between sites). The approach taken is thuslogically coherent.

26. MS-DOS and Windows are trademarks of the MicroSoft Corporation.
27. UNIX isatrademark of AT& T Bell Laboratories and X—-Windows is atrademark of MIT.

196

A final question that must be addressed in the definition of the architectureisits relationship to
various existing workstation architectures. The two main architecturesto be considered are the
Unix—based stations and the PC—based stations. The Macintosh architecture has strong claims
for consideration, but certainly runs third to the others. Interfacing between workstations and
the multimediaarchitectureisprincipally in the areas of the display screen, control of the multi-
media components and access to files. At a minimum, interfacing through X—windows and/or
MS-Windows, viaa simple RPC mechanism and via ethernet, will be required.

11.10 Mapping the Architecture onto Transputer Technology

T9000 transputers, DSHinks and C104 routers are well—suited for the construction of low—cost
ATM networks— detailed technical analysisto support thisclaimis presented in chapter 10. On
top of this, INMOS have defined a board technology for the construction of modules. This
technology defines a board format called the H-TRAM for small boards that plug into mother-
boards. Thus, if most of the multi—-mediacomponentsarebuilt asH-TRAMSs, they could be used
with different motherboards to fit avariety of situations. Motherboards dealing with switching
and interfacing functions are likely to be built for all the popular bus standards.

For communication and switching between components within a station, T9000 technology pro-
videsthe necessary means of integration directly —without further development. ATM cellscan
be conveyed directly over DSHinks, routed through asmall C104 network (onechipwill general -
ly be sufficient).

The use of transputer parts between stationsin thelocal ATM regime and the interfacing to wide
area ATM will require the development of specialized chips. For the local arearegime, a part
isrequiredthat will allow INMOSIinksto becarried over distancesof uptoafew hundred metres.
This part must also provide guaranteed immunity of the component at one end from any type of
failureof thecomponent at the other end. Thisisolationisnecessary becausethedifferent stations
inthelocal areabelong to different people and may be powered up or down (or reinitialized) inde-
pendently of each other and of the switching and communication components.

To interface to the wide area, a part suitable for interfacing a T9000 processor to a synchronous
link running at up to 155 Mbpsisrequired. However, thisisapeak speed and representstheload-
ing of amultiplex of many user activities. Itistherefore possibletodistributeitimmediately onto
anumber of DSHinksin all but the most pathological congestion situations, where higher level
recovery can beexpectedtotakeplace. Theinitial 155 Mbpsserial link interfacing requires mod-
erately fast hardware, but iswell within the capabilities of available components.

Some preliminary investigation of these requirements has been made and it is felt that both the
local areaand thewide areaproblems can be sol ved by an adaptor constructed using electronical -
ly reconfigurable programmed logic arrays rather than custom designed chips. However, the
T9000 link engineis expected to be avail able as a semi—custom library component, allowing the
creation of multisourced low—cost components as the market grows.

REFERENCES
[1] CCITT Recommendation G.711: Pulse Code Modulation (PCM) of Voice FRequencies.

[2] CCITT Recommendation G.721: 32kbit/s Adaptive Differential Pulse Code Modulation
(ADPCM).

[3] CCITT Recommendation G.722: 7kHz Audio Coding within 64kbit/s.

[4] CCITT Recommendation G.725: System A spectsof the Use of the 7kHz Audio Codec within
64kbit/s.

197

[5] 1SO/IEC 10918: Information Technology — Digital Compression and Coding of Continuous
Tone Still Images (JPEG).

[6] Wallace, G.K., " The JPEG Still Picture Compression Standard”, CACM, vol 34, pp. 3044,
April 1991.

[7] ISO/IEC 11172: Information Technology — Coding of Moving Picturesand Associated Audio
for Digital Storage Media (MPEG).

[8] LeGall, D.,”MPEG: A Video Compression Standard for MultimediaApplications’, CACM,
vol 34, pp. 46-58, April 1991.

[9] CCITT Recommendation H.261: Video Codec for Audiovisual Services at p* 64k bit/s.

[10] Liou, M., ” Overview of thep* 64 Kbit/sVideo Coding Standard”, CACM, vol 34, pp. 5963,
April 1991.

[11] Ripley, G.D.,”DVI —aDigital Multimedia Technology”, CACM, vol 32, pp. 811-822, July
1989.

[12] Ross, F.E.,” An Overview of FDDI: TheFibreDistributed Datalnterface”, IEEE J. on Selec.
Areasin Commun., vol 7, pp. 1043-51, Sept 1989.

[13] ISO/IEC 10746: Basic Reference M odel of Open Distributed Processing, Part 2: Descriptive
Model and Part 3: Prescriptive Model.

[14] Hayter, M.D., and McAuley " The Desk AreaNetwork” Operating Systems Review vol 25,
no. 4, October 1991

198

Appendices

200

201

Appendix A New link cable connector

A major part of any connection standard is the choice of connector. The connectors mentioned
inthe section on standardsall have major benefits, but no connector combinesthese benefits. The
requirements listed below have been collated from transputer users.

e Ten pins are needed per DS-Link28, A connector carrying more than one link should
carry two, four, or eight links, with the same pinout and PCB layout for each link;

» The connector should belatched, mechanically sound and robust, but ergonomic so that
the end-user finds it easy to plug and unplug;

e The connector should be EMC screened for FCC/VDE/EEC regulations; ideally this
should include unused connectors which do not have cables plugged into them;

 |tshouldbeabletohandle 100 MBit/ssignal swithout introducing seriousdiscontinuities
in the transmission line impedance;

|t should be dense enough to alow a reasonable number of separate link connectors,
ideally up to tenin the height of a PS2 adaptor or four inthe 28mm pitch of an HTRAM,;

e Cable connections should be IDC, even from round cable;

* Any mechanical stress should betaken by the mechanical panelsand mounting brackets,
rather than by the PCB;

¢ |t should be Hard Metric;

e I|dedly, versions should be available in the same mechanica dimensions which house
apair of coax or optical fibre connections;

» Reliahility is, asaways, more important than cost, but the connector should be reason-
ably low cost and available worldwide.

Several existing connectorscomecloseto meeting theserequirementsin oneor other respect. The
latches used in the LEM O cable connectorsand SC optical connectorsare highly ergonomic and
robust. Thelanyard latch on some of the LEMO connectorsispossibly even better for ahigh den-
sity connector. The modularity, metric dimensions, and high density of the METRAL family
from DuPont come close to meeting some of the requirements. There areanumber of good cable
connectors to fit backplanes, one of the closest to the requirements being the Fujitsu
FCN-9505/9506 which combines modularity, robustness and good screening.

The new connector pulls together the best features of these connectors.

This 10-way modular 1/0 connector system has been designed by AMP, Fujitsu, and Harting, in
cooperation with INMOS/'SGS-THOMSON. Pins are on 2mm pitch to give a height small
enough to fit the mounting brackets of personal computer cards, and connector pitch is 6mm.

Theresulting connector: isHard Metric, inlinewith IEC 917; isscreened, to aid compliancewith
EMC regulations; hasaleading OV pinfor reliable‘ hot-swap’ ; haseight pinsfor buffered differ-
ential DS-Links, together with apin for remote power; is exceptionally dense, with two to five
times as many connectorsin agiven panel length compared with existing connectors; and fitsall
theboard standards such asPC, VME, SBusaswell asthosebased on |[EC 917. A particular bene-
fit of the connector isthat it allows equipments to benefit from alarge number of ports, in the
28. Two differentially—buffered data/strobe pairs (8 pins), one leading ground pin, and power for remote devices.

202

same way as DS-Links make it possible to build a routing-switch-chip with alarge number of
ports.

INMOS have built the connector into prototype PCBsfor the T9000, and presented the work on
the connector (together with other aspects of proposed standardsfor DS-Links) to ESPRIT part-
ners and to several IEEE and ANSI standards working groups.

Thereisnow full agreement between the connector manufacturers and INMOS on all aspects of
intermatability of the connector, with minor changes having been agreed as aresult of building
and using the prototypes. The connector’s electrical and mechanical robustness, its density,
modularity and ergonomics, are widely applicable to electronics which becomes ever smaller.

Without the new connector, standards are still possible. For example office equipment such as
terminals, laser printers, disks, and fax machines, each of which might use from two to four of
the connectors, could use one type of connector; and computers, which might use many more
connectors, use a different type. But there are obvious advantages in using the same connector
for al the equipments. In somerespects, thelinkswould become a100 M Bit/sRS232, with auto-
baud and a ssimple packet routing protocol built in.

The new connector is not limited, however, to use with transputer links. There are many other
interfaces which use point-to-point connections, and thereis ahuge number of 9-way D connec-
torsinstalled around the world. As el ectronic equipment gets smaller, connectors begin to domi-
nate the size of the equipment. Much work hasgoneintoincreasing the density of the connectors,
but usually with aview to having morewaysin the same space. Thisproposal usestheseimprove-
ments in density to fit the same small number of ways into a smaller space.

Although the new connector hasbeen derived fromtheneedsfor transputer links, it appearsthere-
fore that such a connector would meet the generic needs of the computer and el ectronicsindus-
tries.

Figure A.1 Prototypes of the link new connector

203

Appendix B Link waveforms

A few example oscilloscope traces are shown of the waveforms seen with different lengths of
connection and with different formsof buffering. Thewaveformsonthispagearefrom simulated
link signals: figure B.1 shows isolated 5ns pulses, with less than 1.5ns distortion resulting from
thedriver, receiver, and 10m of 30 AWG cable; figure B.2 showswaveformsfrom simulated link
signals before and after transmission through 41 series buffers, the circuitry described in HP's
Application Bulletin 78, and 100m of fibre (waveformsareidentical when using Honeywell opti-
cal components).

—100.000ns —50.000ns 0.000ns
— 4 O —
Y.
/I
5ns pulses @ 90ns intervals
5.0V power supply
FigureB.1 Isolated 5ns pulses, AT& T 41M series, 10m x 30AWG
+100.000ns 0.000s 100.000ns
: 3.5V
— =\ J ov
T\ A< AT —T— /e
+ +—+ + R + + + + + + +—+ + 1} —+ + fi + T + + + + + + +—+ + +
_ k YV V- —
5.0V power supply

Figure B.2 HP1414 LED, 2416 receiver, 100m of 62.5u fibre

204

Thefigures B.3 and B.4 on this page show actual link waveforms, which were correctly received
through the 41 seriesdriver and receiver and 30m of cable. Notethe attenuation of thedifferential
pseudo ECL signal apparent in figure B.3.

Channel C Channel A Channel B Channel D
Data\—— %@@@@@@@@& —/»
Driver Twisted pairs Receiver
Strobe ——» PO OO OO OSSO —
le |
| 30m |

~— e Vol
S i AW -
JV UV
\ \]
N T O A I S N N I
Ch.B ‘\\/ \// \\‘_/ N
| l
FigureB.3 DS-Link idle pattern, AT& T 41 series buffers
S L A A 1 o
| JU JU |\

SOV A L]

FigureB.4 TTL signals corresponding to figure B.3

205

Appendix C DS-Link Electrical specification

The DS-Link isdesigned for point to point communication which may be on asingle pcb, board
toboard or box to box. Sincethisimpliesthat transmission line problemswill be present, theel ec-
trical level hasbeen designed asatransmission linesystem. In order to reducethe power required
for each link (enabling the use of many links) source only termination isused. The choice of im-
pedancelevel (nom. 100 ©)wasmadesuchthat itisstraight—forward to makethesetransmission
lines with standard pcb materials.

The DS-Link connection at the electrical level usually comprisesthree parts. Link output driver,
transmission lineand link input pad (seefigure 1). These partsare duplicated to providethe Data
and Strobe wiresfor the DS-Link. The return connection ismade from asimilar pair of connec-
tions, thus there are four wiresin al, two in each direction. The output driver has a controlled
output impedance to reduce reflection problems. The transmission lineis provided by pcb, coax
or other suitable controlled impedanceinterconnect. Theinput padisdesigned asastandard TTL
input and has no internal termination.

Link Output pad

Sincethissystemiseffectively adriver driving an open circuit transmission line, careful consid-
eration must be madeto dampreflectionsfromtheload. Thisiscatered for by providing an output
driver which isdesigned such that reflectionsfromit do not adversely affect the voltagereceived
at the receiving end of the transmission line. To achieve this the driver has a controlled output
impedance even when switching. Due to processing variations an exactly terminated lineis not
possibleand nominal termination val uesother than 100 ohmshave been used to ensurethereceiv-
ing input does not receive spurious data or glitches. Since TTL thresholds are not balanced with
respect to the power supplies, the pulling high output impedanceisin fact different from the pull-
ing low output impedance.

Output driver parameters

Thefollowing list of parameterscoversthefull rangeof processing, temperatureand supply volt-
age encountered by aDS Link. Vdd may have therange 4.5to0 5.5V , Tj (junction temperature)
in the range O to 100 degrees C. Note that they apply to theimplementation of the DS-Link
current when this book went to press; for information relating to a specific product, the
appropriate datasheet should be consulted.

206

Parameter Min M ax units Notes
fmax maximum operating data rate 100 Mbits/s 1
(as part of aDS-Link)
tr output risetime 25 6 ns 1,2,4,6
tf output fall time 25 6 ns 1,2,4,6
tph output high time for anominal 15.8 24.2 ns 1,2,4,5,6
20ns bit period (1.5v threshold)
tpl output low time for a nominal 15.8 24.2 ns 1,2,4,5,6
20ns bit period (1.5v threshold)
Voh lo= 1ma Vdd-0.4 Vdd Volts 3
Vol lo=—1ma 0 0.4 Volts 3
RI Output impedance, output driv- 63 104 Ohms 3
ing low Vo=1volt
Rh Output impedance, output driv- 110 247 Ohms 3
ing high Vo=Vdd-1volt

Note 1. Using thetest circuit showninfigure C.1

Note 2. Measured at point B on the test circuit (figure C.1)

Note 3. Measured directly (without test circuit)

Note 4. Sample tested and/or characterised only

Note 5. Allowance made for aground difference of up to 0.4 Volt between transmitting and re-
ceiving devices.

Note 6. Seefigure C.2

i i Transmission line inki
Link Driver Z0=100 ohm (nom) Link input Pad
Length=1m
Do >o-—F—F _)——F—]>0 Do
__ Coutput <10pF _| —L_ Cload <8pF
(including parasitics) —— —— (including parasitics)
Gnd

FigureC.1 Test Circuit

207

OUTPUT AT B
Vce

1.5volts - - - - - -
0 volt_/

A
Y
A

e

i
y

OUTPUT ATB

10/90% values are measured on
the received edge (whatever its
levels)

Figure C.2 DS-Link Timing
Transmission line requirements

Careful consideration must be made when connecting link output driversto their corresponding
receivers. For distances of greater than 20cm the link line must be considered as atransmission
line. Discontinuitiesor variationsin characteristicsimpedance should bekept toaminimum. The
transmission line may be made on pcbsbut care must be taken to provide agood ground or power
plane beneath the link track and crosstalk should be minimised with other tracks (including be-
tween dataand strobelinesof thesamelink). Thiscan be hel ped by placing grounded trackseither
side of thelink track, as described earlier. The longest length of line achievable will depend on
the materials used for interconnect and the grounding arrangements. Note that they apply to
theimplementation of the DS-Link current when thisbook went to press; for infor mation
relating to a specific product, the appropriate datasheet should be consulted.

Recommendation Min M ax units
Zo Characteristic impedance 90 110 ohms
tskew difference in transmission line propa- -4 4 ns
gation delay between data and strobe lines
for DS-Link operating at 100 MBit/s

208

Link Input Pad

Thelink input pad isastandard TTL compatible CMOS input pad. Care should be taken not to
introduce too much capacitance on the link line near the receiving input buffer. Note that they
apply to theimplementation of the DS-Link current when thisbook went to press; for in-
formation relating to a specific product, the appropriate datasheet should be consulted.

Parameter Min M ax units Notes
fmax maximum operating data 100 Mbits/s
rate (as part of aDS-Link)
Vih Input high voltage 2.0 Vdd+0.5 Volts
Vil Input low voltage -2 0.8 Volts 1
lih input leakage current, -10 10 UA
Vin=2.0volts
lil input leakage current, -10 10 UA
Vin=0to Vdd volts
Cin Input capacitance measured 7 pF 2
at IMHz

Note 1. Input voltages of less than —0.5 volts should only be transient in nature.

Note 2. Sample tested

209

Appendix D An Equivalent circuit for DS-Link Output Pads

Thefollowing preliminary equivalent circuit may be used to simulate the output from DS-Link
pad driversfound onthe IMST9000, C100, and C104 devices. It hasbeen donein such amanner
that any circuit smulator (provided it can model inductors) will be capable of modelling thelink
pad driver, with no reliance on any specific device models.

The circuit (figure D.1) should be constructed from idealised components with the parameters
listed below. For simulation time reasons it may be preferable to add a small capacitance (e.g.
100f) between the MOS device drains and their respective supply. In addition itismorerealistic
to add a supply—to—supply capacitance for the | C which will depend on which chip the DS-Link
ison. Thiscan be 1uF for aT9000 to only afew 100pF for aC100. The waveforms (figure D.2)
canbestraight linerepresentations (e.g. SPICE PiecewiseLinear) , bearingin mind 10/90%times
are guoted.

[PCBvdd
g 5nH
IC Vdd
—— Cpad Transmission
l: [[[Line
Ronp Ronp Ronp Ronp
% % % % Z0 =100 ohm
Rp Rp Rp Rp
Q00
e
%Rn %Rn %Rn %Rn
I Ronn | Ronn | Ronn | Ronn T
Cpcb
IC ground
g 5nH
PCB ground
Va Vb Vc vd

FigureD.1 Equivalent Circuit
Key parameters

Thefollowing list of parameterscoversthefull rangeof processing, temperature and supply volt-
age encountered by a DS-Link. Vdd may have the range 4.5 to 5.5V. Note that they apply to
theimplementation of the DS-Link current when thisbook went to press; for information
relating to a specific product, the appropriate datasheet should be consulted.

210

Parameter Min M ax units
Ronp, Vds=—1Volt 106 4381 Ohms
Ronn, Vds=1Volt 25 82 Ohms
Rp 332 508 Ohms
Rn 227 333 Ohms
tpd, rising and fal- 0.66 2.0 ns
ling transitions
tf, 10/90% of Vdd 1.2 2.3 ns
Va Vb Vc,Vd
tr, 10/90% of Vdd, 15 2.8 ns
Va Vb Vc,Vd
Cpad 0.5 0.5 pF
Cpch, any intercon- 2.0 As board layout pF
nect before trans- dictates
mission line.

In SPICE simulations the following model may be used for the transistors:

.model n nmos Level=1 vt0=0.7 kp=50u tox=40n
.model p pmos Level=1 vt0=0.7 kp=20u tox=40n

This leads to the following transistor sizes (at 27°C only):

Ronn(max) w=55u,l=1u

Ronn(min) w=175u, |=1u
Ronp(max) w=23u, |=1u
Ronp(min) w=102u, |=1u

vdd
Va
Gnd t
t, ‘]f —
vdd K——

and Vb p 4 \

Vdd

and Ve p 4 \

Vdd

/
Gnd Vd /|

tpd tpd T tpd

FigureD.2 Output Pad Timing

